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Summary
Ruled surface design and its applications are widely used in CAGD
(Computer Aided Geometric Design) and industrial areas. The hy-
perbolic paraboloid, the cylinder, the cone, and the hyperboloid are
ruled surfaces with particular shapes. In this paper, dual space draw-
ing methods for these particular ruled surfaces are proposed. The un-
derlying principles of these methods are the applications, extensions
and variations of the dual (space) de Casteljau algorithm [15].The
hyperbolic paraboloid is created by using the initial dual de Castel-
jau algorithm directly. The cylinder, the cone, and the hyperboloid,
on the other hand, are created by using the extensions or variations
of the dual de Casteljau algorithm. During the drawing processes,
the screen representation of the rulings is presented. This treatment
presents the rulings as clipped line segments on the computer screen
in order to show the proportion of the ruled surface on the computer
screen. In addition, the dual characteristics of Bezier surfaces are
also discussed. The special construction method of the displacement
matrix with two parallel control screws is demonstrated. The normal
screw is normalized into the unit screw as well. These new methods
show the universal possibility of the dual space approach for drawing
ruled surfaces.1
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1 Introduction

Recently, the dual space design methods of curves and sur-
faces have been extensively studied. B-splines in dual quater-
nion spaces are applied in [16]. The authors used rational
B-splines in the space of quaternions to deal with curve ap-
proximation problems and path-smoothing, speed-smoothing
problems. Juttler [7] used quaternion representation of RMM
(Rotation Minimizing Motions) to sweep surface modeling.
Ding [3] applied the De Boor algorithm in 6-dimensional
space to draw particular ruled surfaces, namely, duplicated
surfaces. Leopoldseder [8] used dual methods to draw cones.
Pottmann and Wallner [13] used a dual approach to solve the
drawing methods of differential geometry of developable sur-
faces, which include ruled surfaces. Our work is inspired by
the paper of Sprott and Ravani [15], in which the de Castel-
jau algorithm in screw spaces was introduced to resolve ruled
surface drawing and mesh generation problems. In this paper,
we use the dual de Casteljau algorithm to improve and further
develop their methods to draw particular ruled surfaces.

1Manuscript received January,2006
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Figure 1. Geometrical inter-
pretation of screŵS = (1 +
εp)S + εS0 in 3-D.
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Figure 2. Displacement of
line ĝ by translation and ro-
tation along axiŝS by θ̂ =
θ + εd.

2 Screw Theory

2.1 Definition of a Screw

A generalscrewŜ, from which we derive alineby speciali-
sation, consists of two parts, a real 3-vectorS which indicates
the direction of (line of) the screw, and a real 3-vectorSp

which locateŝS by recording themomentof the screw about
the origin [9, 10]. In these terms, a screw is formed as

Ŝ = S + εSp = S + ε(pS + S0), (1)

whereS0 = R×S = V×S, and in whichε is a quasi-scalar
satisfyingε2 = 0. Here,p is thepitch of the screw andS0,
which is the moment of theline of the screwabout the origin,
is orthogonal toS (i.e.,S · S0 = 0), and is derived as shown
from the origin radius vectorR or, more generally, from any
point V of the screw. The length|S| of the real partS is the
realmagnitudeof the screw. Figure 1 illustrates a geometric
interpretation of a screw.

2.2 Zero Pitch and Normalization of a Screw

Since a screw is a line with an associated pitch valuep, it
follows that aline, in its own right, is a screw with zero-valued
pitch, i.e., p = 0. Given a general screŵS, we often need
access to itsnormalizedline of unit magnitude and zero pitch.
Derivation of such aunit line, which we denote specifically
by the lower case form̂s = s + εs0, is straightforward. By
equation (1),

Ŝ = (1 + εp)S + εS0, where S0 · S = 0.

Sinceε2 = 0, we find that

Ŝ · Ŝ = (1 + εp)2S · S, so
√

Ŝ · Ŝ = (1 + εp)|S|.
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Thus, the general screŵS normalises to its unit linês in the
form

ŝ =
Ŝ√
Ŝ · Ŝ

=
1− εp

|S| Ŝ =
1
|S| (1− εp)[(1 + εp)S + εS0]

=
S
|S| + ε

S0

|S| . (2)

When, in a practical application, we are given a screw of the
form Ŝ = S + εSp, we may derive itspitch, origin radius,
andnormalised lineas

p =
S · Sp

|S|2 , R =
S× Sp

|S|2 , ŝ =
S
|S| + ε

Sp − pS
|S|

(3)
respectively, the last of these, equivalent to equation (2), mak-
ing use of the first. We observe that a screwŜ for whichS = 0
is a line at infinity. In this paper, all general screws are nor-
malized to their unit lines before displacement, as described
in [3].

2.3 A Screw or Line is a dual 3-Vector
When the component 3-vectors ofŜ are made explicitly,

asS = (Lx, Ly, Lz) andSp = (Mx,My, Mz), we find that
a screw is not simply a 6-tuple of real Plűcker co-ordinates
Lx, Ly, Lz,Mx,My,Mz. It is also a 3-vector

Ŝ = S + εSp = (Lx + εMx, Ly + εMy, Lz + εMz) (4)

in which each element, such asLx + εMx, etc. is a dual
number.

In thesedualisedterms, 3-vector quantities which are fa-
miliar in real co-ordinates acquire spatial interpretations. The
scalar product̂S1 · Ŝ2 of such 3-vectors comprises the cosine
of the dual angle(see equation (6)), including both real an-
gle and distance, between the screwsŜ1 and Ŝ2. WhenŜ1

andŜ2 areorthogonal, so thatŜ1 · Ŝ2 = 0 + ε0 = 0, these
screws intersect one another at right angles. Similarly, the
vector product̂S1 × Ŝ2 is a screw which lies on thecommon
perpendicularof the screwŝS1 andŜ2.

Most importantly, screws transform as 3-vectors do [10].
If x̂i, ŷi andẑi are mutually orthogonal unit lines defining a
reference frame,i.e., x̂2

i = ŷ2
i = ẑ2

i = 1, x̂i ·ŷi = ŷi · ẑi =
ẑi ·x̂i = 0, x̂i×ŷi = ẑi, the coordinates of a general screw
Ŝ, when expressed in thati-frame, are

Ŝi =




x̂T
i

ŷT
i

ẑT
i


 Ŝ =




x̂i · Ŝ
ŷi · Ŝ
ẑi · Ŝ


 =




xi · S
yi · S
zi · S


+ε




x̂i⊗Ŝ
ŷi⊗Ŝ
ẑi⊗Ŝ


 ,

(5)
in which, for example,̂xi⊗Ŝ = xi · Sp + x0i · S, where
x̂i = xi + εx0i andxi · x0i = 0.

2.4 The Displacement of a Screw
2.4.1 The General Displacement of a Screw

Under the dualisation just described, points of linear interpo-
lation between two given real points find spatial analogs in
the locations to which a screw successively moves when dis-
placed from some initial to some final location about ascrew
axis ŝ – see Figure 2. Such displacements are parameterised
by adual angleθ̂ ≡ θ + εd which comprises the real angleθ
of rotation, and the real distanced of translation, as measured
about the axiŝs. For such a dual angle we may write

sin θ̂ ≡ sin θ + εd cos θ, cos θ̂ ≡ cos θ − εd sin θ. (6)

By dualising equations for purely rotational displacement [9],
we find that a screŵX displaced from an initial location̂X0

through dual anglêθ about a screw axiŝs = (ŝx, ŝy, ŝz) is
given by

X̂ = [Â]X̂0, where

[Â] = exp[θ̂, ŝ] = [Î] + sin θ̂[Ŝ] + (1− cos θ̂)[Ŝ]2, (7)

in which [Â] is the displacement matrix determined byθ̂ and
[̂s], [Î] is the dual identity matrix, and[Ŝ] is a skew-symmetric
matrix given by

[Ŝ] =




0 −ŝz ŝy

ŝz 0 −ŝx

−ŝy ŝx 0


 , (8)

which has the property that[Ŝ]Ŝ = ŝ × Ŝ for any screwŜ.
See Figure 2 for illustration.

2.4.2 Constructing the Displacement Matrix with Two Par-
allel Control Screws

If the displacement is a pure translation, the initial and final
locations of the screw are parallel. When the displacement
time from X̂0 to X̂1 is t ∈ [0, 1], the displacement matrix
takes the special form

[Â] = [A] + ε[D̂][A], (9)

where[A] is a rotation matrix and the distance between the
two control screws embodies the translation of the line,[D̂]
is a distance matrix, and̂D is the dual perpendicular axis of
the initial and final locations of the interpolated screws. The
rotation matrix is the identity matrix for a parallel translation.
The dual displacement matrix can then be constructed as

[Â] = [Î] + εt[D̂]. (10)

It becomes

[Â] = [Î] + ε[D̂], when t = 1. (11)

For this situation, we have a special method to constructD̂.
In Figure 3,R1(X1,Y1,Z1) andR2(X2,Y2,Z2) are origin
radius vectors of the control screwsX̂0 andX̂1 separately.̂Xt

is a random position of the interpolated screw overt ∈ [0, 1].
The pointr1 is the intersection point ofR1 andX̂0; r2 is the
intersection point ofR2 andX̂1. Let

D̂ = D + εD0. (12)

The real part ofD̂, denoted byD, is the direction compo-
nent ofD̂. In Figure 3, we find thatD = r2−r1. The moment
of D̂ may be derived by the following formula

D0 = R1 ×D = R2 ×D. (13)

After D̂ is derived,[D̂] can be easily constructed using the
components of̂D. In a nutshell,D̂ can be calculated from the
intersection points of̂D andX̂0, X̂1, X̂t whenX̂0 andX̂1

are parallel.[D̂] embodies the translation of the screŵXt.
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Figure 3. The relation be-
tween translation component
D̂ and X̂0, X̂1, X̂t when
X̂0||X̂1.
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Figure 4. The de Casteljau
algorithm for a third order
Bezier Curve

3 Algorithms and Properties of Bezier Sur-
faces

3.1 The de Casteljau Algorithm
The (real space) de Casteljau algorithm is used to draw

a Bezier curveby interpolation of several nominated control
points, as shown in [6] and [4]. A set ofn + 1 control points
is used to construct ann-th order polynomial curve. Given a
set of control pointsP0, P1,... Pn, we can construct the curve

P r
i (t) = (1− t)P r−1

i (t) + tP r−1
i+1 (t), (14)

whereP 0
i (t) = Pi, r = 1, · · ·, n, andi = 0, · · ·, n − r. The

point on the Bezier curve att ∈ [0, 1] is given byPn
0 (t). See

Figure 4.

Theorem 1 [2] The interpolation line is the tangential vec-
tor of its Bezier curve in the 2-dimensional space when all
control points are on one side of the Bezier curve.

3.2 The Dual de Casteljau Algorithm
The principle of dual space methods is to represent the op-

erations on lines as becoming the same as a dualized version
of spherical geometry [15].

The dual (space) de Casteljau algorithm [15] is derived
from the (real space) de Casteljau algorithm by replacing the
nominated points with screws (lines). The Bezier curve in the
real method turns out to be the analogous ruled surface in the
dual method.

For ruled surfaces, the displacement between two control
screws must be chosen to follow ageodesicpath on thedual
unit spherebetween those points which represent the unit
linesX̂0

0 andX̂0
1. The basic procedure is as follows:

1. Find the dual angle between the two screws from

θ̂ = θ − ε
b

sin(θ)
, (15)

whereθ = cos−1(a) and a + εb = cos θ̂ = X̂0
0 · X̂0

1.
2. Find the screw axis for the motion from

ŝ = X̂0
0 × X̂0

1. (16)

3. Find the displacement matrix[Â] and the interpolated
screw from X̂1

0 = [Â]X̂0
0, (17)

where[Â] = [Î]+sin(tθ̂)[Ŝ]+(1−cos(tθ̂))[Ŝ]2, [Î] is the dual
identity matrix, and[Ŝ] is a skew-symmetric matrix given by
equation ( 7) and ( 8).

4. If the two control screws are parallel, the displacement
matrix should be written as equation (10).

5. If there aren + 1 control screws, we will get then-th
generation screws which constitute the ruled surface

X̂r
i (t) = exp(θ̂r−1

(i,i+1)t[adŝr−1
(i,i+1)])X̂

r−1
i , (18)

whereX̂0
i (t) = X̂i, θ̂r−1

(i,i+1) is the complex angle between

ruled screwŝXr−1
i andX̂r−1

i+1 , [ad] is an operator that takes a
vector into a skew symmetric matrix, andŝr−1

(i,i+1) is the line

of the screw axis between̂Xr−1
i andX̂r−1

i+1 . The ruled screws

on the surface is given bŷXn
0 (t).

The basic condition to draw a ruled surface using the dual
de Casteljau algorithm is that the neighboring rulings of the
ruled surface do not intersect each other except when the dis-
placement is a pure rotation on a plane. Usually, there is the
same fixed angle and distance between each pair of neighbor-
ing rulings. We denote this condition as (C-DDC) for short.

3.3 The Properties of Bezier Surfaces
For any operation defined for a real vector space there is a

dual version with similar interpretations [17].
In this paper, ruled surfaces that are created by using the

initial or variations of the dual de Casteljau algorithm are
called Bezier surfaces. They have similar properties to the
Bezier curves as in [6]. Points in the real space algorithm
are normally replaced by screws (lines) in the dual space al-
gorithm. Lines in the real space algorithm are replaced by
planes in the dual space algorithm. The properties of Bezier
(ruled) surfaces are investigated and listed below.

End ruling interpolation: the Bezier surface interpolated
by a series of control screws (lines) does not generally pass
through, or interpolate, all of the control screws, but it always
interpolates (begins and ends on) the first and last ones.

Planar precision: if all the control screws are on the same
plane, the Bezier surface will be “trapped” inside the plane
and all the rulings in the ruled surface will be planar.

Affine invariance: the Bezier surface is invariant under
affine parameter transformation. If we wish to transform a
ruling on a Bezier surface to a new position using a transfor-
mation matrix and offset vector, we only need to transform
the control screws and then use the same interpolation algo-
rithm to create the transformed Bezier surface. Here, although
the interpolation is dual, the affine transformation parameters
are real. If we wish to transform̂X(t) on to the new position
X̂′(t) using a real transformation matrixN and offset vector
tr , we have X̂′(t) = X̂(t)N + tr. (19)

Symmetry: for a control sequence of a Bezier surface, we
can labelX̂0, X̂1, · · · , X̂n equivalently asX̂n, X̂n−1, · · ·,
X̂0. The surfaces that correspond to the two different order-
ings look the same. They only differ in the directions in which
they are traversed. Thus, we have

X̂′
j(t) = X̂n−j(1− t). (20)

The above properties have been implicitly confirmed
through different implementation examples in later sections
of this paper. These properties are analogous to those of the
real space algorithms in [6]. However we cannot prove that
any real space properties of Bezier curves are analogous to
their dual space properties of Bezier surfaces. There are fewer
properties for Bezier surfaces than for Bezier curves.
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Figure 5. Geometrical illustration of the hyperbolic paraboloid.

4 Drawing Particular Ruled Surfaces by Using
the Initial Dual de Casteljau Algorithm

If the characteristics of a ruled surface meet the basic re-
quirement of the dual de Casteljau algorithm (C-DDC) in sec-
tion 3.1, the ruled surface is able to be drawn by using the ini-
tial dual de Casteljau algorithm. The hyperbolic paraboloid
categorizes into this type of ruled surfaces.

4.1 The Hyperbolic Paraboloid
4.1.1 The Definition of the Hyperbolic Paraboloid

Carmo [1] defines thehyperbolic paraboloidas follows:- let
S be thehyperbolic paraboloidz = kxy, k 6= 0. WhenS is
a ruled surface, we observe that the linesy = z/tk, x = t,
for eacht 6= 0 belong toS. If we take the intersection of
this family of lines with the planez = 0, we obtain the curve
x = t, y = 0, z = 0. Taking this curve as directrix and
vectorsω(t) parallel to the linesy = z/tk, x = t, we obtain

α(t) = (t, 0, 0) and w(t) = (0, 1/k, t).

This gives the ruled surface illustrated in Figure 5:

x(t, v) = a(t) + vw(t) = (t,
v√

1 + k2t2
,

vkt√
1 + k2t2

),

wheret ∈ R, v ∈ R, the trace of which clearly agrees withS.
Sinceα′(t) = (1, 0, 0), we deduce that the line of striction

is α itself. The distribution parameter isλ = 1/k.
We also note that the tangent of the angleθ, which ω(t)

makes withω(0), is tan θ = tk.
If the surface is intersected by a plane, which is parallel to

thex-y plane, the resulting curve is a hyperbola. If the surface
is intersected by a plane containing thez-axis, the resulting
curve is a parabola.

4.1.2 The Dual Drawing Method of the Hyperbolic
Paraboloid

Farin [4] used a real method:- a bilinear interpolation method
to create the hyperbolic paraboloid. Now we create the hy-
perbolic paraboloid by using the dual de Casteljau algorithm.
In Figure 5, we select as the original ruling a screwX̂ that is
they-axis. We select as the rotation axis an axisŝ that is the
x-axis. HereX̂ ⊥ ŝ . WhenX̂ rotates and translates along
ŝ to the positionX̂t, where the rotation angle isθ < 90o,
the hyperbolic paraboloid is created. However, we need to
add a constraint between the rotation angle and the transla-
tion distance. When we knoŵX, we find that axiŝs has the
relationship: ŝ · X̂ = 0. Then ŝ intersectsX̂ at some point
O. For drawing the rulings, we set the translation distance
asd = tD, whereD is the distance between the final ruling

Figure 6. The ruled surface
of the hyperbolic paraboloid
is drawn by using the dual de
Casteljau algorithm.

Figure 7. The skeleton of
the
hyperbolic paraboloid forms
the interpolated surface into a
hyperbolic paraboloid.

X̂t and the first rulingX̂, for t ∈ [0, 1]. In this way, thei-th
rotation angle will beθi = arctan(tDk), wherek is the dis-
tribution parameter. Thus, to create the hyperbolic paraboloid
using the dual de Casteljau Algorithm, we take the following
steps:

1. Set an origin screŵX that is the first ruling of the hy-
perbolic paraboloid surface.

2. Calculate the displacement axisŝ using the relationship
X̂ · ŝ = 0, whereŝ andX̂ intersect at a common point.

3. Set the constraint between the translation distanced and
the rotation angleθi, then

tan θi = dk. (21)

Let d = tD, whereD is the distance between the first and
last rulings, andt ∈ [0, 1]. Equation (21) becomes (0 ≤ θi <
90o) θi = arctan(tDk). (22)

4. The dual angle of the displacement will become
θ̂i = θi + εd = arctan(tDK) + ε(tD). (23)

5. The displacement matrix is
[Âi] = [Î] + sin(θ̂i)[Ŝ] + (1 + cos(θ̂i))[Ŝ]2. (24)

6. The interpolated screws will be
X̂i = [Âi]X̂. (25)

The size and shape of the hyperbolic paraboloid are de-
termined byθ̂i, which is in turn determined byk and D.
If k increases whileD is a constant, then the distance be-
tween neighbouring rulings will increase and the shape of the
hyperbolic paraboloid will widen. Ifk decreases, then the
distance between neighbouring rulings will decrease and the
shape of the hyperbolic paraboloid will narrow down. IfD in-
creases whilek is a constant, then the shape of the hyperbolic
paraboloid will widen. Otherwise, it becomes narrower.

In Figure 5, we letX̂ overlap axisx. Note that̂s is axisy,
and thatX̂ displaces along axiŝs in the samêθ as in the above
method. Then, we have a reciprocal hyperbolic paraboloid of
the original one.

The figures 6 and 7 are the computer implementations of
the dual drawing method for the hyperbolic paraboloid.

5 Drawing Particular Ruled Surfaces by Us-
ing Variations of the Dual de Casteljau Al-
gorithm

If the characteristics of a ruled surface do not meet the ba-
sic requirement of the dual de Casteljau algorithm (C-DDC
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for short) in section 3.1, the ruled surface is not able to be
drawn by using the initial dual de Casteljau algorithm. Varia-
tions and additional conditions of the dual de Casteljau algo-
rithm are explored in order to draw particular ruled surfaces:-
cylinders, cones and hyperboloids.

5.1 Cylinders
5.1.1 Regular Cylinders

5.1.1.1 The Definition and Analysis of the Cylinder

As defined in [1], acylinder is a ruled surface generated
by a one-parameter family of lines{α(t), ω(t)}, t ∈ I, where
α(I) is contained in a planeP andω(t) is parallel to a fixed
direction inR3 (see Figure 8(A)).

Technically, cylinders can be created with the dual de
Casteljau algorithm because they meet the preconditions of
the algorithm (C-DDC) in section 3.1. However, for cylin-
ders with smooth trajectories, we need to add certain bound-
ary conditions to deal with smoothness when two end control
screws of a smooth trajectory overlap each other. Setting all
control screws (lines) parallel to each other is the basic way
to create any cylindrical surface with the dual de Casteljau
algorithm.

The base curve of a cylinder could be an open or closed
curve. Closed curves may be classified into two kinds. One
kind is the smooth closed curve which has a first derivative at
any point on the curve; e.g., the circle. The other is the non-
smooth closed curve without first derivatives at vertex points
on the curve, such as the shapes shown in Figure 9.

5.1.1.2 Cylinders Based on Open or Non-smooth Closed Tra-
jectories

From [6], a Bezier curve begins at the first control point
and ends at the last control point. The two points can be two
ends of an open curve. It was found in Section 3.3 that they are
also suitable for the dual space case. That is, a ruled surface
based on a series of control screws always interpolates the first
and last control screws.

If the base curves of cylinders are open curve trajectories
, we could create cylinders by using the dual de Casteljau al-
gorithm directly. Thus, we focus on the drawing methods of
cylinders based on closed curve trajectories.

We break down a non-smooth closed curve into several dif-
ferent curve segments. For example, in Figure 9, curve (B)
can be broken into two pieces of (A). We also think of them
as open curve segments, which join at the non-smooth inter-
section points. For example, in Figure 9(A), the closed curve
is actually an open curve connected at pointO. The curve in
Figure 9(C) actually consists of two open curves:- an arc, and
a straight line connected at pointA andB. We draw the non-
smooth closed curve as the open Bezier curve using the real
de Casteljau algorithm straight away (Figure 9(C)). Creating
cylinders along these non-smooth closed curves with the dual
de Casteljau algorithm is analogous to using the real space
drawing method for the non-smooth closed curves, but replac-
ing the control points in the real space method with the dual
parallel screws (lines) in the dual space method.

5.1.1.3 The Dual Drawing Method of The Cylinder Based on
a Smooth Closed Trajectory

It is supposed that the smooth closed trajectory is split into
a curve with starting and end points at the same point on the
curve. Thus a smooth closed curve can be seen as an open
curve with two end points on the same point. The cylinder
based on this base curve can be drawn by using the dual de
Casteljau algorithm. In order to guarantee that the base curve
and the cylinder are smooth, we have to consider that the over-
lap end point on the curve has a tangent vector and that the
analogous overlap ruling on the cylinder has a tangent plane.
Thus, we should determine the boundary conditions to draw
the cylinder with the smooth closed curve trajectory by using
the dual de Casteljau algorithm.

We first transfer the dual space ruled surface issue to a real
space curve issue to simplify the problem. The cylinder is
constructed by a series of parallel rulings along a base curve.
The rulings are supposed to be created by using the dual de
Casteljau algorithm with parallel control screws. We consider
that the base curve of the cylinder is projected to the reference
plane that is perpendicular to the rulings of the cylinder and
their control screws. The projected curve is actually a Bezier
curve as in Figure 12. The purpose of this conversion is to try
to find the boundary conditions if two end points of a Bezier
curve join together smoothly on the reference plane. Once the
boundary condition of the join point of the smooth curve is
found, the boundary connection of a smooth ruled surface of
a cylinder is also solved by analogizing the curve boundary
condition.

For a Bezier curve on a reference plane, if the curve seg-
ments of the Bezier curve join each other smoothly, the first
derivative at the join point should exist. Equivalently there
should be only one tangent vector at the join point.

For the ruled surface of a cylinder, there must be a tangent
plane on the joint ruling of two connected ruled surfaces if the
joint ruled surface is smooth.

In Figure 14, The first control pointP0 is on the lineL1,
which is determined by the first and second control points,
and the last control pointPn is on the lineLn, which is de-
termined by the last and second to last control points. When
t = 0, for the de Casteljau algorithm, the first interpolated
line at any level is identical toL1(Figure 10); whent = 1,
the last interpolated line at any level is identical toLn (Fig-



IJCSNS International Journal of Computer Science and Netwrok Security, VOL. 6, No. 1, January 2006 6

P

P

P

P

P
P

P0

1

2
3

4

5

6

7

L

L

1

n

The reference planeP

Figure 10. When t = 0,
the interpolated line between
the first and second control
points at any level are iden-
tical to the same position in-
terpolated line at the previous
level

P

P

P
P

P

P
P

P0

1

2
3

4

5

6

7

L

L

1

n

The reference plane

Figure 11. Whent = 1, the
interpolated line between the
last and second to last control
points at any level are iden-
tical to the same position in-
terpolated line at the previous
level

The closed curve

The cylindrical ruled surface

Reference plane

The second control screw

The second last control screw

The first and last control screws intesect ion 

A

Figure 12. The first and
last control screws overlap on
plane A which is perpendicu-
lar to the reference plane

Figure 13. The computer
implementation of the cylin-
der using the variation of the
dual de Casteljau algorithm

ure 11). From theorem 1, it can be proved thatL1 andLn

are the tangent vectors of the curve at its first and last points
separately. If we want to draw the smooth closed curve us-
ing the real de Casteljau algorithm, we only needL1 andLn

to be linearly identical. When the first and second control
points, and the last and the second to last control points, lie
on the same line, the tangent vectors of the curve at the first
and last control points will overlap. Thus the curve is con-
nected on the end points smoothly because the tangent vector
exists on the boundary points. Similarly in the dual issue, if
the first, second, last and second to last control screws are on
the same plane, the interpolated surface will have the same
tangent plane on the first and last control screws. The edges
of the ruled surface connect to each other smoothly because
the tangent plane exists on the edge. Figure 12 illustrates the
principle of drawing methods. The computer implementation
of the cylinder is shown on Figure 13.

5.1.2 The Circular Cylinder

Practically, the positions of control screws of the dual de
Casteljau algorithm are not easily determined for drawing cer-
tain shapes such as the circular cylinder. Piegl and Tiller [11]
gave the Rational B-spline method for drawing a circle by
inserting appropriate knots, which are the intersection points
of the circle and its tangent square edge. We will determine
the appropriate control screws to draw the circular cylinder.
We will also observe whether the number and the positions of
control screws determine the circular cylinder.

5.1.2.1 Drawing the Circular Cylinder Using the Dual de
Casteljau Algorithm with Boundary Condition
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Figure 14. View of the
cylinder section along the
normal vector of the refer-
ence plane
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Figure 15. Creating a circle
with the segment construc-
tion method

We look at the base Bezier curve of the circular cylinder (a
circle) first in order to identify the positions of control points
of the base circle, which are also those of control screws of
the circular cylinder. In Figure 14,if the cylinder section is
a circle,the condition of drawing the circle by using the de
Casteljau algorithm is that

x2 + y2 = 1. (26)

Here, P0, P1, Pn−1 and Pn are co-linear, andP0 =
Pn(e.g., P7). We need five minimum control points to draw a
circle. That is, besidesP0, P1, Pn−1 andPn, there should be
at least one more control point. The functional expression of
the de Casteljau algorithm for drawing a circle as in [4] is
P (t) = P0g0(t) + P1g1(t) + · · ·Pkgk(t) + · · ·+ Pngn(t)

=
n∑

k=0

Pkgk(t) =
n∑

k=0

PkBn
k (t),

wheregk(t) is the Bernstein polynomial and
gk(t) = Bn

k (t) = (n
k )(1− t)n−ktk, (27)

Pk = (Pkx, Pky) is the control point of the circle, andP (t)
is the point on the circle with coordinate(Px(t), Py(t)) when
t ∈ [0, 1]. Then,

P (t) =
n∑

k=0

Pkgk(t) =
n∑

k=0

(Pkx, Pky)gk(t)

=
n∑

k=0

(Pkxgk(t), Pkygk(t))

=

(
n∑

k=0

Pkxgk(t),
n∑

k=0

Pkygk(t)

)
= (Px(t), Py(t)),

wherePx(t) andPy(t) satisfy the circle condition from equa-
tion (26). Thus,

(Px(t))2+(Py(t))2 =

(
n∑

k=0

Pkxgk(t)

)2

+

(
n∑

k=0

Pkygk(t)

)2

= (P0xg0(t) + P1xg1(t) + · · ·+ Pnxgn(t))2

+(P0yg0(t) + P1yg1(t) + · · ·+ Pnygn(t))2

= 1. (28)

We must also constrain the circle by the condition ofP0, P1,
Pn−1, andPn being co-linear, andP0 = Pn.

Solving the above equations to find the control points, we
need to know the first and last control pointsP0, Pn in ad-
vance. The second and second last control points will be de-
termined on the lineP0P1Pn−1Pn by using the co-linear con-
straint condition. Then we use the different values oft ∈ [0, 1]
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in equations (27) and (28) to find other control points, and the
numberw of chosen constantst should be less than twice the
numbern + 1 of control points, (i.e.,w < 2(n + 1)), to guar-
antee that the equations are solvable and yield the coordinates
of control points. IfP1 andPn−1 are not chosen well, we
select other positions similarly asP1 andPn−1 on the line
P0P1Pn−1Pn until all control points are solvable from the
equations.

We replace the control points of the base circle with paral-
lel screws (lines), and let all these control screws be perpen-
dicular to the plane where the circle lies. The circular cylinder
is then created by using the dual de Casteljau algorithm based
on these control screws.

5.1.2.2 Drawing the Circular Cylinder with Segment Con-
struction Using the Dual de Casteljau Algorithm

We first consider the circle segment, which is the base
curve of the circular cylinder segment, in order to identify
the positions of control points of the base curve and also the
control screws of the circular cylinder segment. We use the
de Casteljau algorithm to create curve segments which satisfy
the Bezier curve, then connect them as a whole circular curve.
Similar rules are applied to constructing the circular cylinder
by their segments drawn with the dual de Casteljau algorithm.

In Figure 15, the curve segmentP0P2 is created by control
pointsP0, P1 andP2. Similar methods apply to other seg-
ments. TheP0P2 curve is weighted by the control pointsP0,
P1, andP2 only. TheP2P4 curve is weighted by the control
pointsP2, P3, andP4 only, and so on. To draw the next cir-
cular segment, the positions of the control points need to be
found by using a similar method as the previous section.

We also find that the intersection points of the tangent poly-
gon of the circle and the circle itself are the boundary points
of curve segments. The radii of the circle are perpendicu-
lar to their relative polygon edges when the radii intersect at
the boundary points of curve segments. For example, in Fig-
ure 15,P0P6 is one of the diameters of the circle, andP0 and
P6 are both boundary points of the curve segments, where
P0P6 ⊥ P1Pn, P0P6 ⊥ P5P6.

We suppose that there aren + 1 control points fromP0,
. . ., Pn in total for a circle, which is constructed bym cir-
cle segments int ∈ [0, t1f , t2f , . . . , tkf , . . . , tmf ], and each
circle segment is constructed byj + 1 control points int ∈
[t(k−1)f , tkf ]. We havem · J = n + 1.

For these curve segments, their functional expression of
the de Casteljau algorithm is
S1(t1) = P0g0(t1) + P1g1(t1) + P2g2(t1) + · · ·+ Pjgj(t1),

S2(t2) = Pjgj(t2) + Pj+1gj+1(t2) + Pj+2gj+2(t2)+

· · ·+ P2jg2j(t2),

· · ·
Sk(tk) = P(k−1)jg(k−1)j(tk) + P(k−1)j+1g(k−1)j+1(tk)

+ · · ·+ Pkjgkj(tk),

· · ·
Sm(tm) = P(m−1)jg(m−1)j(tm)+P(m−1)j+1g(m−1)j+1(tm)

+ · · ·+ Pmjgmj(tm),

α

β

P0

P1

P2

O

Figure 16. The circu-
lar cylinder segment drawing
method

P S(I)

w(t)

p

Figure 17. The explanation
of the definition of cones.

whereS1(t1) is the point on the first circle segment att1 ∈
[0, t1f ], Sk(tk) is the point on thekth circle segment at
tk ∈ [t(k−1)f , tkf ] andSm(tm) is the point on themth cir-
cle segment attm ∈ [t(m−1)f , tmf ]. Then, the whole circle is
constructed by

P (t) = S1(t1) + ... + Sm(tm) in t ∈ [0, tmf ].

We take the first segment as in the example under the same
supposed conditions, and specifyj + 1 = 3. In Figure 16,
we suppose that control pointP0(P0x, P0y) is known. Con-
trol pointsP1(P1x, P1y) andP2(P2x, P2y) are not known. As
equation (28), the curve segment satisfies the circle condition

(P0xg0(t1) + P1xg1(t1) + P2xg2(t1))2

+(P0yg0(t1) + P1yg1(t1) + P2yg2(t1))2 = 1, (29)

wheregi(t1) are Bernstein polynomials and determined by
t1 ∈ [0, t1f ] for the first curve segment, buttk ∈ [t(k−1)f , tkf ]
in general. The numberwk of chosentk should be less than
double the number(j + 1) of control points. That is,wk <
2(j + 1). Thus it guarantees that the equations are solvable to
derive the positions of control pointsP1 andP2. However, if
the quotient of the angleα at the centre dividing360◦ is not an
integer, the circle curve segments will not join as a complete
circle by this method only. Thus, before deducing the circle
segments, we need to constrain the quotient to be an integer.
In Figure 16, the curve (arc) angle isα, P0O ⊥ P0P1, and
P2O ⊥ P1P2. It is easy to get the angleβ fromP0, P1, andP2

because the positions ofP1 andP2 from equation (29) have
already been calculated andP0 is known. In the following
equations, we have

α + β = 180◦,m =
360◦

α
=

360◦

180− β
. (30)

If m is an integer, thenα andβ do not need to be adjusted.
Otherwise, we have to adjust the position ofP1andP2 until
the angleβ andα satisfy the constraint so as to makem an
integer. Thenm determines the number of circle segments.
If the angleα does not satisfy the angle constraint, we adjust
the positionP1 on lineP0P1, then re-calculateP2 by equation
(29) and check whether the angle constraint is satisfied. We
repeat the above procedure until the final angle condition is
satisfied.

After we get the positions of control points of the first cir-
cle segment, we can get those of the next segment easily. In
Figure 15, we must find whetherP3 is on the lineP1P2, while
P2P3 = P1P2, angleβ2 = β1, andP2P3 = P3P4. PointsP2,
P3, andP4 will be the control points of the second circle seg-
ment. From this, the3rd, 4th, and all of the other control
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Figure 19. Various cones based on different curves.

points will be interpolated smoothly. These circle segments
construct the whole circle.

For the circular cylinder, we replace the control points of
the base circle segment, a Bezier curve, with parallel control
screws which are perpendicular to the base plane. A related
circular cylinder segment is then created by using the dual
de Casteljau algorithm. One after another, the above method
is applied to all circular cylinder segments with a same base
plane. Ultimately, the whole circular cylinder is constructed
by the circular cylinder segments.

5.2 Cones
5.2.1 The Analysis of Cones

5.2.1.1 The Definition, Classifications and Common Charac-
teristics of Cones

Carmo [1] defines thecone. A coneis a ruled surface gen-
erated by a family{s(t), ω(t)}, t ∈ I, where the curves(I)
resides in a planeP and the rulingsLt all pass through a point
p /∈ P . See Figure 17.

Figure 18 illustrates the common characteristics of cones.
In Figure 18, a cone in (A) has an explicit vertexO. In (B) of
the same figure, extension lines of rulings of a cone intersect
at a vertex which is implicit. In (C) of the same figure, the
intersecting vertex of a cone is at pointO. Thus, the common
characteristic of the cone is that the rulings, or the extension
rulings of the cone, always intersect at one point.

If the base curve of a cone is a circle, the normal vector
of the base plane from the centre of the circle usually goes
through the vertex of the cone. These cones with circular base
curves shown in Figure 18 are called circular cones.

Normally cones are not necessarily based on circles. If
we displace a straight linek passing through a moving point
p ∈ S(I) and a fixed pointO /∈ S(I), we can create a cone
with any base curve other than a circle. Figure 19 illustrates
different conic shapes.
5.2.1.2 The Analysis of Creation Methods of Cones

Although cones are ruled surfaces, they can not be created
with the dual de Casteljau algorithm directly. Because the
rulings of cones intersect at one point, they do not obey the
basic rule of the dual space algorithm (C-DDC for short) in
section 3.2.
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Figure 20. The relationship
of rulings of a cylinder and
rulings of a cone with a com-
mon base curve.
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Figure 21. The dual method
to convert a circular cone
from a circular cylinder.

In Figure 20, we find that a circular cone can be converted
from a circular cylinder. The ruling of the cylinder̂k rotates
along some axis to the ruling of the conek̂′ , which intersect
the normal vectorOT of the base plane at vertexT . Repeating
the process to convert rulings of the whole cylinder, the cone
is thus created. Now we must derive a displacement method
to implement the conversion from the cylinder to the cone.

The circular cylinder has been created using the dual space
methods in section 5.1.2. Therefore we only need to find a
way to rotate rulings of the cylinder to rulings of the cone us-
ing a displacement method. Because we already know that the
ruling of the cylinder̂k rotates with anglem about some axis
to the positionk̂′ of the ruling of the cone, the key problem
becomes to find an axis along which the screwk̂ rotates.

We suppose that the base curve of a Bezier surface such as
the cylinder is created under 1. Thus, the interpolation line
of the base curve could be the axis along which the ruling of
a cylinder rotates to the ruling of a cone with the same base
curve.

Based on theorem 1, we have the general deduction as
follows:- the tangential interpolation line of a Bezier curve in
the real space method becomes a tangential plane of a Bezier
surface in the dual space method. Also, the tangential inter-
polation line of the base curve of a Bezier surface is the com-
mon perpendicular axis of two parallel control screws. Both
results of this deduction are constrained by the condition that
all control screws of a Bezier surface, such as the cylinder, are
parallel. We denote this deduction as (TI-DD) for short.

5.2.2 The Dual Space Creation Methods of Cones
5.2.2.1 The Dual Space Drawing Methods of Circular Cones

Figure 20 is converted to Figure 21 to further display the
drawing methods of cones. In Figure 21, the interpolation
axisĝ and its perpendicular control screwsâ andb̂ are on the
same planeT , which is the tangential plane of the interpolated
cylinder onk̂ whent = t1, t1 ∈ [0, 1]. The interpolated ruled
screwk̂ of the cylinder and its two control parallel screwsâ,
b̂ are also planar on planeT . The cylinder should not be in
the situation that all its control screws are planar, otherwise it
transforms into a plane. The transformation axisĝ of control
screwsâ andb̂ intersects the cylinder at only one pointt on
screwk̂, because any interpolation axis intersects the interpo-
lated ruled line of a Bezier curve at one point and also because
ĝ is a tangential vector of the cylinder according to the deduc-
tion (TI-DD) in the previous section. For the normal control
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screws, the position of the displacement axisĝ is determined
by the shortest distance between two control screws. Because
control screwŝa and b̂ are parallel to each other, it follows
that the distance between them is the same everywhere. It
is possible to move the axiŝg to the positionĝ′. This does
not change the creation of the ruled surface of the cone since
ĝ′||ĝ, andĝ′ is also on the planeT whenâ||b̂ . Everything on
planeP can be explained by the real space method. Thus, the
projection points of̂a and b̂ to planeP become the control
points of the base Bezier curvēO of the cylinder.ĝ′ is the
tangential interpolation line of the Bezier curve (¯O) at point
t′ on plane P according to theorem 1.

In Figure 21, we create planen which is perpendicular to
planeT , and passes through screwk̂ and lineOQ (becauser1

is the radius of̄ O; r2 is the radius of̄ Q; note thatr1||r2.
r1 andr2 both are perpendicular to planeT ). The interpolated
ruled screŵk and the central line of the cylinderOQ are pla-
nar in planen. Thenk̂ is rotated with anglem to positionk̂′

about axiŝg′. In plane n,̂k′ is one of the ruled screws of the
cone and touchesQ. If we vary t over [0, 1] when we per-
form the process, the ruled surface of the cone is created. The
method for rotating the screŵk to k̂′ is much simpler than
we might think, becausêg′ is perpendicular to planen and is
known as the interpolation axis between control screwsâ and
b̂. Let θ̂ = θ + εd, whered = 0, and angleθ = m. Equation
(17) will becomêk′ = [Â]k̂, where

[Â] = [Î] + sin(m)[ĝ′] + (1− cos(m))[ĝ′]2. (31)

This is the pure rotation equation to convert the rulings of a
circular cylinder into the rulings of a circular cone. The angle
m becomes constant rather thant dependant as in equation
(17). The axisĝ varies when the positions of the previous
level control screws change through differentt ∈ [0, 1].

Alternatively, in Figure 21, we use the above method to
rotatek̂ with anglem about axiŝg to k̂′′ first, then we move
k̂′′ to positionk̂′. Sincek̂′′||k̂′, it is easily done. Thus, the
rulings of the cone is also converted from that of the cylinder.

The shape of the circular cone is determined by the angle
m and the basic circle radius. When we draw general circular
cones, we only need to adjust the anglem, or the radius of the
circular cylinder.

The above method applies to any circular conic shape, as
shown in Figure 18. In some cases, however, we need to
clip rulings of conic surfaces at different positions. In Fig-
ure 18(B), we extend the rulings above the top circle. In Fig-
ure 18(C), we clip the ruled screws on the top circle. When
the base curve of the cone deteriorates into a line (such as in
Figure 19(A)), it is taken as a special case of the conic shape.
The pure rotation of the rulings about axisĝ from a to b be-
tweent ∈ [0, 1] will fulfil the task, whenĝ is perpendicular to
the planen. Figure 23 is the computer implementation of the
method above.

5.2.2.2 The Dual Space Drawing Method of Cones With Ran-
dom Shapes

We now investigate how to create conic surfaces that are
based on more general curves such as those in Figure 19(B)
and (C). In these situations, the use of anglem becomes more
complicated. The ruled screw of the conic shape is not a
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Figure 22. The dual space method to create random conic shapes.

pure rotation about some fixed axis from the ruled screw of
the cylinder anymore. It contains some translation or another
rotation– multi-translation and multi-rotation. Although the
rotation axis is still the tangential vector to the related cylin-
der of the cone, the vector obtained from the ruling of the
cylinder rotating along the axis is no longer the ruling of the
cone as it was in the circular cone. As shown in Figure 22,
after a rotation of anglem about the interpolation axiŝg from
relative cylinder rulinĝk to k̂′′, screwk̂′′ is not on the posi-
tion of the ruling of the cone and is not planar with the center
axis of the conic shapeOQ as it was in the creation method
of the circular cone. The rulinĝk′ of the cone is not identical
to k̂′′ which is rotated from̂k . To solve these problems, a
detailed method to create any shaped cone will be presented.

In Figure 22, the ruled screw of the conic shapek̂′ passes
through pointQ to construct the ruled conic surface along
curveS. But the perpendicular vectorr̂ of the rotation axiŝg
at pointT does not necessarily intersect lineOQ at the cen-
tral pointO of the base curveS as it does in the circular cone.
There is no way to construct a plane that always makes screw
r̂ andOQ planar. The standard dual drawing method of the
circular cone cannot be used here directly. We need to mod-
ify it to suit this situation. Using the base curve in Figure 22,
we draw a cylindrical surface with the dual de Casteljau al-
gorithm as the methods in section 5.1.1. We do not show the
cylindrical surface on the figure.̂k is one of the rulings of this
surface. We draw the planen that is perpendicular to the inter-
polation screŵg, intersectŝg at T , and containŝr. Then the
screwk̂ can be rotated about interpolation axisĝ with anglee
to the position̂k′′. k̂′′ touchesQ′. We draw lineQ′O′ perpen-
dicular to base planeP which contains the curveS. Note that
Q′O′‖QO . Whenk̂ rotates in anglee, we let screŵr rotate
in anglee to r̂′ about axiŝg as well. (Becausêr ⊥ ĝ , r̂ is
easy to be found using axiŝg to rotate.) This makeŝr′ ⊥ k̂′′.

However, we need to make the planeTQQ′ to be perpen-
dicular to r̂′ in order to guarantee that̂k′′ will rotate along
axis r̂′ to the positionTQ. To makêr′ perpendicular to plane
TQQ′, we need to makeQQ′||ĝ . Becausêr′ ⊥ ĝ , we have
r̂′ ⊥ QQ′, whenr̂′ is perpendicular to two lines QQ’ and̂k′′

which intersect each other, we haver̂′ perpendicular to the
planeTQQ′. Now we only need to rotatêk′′ with anglef
about axiŝr′ to the intersect vertexQ on the planeTQQ′ to
get the ruling of the conic shapeTQ. In this way, the rota-
tion axesĝ andr̂ are easily calculated. Then̂g is the axis of
relative parallel control screws and can be obtained from the
dual de Casteljau algorithm. The rotations are easily executed
using the dual space method from equation (17).
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Figure 23. The circular
cone drawn by using the dual
space conversion method.

Sb
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St

Figure 24. The relation be-
tween the cylinder and its
created hyperboloid.

5.3 The Hyperboloid
5.3.1 The Definition of the Hyperboloid

Carmo [1] defined thehyperboloid. let S1 be the unit cir-
cle x2 + y2 = 1 in the x − y plane, and letα(s) be a
parametrization ofS1 by arc lengths. For each s, letω(s) =
α′(s) + e3, wheree3 is the unit vector of thez axis (See Fig-
ure 25). ThenX(s, v) = α(s) + v(α′(s) + e3)is a ruled
surface. It can be written into the following more familiar
form X(s, v) = (cos s−v sin s, sin s+v cos s, v).Notice that
x2 + y2− z2 = 1 + v2− v2 = 1. This shows that the trace of
X is a hyperboloid of revolution. See Figure 24.

It is interesting to observe that when we takeω(s) =
−α′(s) + e3, we again obtain the same surface. This shows
that the hyperboloid of revolution has two sets of rulings.

5.3.2 The Dual Space Drawing Method of the Hyperboloid

Technically, the hyperboloid can be drawn by using the dual
de Casteljau algorithm directory because it meets the basic
requirement of the dual de Casteljau algorithm (C-DDC for
short) in section 3.2. However, there is no way to control
the size and shape of the hyperboloid. The size and shape of
the hyperboloid are determined by its base circles which are
on the middle, top and bottom of the hyperboloid. We note
that the rulings of the hyperboloid are the rulings of a relative
circular cylinder that have been rotated through an appropriate
angle. The dual space drawing method of the circular cylinder
has been described in section 5.1.2. We need to find a method
to convert the circular cylinder to the hyperboloid.

We look at Figure 24. The lean rulings of the hyperboloid
pass through the smallest base curve -

⊙
S1, which is half

way between the top curve -
⊙

St and the bottom curve -⊙
Sb. We consider that the base cylinder for the creation of

the hyperboloid surface should be based on the curve -
⊙

S1

and is created with the method in section 5.1.2. Then, we
try to rotate the ruling by a certain angle to a new position to
satisfy the requirement of the hyperboloid.

We observe that the common base circle of the cylinder
and the hyperboloid could be the Bezier curve in theorem 1.
The tangent plane on which the ruling of the cylinder lays also
contains the tangential interpolation vector of the base circle.
The tangential vector and plane are all perpendicular to the
radius of the base circle.

we convert Figure 25, which is in the real space explana-
tion, to Figure 26. The latter is in the dual space explanation.
In Figure 26, the planen is the tangential plane of the cylin-
der based on

⊙
S1 of Figure 24. The tangential plane and the

x

y

z

e3

S1

o

a(s)

a’(s)

w(s)

Figure 25. The real space
geometrical explanation of
the ruling of the hyperboloid.
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Figure 26. The dual space
explanation of the ruling of
the hyperboloid.

cylinder intersect on the rulinĝk, so the radiuŝr of
⊙

S1 is
perpendicular to the planen. Thenk̂ is rotated to the position
k̂′, which is the ruling of the hyperboloid and is still on the
planen. We only need to rotatêk by anglem to k̂′ about axis
r̂ to create the ruling of the hyperboloid.

Now, we try to determine axiŝr. Since the planen is the
tangent plane of the

⊙
S1 at point T , we draw an axiŝg

through pointT , which is in the intersection line of the plane
containing

⊙
S1 and the planen. Becausêk is the ruling of

the circular cylinder,̂k ⊥ r̂ , ĝ and r̂ are planar, sôk ⊥ ĝ,
ĝ is one of the final level interpolation axes of the cylinder in
creating the particular rulinĝk. So, ĝ is easily created from
the control screws of related cylinder using the dual de Castel-
jau algorithm. Then̂k is a ruling of the related cylinder, it is
easily created as well. Becauseĝ ⊥ r̂ , ĝ ⊥ k̂ , there are two
ways to creatêr from ĝ andk̂. One way is to rotatêg about
axis k̂ at 90◦ to the position̂r. The second way is to use the
following equations to obtain̂r (from r̂ ⊥ k̂, r̂ ⊥ ĝ):

r̂ · k̂ = 0, r̂ · ĝ = 0, then k̂× ĝ = r̂. (32)
We already get̂g andk̂ when the circular cylinder is cre-

ated. Thus, the above two calculations aboutr̂ are easily
solved. After the method is executed for every ruling of the
cylinder, the hyperboloid is formed.

The shape and size of hyperboloids are dependent on the
radius of

⊙
S1 and the anglem. On the plane n, we can rotate

k̂ along r̂ to a new direction̂k′′, in the symmetrical position
of k̂′ about axisk̂. The method for creatinĝk′′ is the same
as that applying to the creation ofk̂′. If m and

⊙
S remain

unchanged,m′ = m, the two hyperboloids are the same. It
demonstrates that the hyperboloid of revolution has two sets
of rulings as in the definition.

Figures 27 and 28 show the computer implementation of
the hyperboloid by using the above method. Figure 27 shows
the interpolated screws. After the interpolated screws are
framed by the skeleton, it appears the shape shown in Fig-
ure 28 which matches the hyperboloid exactly.

6 Presenting the Clipped ruling Segment on
the Screen

It is very important to represent screws as lines on the screen
where the ruled surface is described by using the screw pre-
sentation method. Ding [3] used the line segment algo-
rithm [6] to draw the infinitely long screws on the screen.
However, the screws on the screen are still infinite lines. In-
tuitively, an infinite line must be converted into line segments
to render a ruled surface on the screen. Ravani and Wang [14]
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Figure 27. The ruled surface
of the hyperboloid drawn by
the dual space method.

Figure 28. The ruled sur-
face framed by the hyper-
boloid skeleton.

proposed a method of representing line segments based on the
“centre point” of a line. However, in the paper there is no way
of controlling the location of the “centre point” during the in-
terpolation. Ge and Ravani [5] proposed an intrinsic method
based on the striction curve of the ruled surface. This method
is coordinate frame independent, but there is little control over
the location of the striction curve. Sprott and Ravani [15] pro-
posed to select a reference point on the first control line and
draw a reference line through the point. Then the reference
line is interpolated along with the control screws using the
same displacement matrix to yield the interpolated screws, in
that the control screws and the reference line construct a rigid
body (See [9]). The intersection point can be used to con-
struct the boundary curve for the ruled surface patch. The line
segment is yielded when one specifies a length along the line.
Although this technique gives us some control over the loca-
tion of the boundary curve, the task of setting the reference
line is expensive in both computing time and design time. It
cannot guarantee that the reference points is the central area
of the interpolated screws as well.

We propose a method that shows the central area of the
interpolated ruled surface on the screen. Because the charac-
teristics of the ruled surface are presented in the control area
the intersection points of the control screws and the common
perpendicular axes determine the central area of the surface.
The screw segments which we will draw are determined by
these intersection points which we call the central points of
the screw segments. The screw segments are augmented with
two additional parameters representing the distance along the
line on either side of the center point. The detailed method is
stated as follows.

We review the algebraic form [12, 15] first. If a screw is,
in i-frame with coordinates (̂x ,ŷ ,ẑ ), Ŝ ≡ Si + εSpi, we
can convert it to, in the real space system with coordinates
(x,y, z), Ŝ = S + εS0 using equation (5). The parametric
form of converting a screw into a line in 3-dimensional space
is

l(t) =
S× S0

S · S + tS, (33)

whereR = S×S0
S·S is the point (foot) on the line that is

closest to the origin of the chosen coordinate frame.t is any
real number and selected with two or more different values.
The screw will be drawn as a line in 3-dimensional space by
connecting the pointsl(t) yielded from differentt values.

In Figure 29, we take one of two control screwsX̂1 as an
example to show how to clip an infinite ruling (screw) into
a segment. The two basic control screws are supposedX̂1

andX̂2. The common perpendicular axis of̂X1 andX̂2 is

O R1

R2

ĝ

x̂

x̂

1

2

r

d

d

d(x, y, z)

d(x, y, z)

Figure 29. Drawing the
clipped screw whenX̂1 is
not parallel toX̂2.

O R1

R2

^

g

x1 d(x, y, z)

d(x, y, z)

R2

d

d

x2
^

^

Figure 30. Drawing the
clipped screw whenX̂1 is
parallel toX̂2.

ĝ. PointO is the 3-dimensional coordinate origin. Also,d is
the distance from the intersection pointr(rx, ry, rz) of ĝ and
X̂1 to the selected pointd(x, y, z). Also,R1, R2 andRg (Rg

is not shown in the figure.) are origin radii of̂X1, X̂2 andĝ
respectively. We calculate the intersection pointr of X̂1 and
ĝ. We supposêX1 = a + εa0 and ĝ = g + εg0, then we
haveR1 = (a × a0)/(a · a) andRg = (g × g0)/(g · g)
to calculateR1 andRg. From equation (33), we user =
R1 + ja = Rg + kg to getj andk. Then we can easily get
the intersect pointr.

Based on equation (33), and the common distance equa-
tion, we have

d2 = (x− rx)2 + (y − ry)2 + (z − rz)2, (34)

d(x, y, z) = R1(Rx, Ry, Rz) + ta(ax, ay, az), (35)

wherea(ax,ay,az) is the real part ofX̂1. From equations
(34) and (35), we obtain two different values oft. We substi-
tute these into equation (35) to determine the two top points
d(x, y, x) of the line (screw) segment.

When the two control screwŝX1 andX̂2 are parallel (as
shown in Figure 30), we let the intersection pointr(rx, ry, rx)
become the pointR(Rx, Ry, Rz), which is the origin radius.
Note thatR andr overlie each other, and their overlapping
lines are presented asR1 andR2 in Figure 30. From equations
(34) and (35), along with this characteristic,d becomes simple
to determine:
d2 = (x−Rx)2 +(y−Ry)2 +(z−Rz)2 = t2(a2

x +a2
y +a2

z).
(36)

For any ruling, we just need to find the intersection point
(central point) of the ruling and its displacement axis along
with applying the above method, then the ruling is clipped and
shown as a line segment. For example, to show a Bezier sur-
face segment with more than two control screws on the screen,
we need to clip all rulings of the last level interpolation and
the first and last control screws of the Bezier surface based on
their central points using the above method. Figures 31, 32, 33
and 34 show the computer implementation results.

7 Conclusions
This paper explores the direct or indirect applicabilities of

the dual de Casteljau algorithm for ruled surfaces with partic-
ular shapes. The geometrical characteristics of these shapes
are examined and found to be strongly related to the dual de
Casteljau algorithm. Accordingly, the variations of the dual
de Casteljau algorithm are developed. These variations not
only obey the characteristics of the original dual de Casteljau
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Figure 31. The clipped
screws with two non-parallel
control screws.

Figure 32. The clipped
screws with two parallel con-
trol screws.

Figure 33. The second level
interpolated screws with four
control screws.

Figure 34. The last level in-
terpolated screws (the ruled
surface) with four control
screws.

algorithm, but also are suitable for creating particular ruled
surfaces. The methods discussed are expected to have di-
rect application, for example, in the areas of movie making,
where computer-based generation of successive image frames
of motion sequences is required. Also the methods could be
used in the planing and production of smooth body trajecto-
ries, such as for particular shaped machine parts. The paper
has shown the systematic approach of the dual space drawing
methods of the particular geometric shapes in CAGD design.

Nevertheless, research in this area is far from complete,
and some related topics can be suggested for further study
in the future. The dual de Casteljau algorithm and its varia-
tions are on the basis of the geometrical representation rather
than the functional representation as the real de Casteljau al-
gorithm. Thus, the dual space control screws are more diffi-
cult to manipulate than the real space control points. Although
Ding [3] and Sprott and Ravani [15] have studied to a certain
degree the dual De Boor algorithm, its local control power
needs to be further investigated to be applied to and to im-
prove the dual de Casteljau algorithm.
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