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Summary

Ruled surface design and its applications are widely used in CAGD
(Computer Aided Geometric Design) and industrial areas. The hy-
perbolic paraboloid, the cylinder, the cone, and the hyperboloid are
ruled surfaces with particular shapes. In this paper, dual space draw-
ing methods for these particular ruled surfaces are proposed. The un-
derlying principles of these methods are the applications, extensions :
and variations of the dual (space) de Casteljau algorithm [15].The Figure 2. Displacement of
hyperbolic paraboloid is created by using the initial dual de Castel-  Figure 1. Geometrical inter- line g by translation and ro-
jau algorithm directly. The cylinder, the cone, and the hyperboloid, ~ Pretation of screvs = (1 + tation along axisS by 6 =
on the other hand, are created by using the extensions or variations 7S +¢S0in3-D. 0 + ed.

of the dual de Casteljau algorithm. During the drawing processes,

the screen representation of the rulings is presented. This treatment

presents the rulings as clipped line segments on the computer scree@  Screw Theory

in order to show the proportion of the ruled surface on the computer

screen. In addition, the dual characteristics of Bezier surfaces are2.1  Definition of a Screw

also discussed. The special construction method of the displacement
matrix with two parallel control screws is demonstrated. The normal
screw is normalized into the unit screw as well. These new methods
show the universal possibility of the dual space approach for drawing
ruled surfaces.
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A generakcrewS, from which we derive #ine by speciali-
sation, consists of two parts, a real 3-ve@owrhich indicates
the direction of (line of) the screw, and a real 3-vect8g,
which locatesS by recording themomenbf the screw about
the origin [9, 10]. In these terms, a screw is formed as

) whereSy, = R xS =V x S, and in whicte is a quasi-scalar
1 Introduction satisfyinge? = 0. Here,p is the pitch of the screw and,,

Recently, the dual space design methods of curves and surVNich is the moment of thene of the screvabout the origin,

faces have been extensively studied. B-splines in dual quater1S orthogon.all ts (i..e.,S ~So = 0), and is derived as shown
nion spaces are applied in [16]. The authors used rationalfrom the origin radius vectaR or, more generally, from any

B-splines in the space of quaternions to deal with curve ap-PPiNtV of the screw. The lengtfS| of the real parS is the

proximation problems and path-smoothing, speed-smoothingreal magni_tudeof the screw. Figure 1 illustrates a geometric
problems. Juttler [7] used quaternion representation of RMM INterPretation of a screw.

(Rotation Minimizing Motions) to sweep surface modeling.

Ding [3] applied the De Boor algorithm in 6-dimensional 2.2 Zero Pitch and Normalization of a Screw

space to draw particular ruled surfaces, namely, duplicated Since a screw is a line with an associated pitch valuie
surfaces. Leopoldseder [8] used dual methods to draw CONCKyllows that aine, in its own right, is a screw with zero-valued
Pottmann and Wallner [13] used a dual approach to solve the

drawi thods of diff tial trv of develonabl pitch, i.e, p = 0. Given a general scre®, we often need
rawing methods ot differential geometry ot developable SUr 5, ..o 16 jtaormalizedine of unit magnitude and zero pitch.
faces, which include ruled surfaces. Our work is inspired by

Derivati f h aunit i hich ificall
the paper of Sprott and Ravani [15], in which the de Castel- erivation of such ainit line, which we denote specifically

: . X : by the lower case ford = s + ¢sy, is straightforward. By

jau algorithm in screw spaces was introduced to resolve rUIedequation 1

surface drawing and mesh generation problems. In this paper, L

we use the dual de Casteljau algorithm to improve and further S=(1+ep)S+¢eSo, where So-S=0.

develop their methods to draw particular ruled surfaces. . ) )
Sinces? = 0, we find that

IManuscript received January,2006 S-S=(1+¢p)?S-S, so V§-§S=(1+¢p)S|
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Thus, the general scre/ normalises to its unit ling in the By dualising equations for purely rotational displacement [9],

o we find that a screiX displaced from an initial locatioX
5= *S x S8 = i(1 —ep)[(1+¢ep)S + Sy through dual anglé about a screw axi§ = (3,, 8, 5.) is
5§ B S 51 S given by
G " 5&. @ X = [A]X,, where

When, in a practical application, we are given a screw of the
form S = S + €S, we may derive ititch, origin radius
andnormalised lineas

[A] = exp[f, 8] = [I] +sin6[S] + (1 — cos H)[S]?, (7)

S.S S xS S 8,18 in which [A] is the displacement matrix determined tynd

p= \SPP’ R= BE P, §= B +e T 8], [1] is the dual identity matrix, anib] is a skew-symmetric
3) matrix given by

respectively, the last of these, equivalent to equation (2), mak- ) 0 —5; 5
ing use of the first. We observe that a sc&for whichS = 0 [S1=1]35 0 =5 |, (8)
is aline at infinity. In this paper, all general screws are nor- =5y 8, 0
malized to their unit lines before displacement, as described
in [3]. which has the property thas]S = § x S for any screws.

See Figure 2 for illustration.
2.3 A Screw or Line is a dual 3-Vector

When the component 3-vectors 8fare made explicitly, , . o
asS = (L,, Ly, L.) andS, = (M,, M,, M.), we find that 2.4.2 Constructing the Displacement Matrix with Two Par-

a screw is not simply a 6-tuple of real(Reker co-ordinates allel Control Screws

Ly, Ly, L., My, M, M. Itis also a 3-vector If the displacement is a pure translation, the initial and final
S=S+eSp = (Ly +eMy, Ly +eMy, Lo +eM:) (4)  locations of the screw are parallel. When the displacement
time from X, to X; ist¢ € [0,1], the displacement matrix

in which each element, such ds. + ¢M,, etc. is adual takes the special form

number
In thesedualisedterms, 3-vector quantities which are fa- [A] = [A] + €[D][A], 9

miliar in real co-ordinates acquire spatial interpretations. The

scalar produc'S1 82 of such 3-vectors comprises the cosine where[A4] is a rotation matrix and the distance between the

of the dual angle(see equation (6)), including both real an- two control screws embodies the translation of the |[[lﬂ

gle and distance, between the scrésysandS,. When§, is a distance matrix, anb is the dual perpendicular axis of

andS, areorthogonal so thatS; - S, = 0+ £0 = 0, these the initial and final locations of the interpolated screws. The

screws intersect one another at right angles. Similarly, therotation matrix is the identity matrix for a parallel translation.

vector producél x S, is a screw which lies on theommon The dual displacement matrix can then be constructed as

perpendicularof the screwsS; andS.. P

Most importantly, screws transform as 3-vectors do [10]. 4] = ] + et[D]. (10)
If X;, y; andz; are mutually orthogonal unit lines defining a It becomes
reference framé,e, %2 =97 =27 =1, X9, =9i 2 =
2;-%; =0, %;x§; = 2;,the coordinates of a general screw [A] = [I] + ¢[D], when t=1. (11)
S, when expressed in thaframe, are R
X % | %;-8 X; S %;®S For this situation, we have a special method to consifuct
S; = }:’ZT S=19-S |=|vyi'S |+e| 9:® |, InFigure 3R, (X1, Y1,Z)) andR»(X>, Y>, Z,) are origin

2] Z;- S zi - S 2;®8 radius vectors of the control screds, andX; separaterXt

_ _ ~ (5) is a random position of the interpolated screw aver [0, 1].
in which, for example;®S = x; - Sp + Xo; - S, Where  Tpe pointr, is the intersection point dR; andX; r, is the
X; = X; + £Xo; andx; - xo; = 0. intersection point oR, andX;. Let
2.4 The Displacement of a Screw D =D + ¢Do. (12)

2.4.1 The General Displacement of a Screw

Under the dualisation just described, points of linear interpo-
lation between two given real points find spatial analogs in
the locations to which a screw successively moves when dis-
placed from some initial to some final location abowsceew Do =R; xD =Ry xD. (13)
axis$ — see Figure 2. Such displacements are parameterised
by adual angled = 6 + ed which comprises the real angle  After D is derived,[D] can be easily constructed using the
of rotation, and the real distandeof translation, as measured components oD.Ina nutshell]j can be calculated from the
about the axi$. For such a dual angle we may write intersection points oD andX,, X;, X; whenX, andX;
sinf = sin 0 + ed cos 6, cos = cosf — edsind. (6) are parallel[D] embodies the translation of the scraiy.

The real part oD, denoted byD, is the direction compo-
nent ofD. In Figure 3, we find thaD = ry—r;. The moment
of D may be derived by the following formula
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5. If there aren + 1 control screws, we will get the-th
generation screws which constitute the ruled surface

X7 (t) = exp(0]; ) tlads L DX, (18)

whereX{(t) = X;, 07}, is the complex angle between

ruled screwsX! ! andX' "}, [ad] is an operator that takes a

i+10
Figure 3. The relation be- vector into a skew symmetric matrix, aﬁ@fﬁrl) is the line
tween translation component Figure 4. The de Casteljau of the screw axis betweeX ! andX ;. The ruled screws
D and Xo, X3, X; when algorithm for a third order h face is i o '
Xo|IX;. Bezier Curve on the surface is given bX{ (¢).

The basic condition to draw a ruled surface using the dual
de Casteljau algorithm is that the neighboring rulings of the
. . . ruled surface do not intersect each other except when the dis-
3 Algorithms and Properties of Bezier Sur- placement is a pure rotation on a plane. Usually, there is the
faces same fixed angle and distance between each pair of neighbor-
3.1 The de Casteljau Algorithm ing rulings. We denote this condition as (C-DDC) for short.

The (real space) de Casteljau algorithm is used to draw ] ]
a Bezier curveby interpolation of several nominated control 3-3 The Properties of Bezier Surfaces

points, as shown in [6] and [4]. A set af+ 1 control points For any operation defined for a real vector space there is a

is used to construct amth order polynomial curve. Given a dual version with similar interpretations [17].

set of control points?, P,... P, we can construct the curve In this paper, ruled surfaces that are created by using the

Prt)=(1- t)P["l(t) + tPg';ll(t), (14) initial or variations of the dual de Casteljau algorithm are

0 ) called Bezier surfaces. They have similar properties to the

wherePi (t) = P%" r=1--mn, and? =0,y —r. The Bezier curves as in [6]. Points in the real space algorithm

point on the Bezier curve ate [0, 1] is given by Fi'(t). See  5re normally replaced by screws (lines) in the dual space al-

Figure 4. gorithm. Lines in the real space algorithm are replaced by

planes in the dual space algorithm. The properties of Bezier
(ruled) surfaces are investigated and listed below.

End ruling interpolation: the Bezier surface interpolated
by a series of control screws (lines) does not generally pass
. . through, or interpolate, all of the control screws, but it always
3.2 The Dual de Casteljau Algorithm interpolates (begins and ends on) the first and last ones.

The principle of dual space methods is to represent the op-  planar precision: if all the control screws are on the same
erations on lines as becoming the same as a dualized versiopjane, the Bezier surface will be “trapped” inside the plane
of spherical geometry [15]. and all the rulings in the ruled surface will be planar.

The dual (space) de Casteljau algorithm [15] is derived  Affine invariance: the Bezier surface is invariant under
from the (real space) de Casteljau algorithm by replacing theaffine parameter transformation. If we wish to transform a
nominated pOiﬂtS with screws (Iines). The Bezier curve in the ru|ing on a Bezier surface to a new position using a transfor-
real method turns out to be the analogous ruled surface in thQ'nation matrix and offset vector, we on|y need to transform

Theorem 1 [2] The interpolation line is the tangential vec-
tor of its Bezier curve in the 2-dimensional space when all
control points are on one side of the Bezier curve.

dual method. the control screws and then use the same interpolation algo-
For ruled surfaces, the displacement between two controlrithm to create the transformed Bezier surface. Here, although
screws must be chosen to follongaodesigath on thedual the interpolation is dual, the affine transformation parameters
unit spherebetween those points which represent the unit are real. If we wish to transfor® (¢) on to the new position
linesX{ andX. The basic procedure is as follows: X'(t) using a real transformation matriX and offset vector
1. Find the dual angle between the two screws from tr, we have X’(t) _ X(t)N o tr. (19)
0=0- esin(e) ’ (15) Symmetry: for a control sequence of a Bezier surface, we
can labelX,y, X4, ---, X,, equivalently asX,,, X,,_1, - - -,
wheref = cos~!(a) and a + eb = cosf = X - X9. X,. The surfaces that correspond to the two different order-
2. Find the screw axis for the motion from ings look the same. They only differ in the directions in which
8§ =X9x XY (16)  they are traversed, Thus, we have
X(t) = Xpog(1— 1), (20)

3. Find the displacement matr[xi] and the interpolated ] o ]
screw from Xéz [A]Xg, 17) The above properties have been implicitly confirmed

through different implementation examples in later sections
where[A] = [I]4sin(t0)[S]+(1—cos(tA))[S]?, [I] isthedual ~ of this paper. These properties are analogous to those of the
identity matrix, anc[S‘] is a skew-symmetric matrix given by real space algorithms in [6]. However we cannot prove that
equation ( 7) and ( 8). any real space properties of Bezier curves are analogous to
4. If the two control screws are parallel, the displacement their dual space properties of Bezier surfaces. There are fewer
matrix should be written as equation (10). properties for Bezier surfaces than for Bezier curves.
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Figure 7. The skeleton of
Figure 6. The ruled surface the
of the hyperbolic paraboloid hyperbolic paraboloid forms
is drawn by using the dual de the interpolated surface into a
Casteljau algorithm. hyperbolic paraboloid.

Figure 5. Geometrical illustration of the hyperbolic paraboloid.

4 Drawing Particular Ruled Surfaces by Using
the Initial Dual de Casteljau Algorithm

If the characteristics of a ruled surface meet the basic re-x, and the first rulingX, for ¢ € [0,1]. In this way, thei-th
quirement of the dual de Casteljau algorithm (C-DDC) in sec- rotation angle will bed; = arctan(tDk), wherek is the dis-
tion 3.1, the ruled surface is able to be drawn by using the ini- tripytion parameter. Thus, to create the hyperbolic paraboloid
tial dual de Casteljau algorithm. The hyperbolic paraboloid ysjng the dual de Casteljau Algorithm, we take the following
categorizes into this type of ruled surfaces. steps:

1. Set an origin screiX that is the first ruling of the hy-
perbolic paraboloid surface.

2. Calculate the displacement axisising the relationship
X - § = 0, wheres andX intersect at a common point.

3. Set the constraint between the translation distareoel

the rotation anglé;, then
tan0; = dk.

4.1 The Hyperbolic Paraboloid
4.1.1 The Definition of the Hyperbolic Paraboloid

Carmo [1] defines thayperbolic paraboloidas follows:- let
S be thehyperbolic paraboloid: = kxy, k # 0. WhenS is

a ruled surface, we observe that the lines- z/tk, © = t,
for eacht # 0 belong toS. If we take the intersection of
this family of lines with the plane = 0, we obtain the curve
x =t,y =0,z = 0. Taking this curve as directrix and
vectorsw(t) parallel to the lineg = z/tk, x = t, we obtain

aft) = (¢,0,0) and w(t) = (0,1/k,t).

(21)

Letd = tD, whereD is the distance between the first and
last rulings, and € [0, 1]. Equation (21) become$ K 0, <
90°) 0; = arctan(tDk). (22)

4. The dual angle of the displacement will become

This gives the ruled surface illustrated in Figure 5: 0; = 0; + ed = arctan(t DK) + ¢(tD). (23)
v vkt
o(t,v) = a(t) +vw(t) = (¢, ViR Vit k2t2)’ 5. The displacement matrix is o
[A;] = [1] + sin(0;)[S] + (1 + cos(6;))[S]*. (24)
wheret € R, v € R, the trace of which clearly agrees with . )
Sinced’ (t) = (1,0, 0), we deduce that the line of striction 6. The mterpolated}%cirivv[ii\ﬁ/l)lébe (25)

is « itself. The distribution parameter Js= 1/k.

We also note that the tangent of the anglevhich w(t) The size and shape of the hyperbolic paraboloid are de-
makes witho(0), istan 0 = tk. o termined by#;, which is in turn determined by and D.
If the surface is intersected by a plane, which is parallel to |¢ | increases whileD is a constant, then the distance be-

thez-y plane, the resulting curve is a hyperbola. If the surface ;\aan neighbouring rulings will increase and the shape of the

is intersected by a plane containing thexis, the resulting  herholic paraboloid will widen. I decreases, then the

curve is a parabola. distance between neighbouring rulings will decrease and the

shape of the hyperbolic paraboloid will narrow downDlfn-

creases whil& is a constant, then the shape of the hyperbolic
Paraboloid paraboloid will widen. Otherwise, it becomes narrower.

Farin [4] used a real method:- a bilinear interpolation method  |n Figure 5, we lefX overlap axisx. Note that is axisy,

to create the hyperbolic paraboloid. Now we create the hy-and thatX displaces along axisin the samé as in the above

perbolic paraboloid by using the dual de Casteljau algorithm. method. Then, we have a reciprocal hyperbolic paraboloid of

4.1.2 The Dual Drawing Method of the Hyperbolic

In Figure 5, we select as the original ruling a scikwhat is
the y-axis. We select as the rotation axis an axthat is the

the original one.
The figures 6 and 7 are the computer implementations of

x-axis. HereX L §. WhenX rotates and translates along the dual drawing method for the hyperbolic paraboloid.

§ to the positionX,, where the rotation angle & < 90°,

the hyperbolic paraboloid is created. However, we need to
add a constraint between the rotation angle and the transla

tion distance. When we knoi, we find that axiss has the
relationship:s - X = 0. Thens intersectsX at some point

O. For drawing the rulings, we set the translation distance

5 Drawing Particular Ruled Surfaces by Us-

" ing Variations of the Dual de Casteljau Al-
gorithm
If the characteristics of a ruled surface do not meet the ba-

asd = tD, whereD is the distance between the final ruling sic requirement of the dual de Casteljau algorithm (C-DDC
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Y We break down a non-smooth closed curve into several dif-
ferent curve segments. For example, in Figure 9, curve (B)
" ® © can be broken into two pieces of (A). We also think of them
. as open curve segments, which join at the non-smooth inter-
(X(\)

section points. For example, in Figure 9(A), the closed curve
is actually an open curve connected at p@ntThe curve in
Figure 9(C) actually consists of two open curves:- an arc, and
Figure 8. The different shaped cylinders a straight line connected at poiAtand B. We draw the non-
smooth closed curve as the open Bezier curve using the real

N A de Casteljau algorithm straight away (Figure 9(C)). Creating
2 cylinders along these non-smooth closed curves with the dual
] de Casteljau algorithm is analogous to using the real space
(8) ©)
(A)

drawing method for the non-smooth closed curves, but replac-
ing the control points in the real space method with the dual

. ) ) parallel screws (lines) in the dual space method.
Figure 9. The different shaped base curves of cylinders

5.1.1.3 The Dual Drawing Method of The Cylinder Based on

for short) in section 3.1, the ruled surface is not able to bea Smooth Closed Trajectory

drawn by using the initial dual de Casteljau algorithm. Varia-  Itis supposed that the smooth closed trajectory is split into
tions and additional conditions of the dual de Casteljau algo-a curve with starting and end points at the same point on the
rithm are explored in order to draw particular ruled surfaces:- curve. Thus a smooth closed curve can be seen as an open

cylinders, cones and hyperboloids. curve with two end points on the same point. The cylinder
based on this base curve can be drawn by using the dual de
5.1 Cylinders Casteljau algorithm. In order to guarantee that the base curve

. and the cylinder are smooth, we have to consider that the over-
5.1.1 Regular Cylinders :

o _ _ lap end point on the curve has a tangent vector and that the
5.1.1.1 The Definition and Analysis of the Cylinder analogous overlap ruling on the cylinder has a tangent plane.
Thus, we should determine the boundary conditions to draw

by a one-parameter family of lindv(t), w(t)}, t € I, where the cylinder with the smooth closed curve trajectory by using

a(I) is contained in a plan® andw(t) is parallel to a fixed ~ the dual de Casteljau algorithm. _
direction inR® (see Figure 8(A)). We first transfer the dual space ruled surface issue to a real

Technically, cylinders can be created with the dual de SPace curve issue to simplify the problem. The cylinder is
Casteljau algorithm because they meet the preconditions O](:onstru_cted by a series of parallel rulings along a base curve.
the algorithm (C-DDC) in section 3.1. However, for cylin- 1€ rulings are supposed to be created by using the dual de
ders with smooth trajectories, we need to add certain boung-Casteljau algorithm with para_1||e| cc_)ntrollscrews. We consider
ary conditions to deal with smoothness when two end control that the base curve of the cylinder is projected to the reference
screws of a smooth trajectory overlap each other. Setting allP/ane that is perpendicular to the rulings of the cylinder and
control screws (lines) parallel to each other is the basic wayheir control screws. The projected curve is actually a Bezier
to create any cylindrical surface with the dual de Casteljau €UTve as in Figure 12. The purpose of this conversion is to try
algorithm. to fmdl the boundary conditions if two end points of a Bezier

The base curve of a cylinder could be an open or closedCU"ve join together smoothly on the reference plane. Once the

curve. Closed curves may be classified into two kinds. Oneboundary condition of the joi_n point of the smooth curve is
kind is the smooth closed curve which has a first derivative atfound, the boundary connection of a smooth ruled surface of
any point on the curve; e.g., the circle. The other is the non-2& cYlinder is also solved by analogizing the curve boundary

smooth closed curve without first derivatives at vertex points condition. .
on the curve, such as the shapes shown in Figure 9. For a Bezier curve on a reference plane, if the curve seg-
ments of the Bezier curve join each other smoothly, the first

5.1.1.2 Cylinders Based on Open or Non-smooth Closed Tra-derivative at the join point should exist. Equivalently there
jectories should be only one tangent vector at the join point.

From [6], a Bezier curve begins at the first control point ~ For the ruled surface of a cylinder, there must be a tangent
and ends at the last control point. The two points can be twoplane on the joint ruling of two connected ruled surfaces if the
ends of an open curve. It was found in Section 3.3 that they argoint ruled surface is smooth.
also suitable for the dual space case. That is, a ruled surface In Figure 14, The first control poin®, is on the lineL,
based on a series of control screws always interpolates the firstvhich is determined by the first and second control points,
and last control screws. and the last control poinP, is on the lineL,,, which is de-

If the base curves of cylinders are open curve trajectoriestermined by the last and second to last control points. When
, we could create cylinders by using the dual de Casteljau al-t = 0, for the de Casteljau algorithm, the first interpolated
gorithm directly. Thus, we focus on the drawing methods of line at any level is identical td.; (Figure 10); whert = 1,
cylinders based on closed curve trajectories. the last interpolated line at any level is identicalitg (Fig-

As defined in [1], acylinderis a ruled surface generated
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Figure 10. Whent = 0, Figure 11. Whent = 1, the Figure 14. View of the

the interpolated line between interpolated line between the cylinder section along the Figure 15. Creating a circle
the first and second control last and second to last control normal vector of the refer- with the segment construc-
points at any level are iden- points at any level are iden- ence plane tion method

tical to the same position in- tical to the same position in-

terpolated line at the previous terpolated line at the previous

level level

We look at the base Bezier curve of the circular cylinder (a
circle) first in order to identify the positions of control points
of the base circle, which are also those of control screws of
the circular cylinder. In Figure 14,if the cylinder section is
a circle,the condition of drawing the circle by using the de
Casteljau algorithm is that

“The dylincrica ruled surface

{The second last control serew

— ?+y? =1 (26)
L et e AN Here, Py, P, P,_1 and P, are co-linear, and?, =
A P,(e.g., P7). We need five minimum control points to draw a
_ _ _ circle. That s, besides,, P, P,_1 andP,, there should be
Figure 12. The first and Figure 13. The computer at least one more control point. The functional expression of
last control screws overlap on implementation of the cylin- . . . . . .
plane A which is perpendicu- der using the variation of the the de Casteljau algorithm for drawing a circle as in [4] is
lar to the reference plane dual de Casteljau algorithm P(t) = POQO(t) + Plgl(t) + - Prgr (t) +-+ Pagn (t)

=" Pugi(t) = Y PuBR(t),
ure 11). From theorem 1, it can be proved thatand L,, k=0 k=0
are the tangent vectors of the curve at its first and last pointswheregy(t) is the Bernstein polynomial and
separately. If we want to draw the smooth closed curve us- gr(t) = BE(t) = (F)(1 — )" Fe", (27)
ing the real de Casteljau algorithm, we only ndedand L,, . . .
to be linearly identical. When the first and second control | Pi = (Pia, Py ) IS the control point of the circle, anf(t)
points, and the last and the second to last control points, lie'S the point on the circle with coordinalé (¢), Py (t)) when
on the same line, the tangent vectors of the curve at the firstt € [0,1]. Then, n
and last control points will overlap. Thus the curve is con- P(t) = Z_Pkgk(t) = Z(P,m Pry)gi(t)

k=0

n

nected on the end points smoothly because the tangent vector k=0

exists on the boundary points. Similarly in the dual issue, if "

the first, second, last and second to last control screws are on - Z(P’“g"’(t)’ Prygr (1))

the same plane, the interpolated surface will have the same n F=0

tangent plane on the first and last control screws. The edges = (Z Pragi(t),» Pkka@)) = (Pu(t), Py(1)),
k=0 k=0

of the ruled surface connect to each other smoothly because
the tangent plane exists on the edge. Figure 12 illustrates thavhereP, () and P, (¢) satisfy the circle condition from equa-
principle of drawing methods. The computer implementation tion (26). Thus,

of the cylinder is shown on Figure 13 n ? n ?
' Po(t)*+(P,(1))? = Pragi(t Prygi(t

5.1.2 The Circular Cylinder (P=())"+(Fy () <kz_:0 a9k )> +<I;) ky i )>

Practically, the positions of control screws of the dual de = (Pyago(t) + Pipgi(t) 4+ - - + Pragn(t))?

Casteljau algorithm are not easily determined for drawing cer- 9

tain shapes such as the circular cylinder. Piegl and Tiller [11] +(Poygo(t) + Prygi(t) + -+ + Prygn(t))

gave the Rational B-spline method for drawing a circle by =1. (28)

inserting appropriate knots, which are the intersection points
of the circle and its tangent square edge. We will determine
the appropriate control screws to draw the circular cylinder.
We will also observe whether the number and the positions of
control screws determine the circular cylinder.

We must also constrain the circle by the condition%f Py,
P,,_1, andP, being co-linear, and®, = P,,.

Solving the above equations to find the control points, we
need to know the first and last control poirtg, P, in ad-
vance. The second and second last control points will be de-
5.1.2.1 Drawing the Circular Cylinder Using the Dual de termined on the lind, P, P,,_ P, by using the co-linear con-
Casteljau Algorithm with Boundary Condition straint condition. Then we use the different values af|0, 1]
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in equations (27) and (28) to find other control points, and the
numberw of chosen constantsshould be less than twice the A
numbern + 1 of control points, (i.ew < 2(n + 1)), to guar- o< &
antee that the equations are solvable and yield the coordinates
of control points. IfP; and P,,_; are not chosen well, we
select other positions similarly a8, and P,_; on the line
Py Py P,_1 P, until all control points are solvable from the
equations. Figure_ 16. The circq— _ _

We replace the control points of the base circle with paral- 'ﬁ;fﬁ’(')'gder segment drawing ;{%ﬁf dig'mggr?;xcpﬁgit'o”
lel screws (lines), and let all these control screws be perpen- '
dicular to the plane where the circle lies. The circular cylinder
is then created by using the dual de Casteljau algorithm based
on these control screws. whereS; (¢1) is the point on the first circle segmenttat €

. . . _ [0,t17], Sk(t) is the point on thek'! circle segment at

5.1.2.2 Drawing the Circular Cylinder with Segment Con- ty € [t(k—l)ﬁtkﬂ andS,, (t) is the point on thent™ cir-

struction Using the Dual de Casteljau Algorithm cle segment at,, € [t(n_1)f,tms]. Then, the whole circle is
We first consider the circle segment, which is the base constructed by .
curve of the circular cylinder segment, in order to identify P(t) = S1(t1) + o+ Sm(tim) in t € [0,tm].

the positions of control points of the base curve and also the We take the first seament as in the example under the same
control screws of the circular cylinder segment. We use the 9 P

de Casteljau algorithm to create curve segments which satisfij upposed CO?hd':'cmi’traTd sipec£y+ 1P: ?: II(?] Fvllgnurcélg:
the Bezier curve, then connect them as a whole circular curve., e suppose that control poitfh(Foz, Foy) is known. Co

Similar rules are applied to constructing the circular cylinder golljggggs(%()]?ﬁéi ﬁlr)\/:ns(lp 2rr(1§ ?ﬁ ’S}; i?s)fsaftﬂzt;?c%wc]bﬁjition
by their segments drawn with the dual de Casteljau algorithm. a ' 9

2
In Figure 15, the curve segmeR; P; is created by control (Fozgo(t1) + Przgi(t) + Parga(tr))
points Py, P, and P,. Similar methods apply to other seg- 5
ments. TheP, P, curve is weighted by the control poini, +(Poygo(t1) + Prygi(t1) + Payg2(t1))” = 1, (29)

Py, and P, only. The P, P4 curve is weighted by the control  where g;(t,) are Bernstein polynomials and determined by
points P, P3, and P, only, and so on. To draw the next cir- ¢, ¢ [0, ¢, 4] for the first curve segment, byt € [t(k—l)f,tkf]
cular segment, the positions of the control points need to bejn general. The number,, of chosen:; should be less than
found by using a similar method as the previous section. double the numbef;j + 1) of control points. That isyw;, <

We also find that the intersection points of the tangent poly- 2(; + 1). Thus it guarantees that the equations are solvable to
gon of the circle and the circle itself are the boundary points derive the positions of control poinf and P,. However, if
of curve segments. The radii of the circle are perpendicu-the quotient of the angle at the centre dividing60° is not an
lar to their relative polygon edges when the radii intersect atinteger, the circle curve segments will not join as a complete
the boundary points of curve segments. For example, in Fig-circle by this method only. Thus, before deducing the circle
ure 15, P is one of the diameters of the circle, aRland ~ segments, we need to constrain the quotient to be an integer.
P are both boundary points of the curve segments, where|n Figure 16, the curve (arc) angleds P,O L PyP;, and

PyPs L PP, PyPs L P5Ps. _ P,O 1 P, P,. Itis easy to get the angfgfrom Py, P;, andPs
We suppose that there are-+ 1 control points fromF, because the positions & and P, from equation (29) have
..., P, in total for a circle, which is constructed by cir- already been calculated ar®) is known. In the following
cle segments i € [0,t15,taf,. .. tks,---,tmys], @nd €aCh  equations, we have
circle segment is constructed hy+ 1 control points int € 360° 360°
= 180° = = . 30
[t(k—1)f>trs]. We havem - J =n + 1. a+tp 1 180 — 8 (30)

For these curve segments, their functional expression of

the de Casteljau algorithm is Otherwise, we have to adjust the positionfgfand P, until

S1(t) = Pogo(t2) + Prga(ta) + Paga(tr) + -+ + Pigj (ta), the angle3 and« satisfy the constraint so as to makean
Sa(tz2) = Pjgj(t2) + Pjr1gj+1(t2) + Pjyagjra(ta)+ integer. Thenn determines the number of circle segments.

If the anglex does not satisfy the angle constraint, we adjust

If m is an integer, them and 8 do not need to be adjusted.

vt Paigag(ta), the positionP; on line P, P, then re-calculaté, by equation
(29) and check whether the angle constraint is satisfied. We
repeat the above procedure until the final angle condition is
Sk(tk) = Pih—1);9k—1); (tk) + Ph—1)j+19(k—1)j+1(tk) satisfied.
4ot Prjgrs (), After we get the positions of control points of the first cir-

cle segment, we can get those of the next segment easily. In
Figure 15, we must find whethé is on the lineP; P, while

PPy = P Ps, angleBQ = 61, andPng = P3P,. POintSPQ,

Ps, and P, will be the control points of the second circle seg-
4+ PojiGmj(tm), ment. From this, th&'d, 4** and all of the other control

Sm(tm) = Pan—1)j9m-1); (tm)+Pin—1)j419(m—1)j+1(tm)
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3

Figure 18. Different conic shapes based on circles. 5

, ; » Figure 20. The relationship i
’ of rulings of a cylinder and Figure 21. The dual method
W rulings of a cone with a com- to convert a circular cone
LD; mon base curve. from a circular cylinder.
©

(D)

Figure 19. Various cones based on different curves. In Figure 20, we find that a circular cone can be converted
from a circular cylinder. The ruling of the cylind&r rotates
along some axis to the ruling of the coké, which intersect

points will be interpolated smoothly. These circle segments the normal vecto©T of the base plane at vert@x Repeating
construct the whole circle. the process to convert rulings of the whole cylinder, the cone
For the circular cylinder, we replace the control points of is thus created. Now we must derive a displacement method
the base circle segment, a Bezier curve, with parallel controlto implement the conversion from the cylinder to the cone.
screws which are perpendicular to the base plane. A related The circular cylinder has been created using the dual space
circular cylinder segment is then created by using the dualmethods in section 5.1.2. Therefore we only need to find a
de Casteljau algorithm. One after another, the above methodyay to rotate rulings of the cylinder to rulings of the cone us-
is applied to all circular cylinder segments with a same baseing a displacement method. Because we already know that the
plane. Ultimately, the whole circular cylinder is constructed ruling of the cylinderk rotates with anglen about some axis

by the circular cylinder segments. to the positionk’ of the ruling of the cone, the key problem
becomes to find an axis along which the scievotates.

5.2 Cones We suppose that the base curve of a Bezier surface such as

5.2.1 The Analysis of Cones the cylinder is created under 1. Thus, the interpolation line

of the base curve could be the axis along which the ruling of
5.2.1.1 The Definition, Classifications and Common Charac-a cylinder rotates to the ruling of a cone with the same base
teristics of Cones curve.

Based on theorem 1, we have the general deduction as
follows:- the tangential interpolation line of a Bezier curve in
the real space method becomes a tangential plane of a Bezier
surface in the dual space method. Also, the tangential inter-

: . - polation line of the base curve of a Bezier surface is the com-
Figure 18 illustrates the common characteristics of cones. . :
mon perpendicular axis of two parallel control screws. Both

In Figure 1.8’ aconein (A) h?‘s an expl'|C|t vertox In (B.) of results of this deduction are constrained by the condition that
the same figure, extension lines of rulings of a cone intersect . .
T ' all control screws of a Bezier surface, such as the cylinder, are
at a vertex which is implicit. In (C) of the same figure, the ; .
. . . ) parallel. We denote this deduction as (TI-DD) for short.
intersecting vertex of a cone is at point Thus, the common
characteristic of the cone is that the rulings, or the extension
rulings of the cone, always intersect at one point. 5.2.2 The Dual Space Creation Methods of Cones
If the base curve of a cone is a circle, the normal vector 5.2.2.1 The Dual Space Drawing Methods of Circular Cones
of the base plane from the centre of the circle usually goes
through the vertex of the cone. These cones with circular bas
curves shown in Figure 18 are called circular cones.
Normally cones are not necessarily based on circles. |

Carmo [1] defines theone A coneis a ruled surface gen-
erated by a family{s(t),w(t)}, t € I, where the curve(I)
resides in a plan® and the rulingd.; all pass through a point
p ¢ P. See Figure 17.

e Figure 20 is converted to Figure 21 to further display the
drawing methods of cones. In Figure 21, the interpolation
faxisg and its perpendicular control screwsndb are on the

we displace a straight link passing through a movina point  S&€ plang’, which is the tangential plane of the interpolated
P 9 b 9 9 gp cylinder onk whent = ¢4, ¢t; € [0, 1]. The interpolated ruled

€ S(I) and a fixed poinD ¢ S(I), we can create a cone - . .
b (1) P £ S(0) screwk of the cylinder and its two control parallel scre@s

with any base curve other than a circle. Figure 19 illustrates? X :
different conic shapes. b are also planar on plariE. The cylinder should not be in

5.2.1.2 The Analysis of Creation Methods of Cones the situatiop that all its control screws are plar]a}r, otherwise it
transforms into a plane. The transformation gkisf control
Although cones are ruled surfaces, they can not be createdicrewsa andb intersects the cylinder at only one poinbn
with the dual de Casteljau algorithm directly. Because the screwk, because any interpolation axis intersects the interpo-
rulings of cones intersect at one point, they do not obey thelated ruled line of a Bezier curve at one point and also because
basic rule of the dual space algorithm (C-DDC for short) in g is a tangential vector of the cylinder according to the deduc-
section 3.2. tion (TI-DD) in the previous section. For the normal control
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screws, the position of the displacement gxis determined
by the shortest distance between two control screws. Because
control screwsa andb are parallel to each other, it follows
that the distance between them is the same everywhere. It
is possible to move the axj to the positiong’. This does

not change the creation of the ruled surface of the cone since
g’||&, andg’ is also on the plan& whena||b . Everything on
planeP can be explained by the real space method. Thus, the
projection points o andb to planeP become the control Figure 22. The dual space method to create random conic shapes.
points of the base Bezier curwO of the cylinder.g’ is the
tangential interpolation line of the Bezier curve®) at point
t' on plane P according to theorem 1.

In Figure 21, we create planewhich is perpendicular to
planeT’, and passes through scr&vand lineOQ (because
is the radius of>0O; 5 is the radius of>@; note thatr ||rs.
r1 andry both are perpendicular to plafig. The interpolated
ruled screwk and the central line of the cylind€Q are pla-
nar in planen. Thenk is rotated with anglen to positionk’

pure rotation about some fixed axis from the ruled screw of
the cylinder anymore. It contains some translation or another
rotation— multi-translation and multi-rotation. Although the
rotation axis is still the tangential vector to the related cylin-
der of the cone, the vector obtained from the ruling of the
cylinder rotating along the axis is no longer the ruling of the
cone as it was in the circular cone. As shown in Figure 22,

about axisg’. In plane nk’ is one of the ruled screws of the . ; . .
cone and touche§. If we vary ¢ over [0, 1] when we per- after a rotation of angle: about the interpolation axgfrom
) ’ relative cylinder rulingk to k”, screwk” is not on the posi-

form the process, the ruled surface of the cone is created. Th ion of the ruling of the cone and is not planar with the center
method for rotating the screw to k’ is much simpler than 9 P

we might think, becausg is perpendicular to plane and is axis of the conic shap@(@ as it was in the creation method

) ] . N of the circular cone. The ruling’ of the cone is not identical
known as the interpolation axis between control scrawsd to k” which is rotated fromic . To solve these problems. a
b. Letd = 6 + ed, whered = 0, and anglé) = m. Equation ' P '

(17) will becomel’ — [A]k where detailed method to create any shaped cone will be presented.

[/1] _ [f] +sin(m)[§'] + (1 — cos(m))[']2 (31) In Figure 22, the ruled screw of the conic shapeasses
through point@ to construct the ruled conic surface along
This is the pure rotation equation to convert the rulings of a cUrve:s. But the perpendicular vecterof the rotation axig
circular cylinder into the rulings of a circular cone. The angle & PoIntT’ does not necessarily intersect liog) at the cen-
m becomes constant rather thadependant as in equation tral pointO of the base curvé as it does in the circular cone.
(17). The axisg varies when the positions of the previous There is no way to construct a plane that a!ways makes screw
level control screws change through differe [0, 1]. r andOQ planar. The standard dual drawing method of the
Alternatively, in Figure 21, we use the above method to circular cone cannot be used here directly. We need to mod-

rotatek with anglem about axisg to k" first, then we move ify it to suit this situation. Using the base curve in Figure 22,
kK to positionf{’. Sincel%“||f<’ it is easily done. Thus, the We draw a cylindrical surface with the dual de Casteljau al-

rulings of the cone is also converted from that of the cylinder. 90"ithm as the methods in section 5.1.1. We do not show the
The shape of the circular cone is determined by the ar]g|ecyllndr|cal surface on the flgurek' is one of the rulings Of.'[hIS
m and the basic circle radius. When we draw general circular SUrface. We draw the planethat is perpendicular to the inter-

cones, we only need to adjust the angleor the radius of the polation screvg, intersectsg at7', and containg. Then the
circular cylinder. screwk can be rotated about interpolation agisvith anglee

The above method applies to any circular conic shape, ad® the positiork”. k” touchesy’. We draw lineQ'O" perpen-

shown in Figure 18. In some cases, however, we need todicular to base plan& which contains the curvg. Note that

1y 2 : ~
clip rulings of conic surfaces at different positions. In Fig- @ O'llQO . Whenk rotates in angle, we let screwt rotate

ure 18(B), we extend the rulings above the top circle. In Fig- !N @nglee to 1’ about axisg as well. (Because L g, s
ure 18(C), we clip the ruled screws on the top circle. When €SY 0 be found using axgsto rotate.) This makes' L k.
the base curve of the cone deteriorates into a line (such as in However, we need to make the plafi€(Q’ to be perpen-
Figure 19(A)), it is taken as a special case of the conic shapedicular to#’ in order to guarantee that’ will rotate along
The pure rotation of the rulings about a¥jsrom « to b be- axist’ to the positiori’Q). To makei’ perpendicular to plane
tweent € [0, 1] will fulfil the task, wheng is perpendicularto  TQQ’, we need to mak&)Q’||g . Because’ | g, we have
the planen. Figure 23 is the computer implementation of the ' | Q¢’, wheni’ is perpendicular to two lines QQ’ and’
method above. which intersect each other, we haieperpendicular to the
5.2.2.2 The Dual Space Drawing Method of Cones With Ran- pIaneTQQ’I. Now we only need {o rotatk” with angl/ef
dom Shapes about axise to the mters_ect verteg) on thg planel'QQ’ to
get the ruling of the conic shaggQ®. In this way, the rota-

We now investigate how to create conic surfaces that aretion axesg andt are easily calculated. Theis the axis of
based on more general curves such as those in Figure 19(Bjelative parallel control screws and can be obtained from the
and (C). In these situations, the use of anglbecomes more  dual de Casteljau algorithm. The rotations are easily executed
complicated. The ruled screw of the conic shape is not ausing the dual space method from equation (17).
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Figure 23. The circular Figure 24. The relation be- Figure 25. The real space Figure 26. The dual space
cone drawn by using the dual tween the cylinder and its geometrical explanation of explanation of the ruling of
space conversion method. created hyperboloid. the ruling of the hyperboloid. the hyperboloid.
5.3 The Hyperboloid cylinder intersect on the ruling, so the radius of O S; is
5.3.1 The Definition of the Hyperboloid perpendicular to the plane Thenk is rotated to the position

k', which is the ruling of the hyperboloid and is still on the
planen. We only need to rotatk by anglem to k’ about axis
t to create the ruling of the hyperboloid.

Now, we try to determine axig. Since the plane is the
tangent plane of th€) S; at pointT , we draw an axig
through pointT", which is in the intersection line of the plane
containing(® S; and the plane:. Becausek is the ruling of
the circular cylinderk L ¢, g andt are planar, s« L g,

g is one of the final level interpolation axes of the cylinder in
creating the particular ruling. So,g is easily created from
the control screws of related cylinder using the dual de Castel-
jau algorithm. Therk is a ruling of the related cylinder, it is
easily created as well. Becaugel 1, g L k , there are two
5.3.2 The Dual Space Drawing Method of the Hyperboloid gzgitgtgoia:g tfrzce)rr; gsiir;drr{{.. %lesv(\elizrfj tvc\)/aistiit;goizoeutth e
Technically, the hyperboloid can be drawn by using the dual following equations to obtaif (from L k, & L §):

de Casteljau algorithm directory because it meets the basic F k=0 8=0, then kx g =t. (32)
requirement of the dual de CaStEIjaU algorithm (C'DDC for We a|ready geg andf( when the circular Cy”nder is cre-
short) in section 3.2. However, there is no way to control ated. Thus, the above two calculations abuire easily
the size and shape of the hyperboloid. The size and shape ofolved. After the method is executed for every ruling of the
the hyperboloid are determined by its base circles which arecyjinder, the hyperboloid is formed.

on the middle, top and bottom of the hyperboloid. We note  The shape and size of hyperboloids are dependent on the
that the rulings of the hyperboloid are the rulings of a relative radius of(®) S; and the angler. On the plane n, we can rotate
circular cylinder that have been rotated through an appropriatej, along# to a new directiork”, in the symmetrical position
angle. The dual space drawing method of the circular cylinder o ./ apout axisk. The method for creating” is the same
has been described in section 5.1.2. We need to find a methodg tnat applying to the creation &f. If m and(® S remain

to convert the circular cylinder to the hyperboloid. unchangedin’ = m, the two hyperboloids are the same. It

We look at Figure 24. The lean rulings of the hyperboloid gemonstrates that the hyperboloid of revolution has two sets
pass through the smallest base curv@-5;, which is half of rulings as in the definition.

Carmo [1] defined théwyperboloid let S; be the unit cir-
cle 22 + 42 = 1in thez — y plane, and letn(s) be a
parametrization ob; by arc lengths. For each s, lets) =
o/(s) + es, wherees is the unit vector of the axis (See Fig-
ure 25). ThenX(s,v) = a(s) + v(a/(s) + es)is a ruled
surface. It can be written into the following more familiar
form X (s, v) = (cos s —wvsin s, sin s+ v cos s, v).Notice that
224 1y% — 22 = 1 +v? —v? = 1. This shows that the trace of
X is a hyperboloid of revolution. See Figure 24.

It is interesting to observe that when we takés) =
—a/(s) + e3, we again obtain the same surface. This shows
that the hyperboloid of revolution has two sets of rulings.

way between the top curve( S; and the bottom curve - Figures 27 and 28 show the computer implementation of
© Sp. We coq3|der that the base cylinder for the creation of o hyperboloid by using the above method. Figure 27 shows
the hyperboloid surface should be based on the cu@@es, the interpolated screws. After the interpolated screws are

and is created with the method_ in section 5.1.2. Th.e.n, Weframed by the skeleton, it appears the shape shown in Fig-
try to rotate the ruling by a certain angle to a new position to ;e 28 which matches the hyperboloid exactly.
satisfy the requirement of the hyperboloid.

We observe that the common base circle of the cylinder . . .
and the hyperboloid could be the Bezier curve in theorem 1.6 Presenting the Clipped ruling Segment on
The tangent plane on which the ruling of the cylinder lays also ~ the Screen
contains the tangential interpolation vector of the base circle.lIt is very important to represent screws as lines on the screen
The tangential vector and plane are all perpendicular to thewhere the ruled surface is described by using the screw pre-
radius of the base circle. sentation method. Ding [3] used the line segment algo-

we convert Figure 25, which is in the real space explana-rithm [6] to draw the infinitely long screws on the screen.
tion, to Figure 26. The latter is in the dual space explanation. However, the screws on the screen are still infinite lines. In-
In Figure 26, the plane is the tangential plane of the cylin- tuitively, an infinite line must be converted into line segments
der based ot) S; of Figure 24. The tangential plane and the to render a ruled surface on the screen. Ravani and Wang [14]
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Figure 27. The ruled surface Figure 28. The ruled sur-

of the hyperboloid drawn by face framed by the hyper- Figure 29. Drawing the Figure 30. Drawing the

the dual space method. boloid skeleton. clipped screw whenX; is clipped screw wherX; is
not parallel toXs. parallel toXs.

proposed a method of representing line segments based onthe . ) i i o ]
“centre point” of a line. However, in the paper there is no way & PointO is the 3-dimensional coordinate origin. Alsbis
of controlling the location of the “centre point” during the in- the distance from the intersection poirii:, ., 7-) of g and
terpolation. Ge and Ravani [5] proposed an intrinsic method X1 to the selected poink(z, y, z). Also, k1, Ry and R, (R,
based on the striction curve of the ruled surface. This methodis not shown in the figure.) are origin radii &, X, andg

is coordinate frame independent, but there is little control over respectively. We calculate the intersection peimf X; and
the location of the striction curve. Sprott and Ravani [15] pro- §. We suppose&X; = a + eap andg = g + ego, then we
posed to select a reference point on the first control line andhaveR; = (a x ag)/(a-a) andR, = (g x g0)/(g - &)
draw a reference line through the point. Then the referenceto calculateR; andR,. From equation (33), we use =
line is interpolated along with the control screws using the R1 + ja = R, + kg to getj andk. Then we can easily get
same displacement matrix to yield the interpolated screws, inthe intersect point.

that the control screws and the reference line construct a rigid Based on equation (33), and the common distance equa-
body (See [9]). The intersection point can be used to con-tion, we have

struct the boundary curve for the ruled surface patch. The line P =@—-r)’+y—r)+(z-r)% (34
segment is yielded when one specifies a length along the line.
Although this technique gives us some control over the loca- d(z,y,2) = Ri(Ra, Ry, R.) + ta(az, ay, az), (39)

tion of the boundary curve, the task of setting the referencewherea(ax a,,a.) is the real part ofX,. From equations

line is expensive in both computing time and design time. It (34) and (35), we obtain two different valuestoMWe substi-
cannot guarantee that the reference points is the central aregyie these into equation (35) to determine the two top points
of the interpolated screws as well. d(z,y, z) of the line (screw) segment.

We propose a method that shows the central area of the ' \yhan the two control screwX; andX., are parallel (as
interpolated ruled surface on the screen. Because the charagown in Figure 30), we let the intersection paifit,, r,, 7, )
teristics of the ruled surface are presented in the control areg,ocome the poinR(R,, R, R.), which is the origlin ?ad'i/us.
the intersection points of the control screws and the commonyie thatR and overlieyeach other, and their overlapping

perpendicular axes determine the central area of the surface o are presented #& andR, in Figure 30. From equations

The screw seg_ments_which we will draw are determir?ed by (34) and (35), along with this characteristidgecomes simple
these intersection points which we call the central points of ;j jetermine:

the screw segments. The screw segments are augmented withe _ (z—Ry)2+(y— Ry)2 +(2—R.)* = t*(a? +a§ +a2).

two additional parameters representing the distance along the (36

line on either side of the center point. The detailed method is  For any ruling, we just need to find the intersection point

stated as follows. (central point) of the ruling and its displacement axis along
We review the algebraic form [12, 15] first. If a screw is, with applying the above method, then the ruling is clipped and

in i-frame with coordinatesx(,y ,z ), S = S; + €Sp;, We shown as a line segment. For example, to show a Bezier sur-

can convert it to, in the real space system with coordinatesface segment with more than two control screws on the screen,

(x,y,2), S = S + €S, using equation (5). The parametric we need to clip all rulings of the last level interpolation and

form of converting a screw into a line in 3-dimensional space the first and last control screws of the Bezier surface based on

is S x So their central points using the above method. Figures 31, 32, 33
t)=—4gg *+15 (33)  and 34 show the computer implementation results.
whereR = % is the point (foot) on the line that is

closest to the origin of the chosen coordinate framis.any 7 Conclusions

real number and selected with two or more different values.  This paper explores the direct or indirect applicabilities of

The screw will be drawn as a line in 3-dimensional space by the dual de Casteljau algorithm for ruled surfaces with partic-

connecting the point&?) yielded from different values. ular shapes. The geometrical characteristics of these shapes
In Figure 29, we take one of two control screXs as an are examined and found to be strongly related to the dual de

example to show how to clip an infinite ruling (screw) into Casteljau algorithm. Accordingly, the variations of the dual

a segment. The two basic control screws are suppdsed de Casteljau algorithm are developed. These variations not

andX,. The common perpendicular axis &f; and X, is only obey the characteristics of the original dual de Casteljau
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[5] Ge, Q. Jeffrey and Ravani, B.(1994). On representation

and interpolation of line-segments for computer aided ge-
ometric design. In ASME Design Automation Conference

volume 69-1, pages 191-198.
[6] Hill, F.S. Jr. (1990). Computer graphics. Macmillan Pub-

Figure 31. The clipped Figure 32. The clipped
screws with two non-parallel screws with two parallel con- lishing Company, New York.
control screws. trol screws. [7] Juttler, B.(1998). Rotation minimizing spherical motions.

Advances in Robot Kinematics: Analysis and Control.

PP.413-422 Kluwer Academic Publishers.
[8] Leopoldseder, S.(2001). Algorithms on cone spline sur-

faces and apatial osculating arc splines. Computer Aided

Geometric Design 18(2001), 505-530.
[9] McCarthy, J. M. (1990). Introduction to theoretical kine-

matics. MIT Press, Cambridge, Massachusetts.
[10] Parkin, I.A. (1997). Unifying the geometry of finite dis-

placement screws and orthogonal matrix transformations.
Mech. Mach. Theory 32 (8) pp. 975-991.

Figure 34. The last level in- 111 Piesl. L d Tili 1 d £ _
Figure 33. The second level terpolated screws (the ruled [ ]t leﬁ’ N a.n 1t.er, \17VC§ 981,7)' Clgve ant SuAr.ZCZCBn
interpolated screws with four surface) with four control structions using rational ix-splmes. Lomputer Alded Le-
control screws. screws. sign, 19(9):485-98, 1987.

[12] Pliicker, J. (1865). On a new geometry of space. Phil.
Trans. Roy. Soc., 155: 725-791.

) ] ) ) [13] Pottmann, H., Wallner,J. (2001),Computational Line
algorithm, but also are suﬁable for creating particular ruled _ Geometry, Springer Verlag, Heidelberg, Berlin, ISBN 3-
surfaces. The methods discussed are expected to have di- 540-42058-4, Pp.565.
rect application, for example, in the areas of movie making, [14] Ravani, B. and Wang, J.W.(1991). Computer aided geo-
where computer-based generation of successive image frames metric design of line constructs. Transactions of the ASME
of motion sequences is required. Also the methods could be Journal of Mechanical Design13:363-371.
used in the planing and production of smooth body trajecto- [15] Sprott, K. and Ravani, B. (1997) Ruled surfaces, Lie
ries, such as for particular shaped machine parts. The paper groups, and mesh generation. 1997 ASME Engineering
has shown the systematic approach of the dual space drawing Techical Conferences, Sep. 14-17, 1997, Sacramento, Cali-
methods of the particular geometric shapes in CAGD design.  fornia, USA. ) )

Nevertheless, research in this area is far from complete,['6] Stinivasan, Lakshmi N. and Ge, Q. Jeffrey(1997). Fine
and some related topics can be suggested for further study 'nine of rational B-spline motions. Proc. of the ASME
. . . . . Design Engineering Technical Conference. pp.1-10.
in the future. The d_ual de Casteljau _algorlthm and l_ts varna- 17 Study, E. (1903). Die geometric der dynamen. Leipzig.
tions are on the basis of the geometrical representation rather
than the functional representation as the real de Casteljau al-
gorithm. Thus, the dual space control screws are more diffi- Rena Ding received B.E.
cultto manipulate than the real space control points. Although
Ding [3] and Sprott and Ravani [15] have studied to a certain
degree the dual De Boor algorithm, its local control power
needs to be further investigated to be applied to and to im-
prove the dual de Casteljau algorithm.
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