
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

29

Manuscript received August, 2005.
Manuscript reviced September, 2005.

An Approach to Slicing Concurrent Ada Programs Based on
Program Reachability Graphs

Xiaofang Qi, and Baowen Xu

Southeast University, Department of Computer Science & Engineering, 210096 Nanjing, China

Summary
Program slicing is an important technique applied in
many software engineering activities, such as program
debugging, testing, maintenance, measurement,
reengineering and etc. This paper presents an effective
representation for concurrent Ada programs, which is
called task communication reachability graph (TCRG).
Based on TCRG, we can precisely determine various
dependences in concurrent Ada programs and construct a
new dependence graph (MSPDG) which vertex is a pair
composed of program state and statement. Dependence
relation in MSPDG is precise and transitive. By traversing
MSPDG, we can obtain high-precision slice for
concurrent Ada programs. Compared with other high-
precision slicing methods, the slice based on MSDG is
more precise and its efficiency is higher in worst case.
Key words:
dependence analysis, slice, Ada, concurrent programs,
reachability analysis

Introduction

The concept of program slice was originally introduced by
Weiser [1]. A program slice consists of those statements of
a program that potentially affect the values computed at
some point of interest [2]. The task of finding program
slice is called program slicing. In the past twenty years,
program slicing has gradually become a well-known
program analysis technique and has been widely applied in
many engineering activities, such as program
understanding, debugging, testing, maintenance,
measurement, reengineering and etc [1-15]. So far,
methods for slicing sequential programs are established
[2,3], but due to nondeterministic behaviors of concurrent
programs, there exist many difficulties in slicing
concurrent programs, including how to represent

 This work was supported by projects (60373066, 60425206, 60403016)

supported by National Natural Science Foundation of China
Correspondence to: Baowen Xu, Department of Computer Science and
Engineering, Southeast University, 210096 Nanjing, China. Email:
bwxu@seu.edu.cn

executions of concurrent programs effectively, solve
intransitivity problem of dependence relation between
statements and obtain more precise slice efficiently [4-15].

Presently most researches into slicing concurrent programs
employ concurrent program flow graph to represent
executions of concurrent programs, based on this model
determine various dependencies between statements and
construct concurrent program dependence graphs, finally
obtain slice by traversing dependence graphs [4 -15]. As
for intransitivity problem of dependence relation, various
traversing methods are proposed and slices with different
precision are achieved. Cheng, Zhao and Hatcliff did not
consider intransitivity problem, traversed program directly
and hence got low-precision slice [5-9]. To get more
precise slice, we proposed an algorithm to remove some
redundant statements by computing the set of statements
impossible to be included [10]. Krinke and Nanda
determined whether traversed statements could be added
according to control flow information [11-14]. Mohapatra
has computed dynamic slices of concurrent object-oriented
programs based on dependence graph [15].

 In the above methods, the most precise slice can be
obtained by using the method proposed by Krinke and
Nanda (K-N method). Despite of that, there are still some
problems in slicing concurrent programs. Firstly, as
concurrent program flow graph is a simple connection of
all control flow graphs each representing a single
concurrent unit by appending edges representing
interaction between concurrent units, it is difficult to
precisely determine possible synchronization activities
with the model. As we know, synchronization activities
change the control flow of concurrent unit and influence
the precision of various dependence analysis. More over,
since concurrent program flow graph also can not
effectively represent non-deterministic asynchronous
communication sequence, it is inevitable to ignore the
override of the data flow in a single concurrent unit
because of variable redefinition in other concurrent unit.
So it is impossible to analyze data dependence between
concurrent units globally for concurrent program as a
whole. The corresponding concurrent dependence graph is
not only imprecise, but also is a simple connection of all

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

30

dependence graphs each representing a single concurrent
unit with synchronization and interference dependent
edges [10-14]. Another critical issue is that K-N method
has not solved intransitivity problem in essential.
Intransitivity between statements is aroused by not
distinguishing different executions of statements and
hence not guaranteeing that simple connection of a
dependence relation is a feasible dependence sequence. If
transitive dependence is created, more precise slice would
be expected to be obtained.

This paper is focus on computing high-precise slices for
concurrent programs and is an extension of our early work
[16]. Since Ada contains abundant concurrent facilities
[17], research into dependence analysis and slicing
techniques for it can be easily extended to other
concurrent languages. We select Ada as our research
language. In this paper, we present task communication
graph, a concise and effective representation for
concurrent Ada programs. Based on task communication
graph, we construct a new dependence graph (MSPDG)
which vertex is a pair composed of program state and
statement. Dependence in MSPDG is precise and
transitive. By traversing MSPDG, more precise slice will
be obtained more efficiently compared with other high-
precision slicing methods. The rest of sections are
organized as follows. Section 2 introduces task
communication graph, section 3 discusses various
dependences in concurrent Ada programs and proves that
dependences in MSPDG are transitive, section 4 gives our
slicing algorithm based on MSPDG and related work,
section 5 concludes this paper.

2. Task Communication Reachability Graph

Ada supports concurrent programming by task mechanism
[17]. Tasks are concurrent units and main communication
means among them are rendezvous, protected objects and
share variables. As concurrent program flow graph can not
meet the need of high-precise dependence analysis, in this
section we propose a new representation for concurrent
Ada programs, which is called task communication graph.
Task communication graph is obtained by extending
traditional reachability analysis. The cost of reachability
analysis in statement level is high [18], so we simplify the
representation for tasks and get task communication graph
before constructing task communication reachability graph.
For convenience to describe, we first introduce a few
related basic concepts, notations and terminologies.

Definition 2.1 (Directed Graph) A directed graph G is a

pair <N, E>, where N is a finite non-empty set of elements
called nodes, E⊆ N×N, is the set of edges between nodes.

For any edge (n1, n2)∈E, n1 is called a direct predecessor
of n2, and n2 is called a direct successor of n1, denoted by
Pred(n1, n2). A path from n1 to nk in G is a sequence of
nodes P=(n1, …, nk) such that (ni, ni+1)∈E for all 1≤ i< k.
If there is a path from n1 to nk in G, n1 is called a
predecessor of nk, and nk is called a successor of n1,
denoted by Pred∗(n1, nk).Generally, if we do not consider
nest and creation of tasks, each task has only a sequential
execution flow and can be represented by control flow
graph.

Fig. 1 An example program

Definition 2.2 (Control Flow Graph) A control flow
graph is a directed graph Gc=<S, E, sS, sE>, where S is the
node set and represents statements or predicates, E is the
edge set and represents the flow of control between nodes,

procedure MAIN is
protected type SharedInt(InitVal: Integer) is

procedure Write(NewInt: Integer); function Read return Integer; private IntData: Integer := InitVal;
end SharedInt;

task T is

entry P(X: in Integer);
end T;

protected body SharedInt is procedure Write(NewInt: Integer) is

 begin
 IntData := NewInt;
 end Write; function Read return Integer is
 begin
 return IntData;
 end Read;

end SharedInt;

S1 A: SharedInt(1);
S2 B: SharedInt(5);

task body T is

C: Integer;
 begin
S3 C:=10;
S4 A.Write(A.Read +1); // A=A+1
S5 B.Write(10); // B=10
S6 accept P(X: in Interger) do
S7 C:= X+5;
 end P;

 end T;

begin
S8 A.Write(B.Read); // A=B
S9 T.P(A.Read);

end MAIN;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

31

the start node sS and the exit node sE are two special nodes
representing the beginning and the end of the program
respectively.

If every path from node sS to sy passes through node sx, sx
is called a predominator of sy. If every path from sx to sE
passes through sy, sy is called a postdominator of sx.

A concurrent Ada program consists of one or more tasks.
Each task proceeds independently and concurrently
between the points where it interacts with other tasks.
Statements, like new, select, entry call, accept, and access
of protected objects or shared variables indicate such
interactions. In this paper, these statements are called
communication statements, interactions induced by
synchronization or asynchronous communications are
called communication activities, the program points where
communication activities take place are called by
communication points. As some communication
statements, such as entry call and accept with accept body,
correspond to two communication activities, they are
replaced by two statements in order to describe
conveniently. If s is an entry call or accept statement with
accept body, s is replaced with s.s and s.e in corresponding
communication points. For implicit task activation and
termination, two statements, cobegin and coend, are added
in corresponding communication points. Each segment
extracted between communication points is called a task
communication region. Given the CFG of a task, if we
traverse all paths starting from the start node of the task or
a statement that immediately follows a communication
point, and end with communication statements, task
communication regions of the task can be automatically
extracted. If each task communication region is
represented as a node (called TCG-node), edges between
nodes represent the control flow of interactions and the
corresponding directed graph is called task communication
graph.

Definition 2.3 (Task Communication Graph) Task
communication graph is a labeled directed graph GT =<N,
E, nS, F, L>, where N is the set of nodes representing task
communication regions, E⊆N×N, is the set of edges
representing communication activities, L is a function that
assigns a label to each edge, the initial node nS represents
the region where the task initiates its execution, F is the
final nodes where the task may finish its execution.

There are four kinds of labels for communication activities.
For entry E, the starting and ending edges of the entry
call(accept) are labeled with E.cs, E.ce (E.as, E.ae) or
reduced as E.c, E.a for no accept body. The edge is labeled
with t → (td1, td2, …, tdr) if task td1, td2, …, td r are activated
by parent task t in some activation. The edge is labeled

with t ← (td1, td2, …, td r) if master task t must wait for the
terminations of task td1, t d2, …, td r before its termination.
Edges of access of protected objects or shared variables
are labeled with its statement label. Fig 1 Gives an
example of Ada program. Fig 2 shows CFGs and TCGs of
task t1 and t2 of the program.

Suppose that a concurrent Ada program is composed of k
tasks and the main program is regarded as the first task.
The TCG of the ith task is denoted by TCGi = <Ni, Ei, nS

i,
Fi, Li>(1≤i≤k). According to label matching of
communication activities in TCGs, we can make
reachability analysis and construct task communication
reachability graph. In task communication reachability
graph, nodes, which are called TCRG-nodes or marks and
correspond to reachable states of the concurrent program
as a result of a sequence of communication activities, can
be represented by a k-tuple of TCG-nodes where the ith
component is a TCG-node in the ith task, and edges
represent communication activities that make state
transition happen. Reachability analysis is started from an
initial mark denoted by mS where mS = (nS

0, #, … , #) and
indicates that the corresponding task is inactive,
successors are generated according to possible
communication activities. In order to get all possible
states, at one time only one communication activity is
permitted to takes place. For any succeeding mark, it is
different from its direct precedent mark only in variations
of components where the corresponding communication
activity happens. The following lemma 2.1 gives the
generating rule.

Fig. 2 CFG and TCG of task t1 and t2.

Lemma 2.1 Let m and m′ be two marks, m′ is a
succeeding mark of m iff any one of the following

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

32

conditions holds (1≤ i, j, p<k) where k is the number of
tasks:
(1) there exist i and j such that for all p≠i, j, m[p] = m′[p]

and
 (i) (m[i], m′[i])∈Ei and (m[j], m′[j])∈Ej
 (ii) L(m[i], m′[i])=E.cs and L(m[j], m′[j])=E.as, or

L(m[i], m′[i])=E.ce and L(m[j], m′[j])=E.ae, or
L(m[i], m′[i])=E.c and L(m[j], m′[j])=E.a ;

 (2) there exist i, j1, j2, …, jr such that for all p≠i, j1, j2,
…, jr, m[p]=m′[p] and

 (i) (m[i], m′[i])∈Ei and L (m[i], m′ [i])= ti → (tj1, tj2,
…, tjr)

 (ii) For any j in j1, j2, …, jr, m[j]=# ∧ m′ [j]=nS j ;
(3) there exist i, j1, j2, …, jr such that for all p≠i, j1, j2,

…, jr, m[p]=m′[p] and
 (i) (m[i], m′[i])∈Ei and L(m[i], m′ [i])=ti ← (tj1, tj2, …,

tjr)
 (ii) For any j in j1, j2, …, jr, m[j]∈Fj and m′[j]=# ;
(4) there exists i such that for all p≠i, m[p]=m′[p] and
 (m[i], m′[i])∈Ei and L(m[i], m′ [i]) is a statement label.

The four conditions correspond to rendezvous, task
activation, waiting for termination and access of protected
objects or shared variables respectively. Fig3 shows
TCRG of the program in Fig 1.

Fig.3 TCRG of the program in Fig.1 .

By TCRG which describes the flow of communication
activities for concurrent programs as a whole, mutual
control and data flow influences in tasks maybe precisely
analyzed. Once the sequence of communication activities
is established, the behavior of concurrent program is
equivalent to the behavior of a sequential program. From
this point of view, every path from the initial TCRG-node

to a final TCRG-node corresponds to one sequential
program and then TCRG is a representation of a
combination of multiple sequential programs. Therefore,
typical analysis techniques for sequential programs may be
applied in TCRG.

3 Dependence Analysis Based on TCRG

In this section, we discuss dependence analysis based on
TCRG. First we present a few concepts related to
dependence analysis, then analyze various primary
dependences in concurrent Ada programs and construct a
dependence graph which node is a pair of program
reachable state and statement, finally prove that
dependence in the dependence graph is transitive.

3.1 Related concepts and property

In TCRG, due to different sequences of communication
activities one statement may appear in different executions
and might have different control or data flow information.
As mentioned in section 1, not distinguishing different
appearances of one statement in different executions may
result in intransitivity problem. As TCRG is a sequential
flow graph where each mark indicates one program state
associated with communication activities, statement and
mark can form to a pair to represent different executions
of one statement. This pair is called M-S pair, represented
by symbol Λ. We define the function m(Λ) and s(Λ) to
return the state and statement component of Λ. For any
mark m, each statement that appears in some component
(TCG) of m may execute in the state of m and only these
statements can be combined with m, i.e., any combination
of m with other statements is meaningless.

Based on the concept of M-S pair, we define executable
sequence to represent an execution of a concurrent
program.

Definition 3.1 (Executable Sequence) Given the TCRG
of a concurrent Ada program, GT, an executable sequence
in GT is an ordered sequence of M-S pair (Λ1, Λ2, …, Λn)
which forms a valid execution of the program.

All executable sequences in GT is denoted by ES(GT). If
one sequence of M-S pair is a subsequence of some
executable sequence in ES(GT), it is called a feasible
sequence of the program. In Fig 3, l1=(<m0, start t1>, <m0,
S1>, <m0, S2>, <m0, cobegin>, < m1, start t2>, <m1, S8>,
<m1, S3>, <m3, S4>, <m5, S5>, <m6, S6>, <m6, S9>,
<m7, S7>, <m8, coend>）is an executable sequence of the
example. If we pick up some nodes in l1 and form a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

33

sequence (<m0, S1>, <m3, S4>, <m7, S7>) it is a feasible
sequence.

In TCRG, program states are tightly associated with
communication activities. Once a communication activity
takes place in some program state, the corresponding
program state will change. In some program states there
exist multiple possible communication activities, so
different program states will be reached after different
communication activities. If one communication activity,
denoted by s, happen in the state of m, we denote the
generated state by Succ(m, s). In the analysis of data flow,
only the data flow information related to s will reach
Succ(m, s).

According to the above definitions, we can get the
following property of feasible sequences.

Property 3.1 Given a concurrent program consisting of k
tasks, let l be an ordered sequence of M-S pairs (Λ1, Λ2, …,
Λn), l is a feasible sequence of the program iff
（1）for all i, 1≤ i<n, either

(i) m(Λi)=m(Λi+1) or Pred*(m(Λi), m(Λi+1)) if (Λi) is
not a communication statement

or (ii)Succ(m(Λi),s(Λi))=m(Λi+1) or Pred*(Succ(m(Λi),
s(Λi)), m(Λi+1)) if s(Λi) is a communication
statement;

(2) for all t in the program,
l⎜t = (Δ1, Δ2, …, Δj) ⇒ ∀1≤ p< j-1: Pred*(s(Δp),

s(Δp+1))
where l⎜t is the subsequence of l in which all M-S pairs,
which statement components do not appear in task t, have
been removed.

3.2 Dependence Analysis

In General, there are two types of dependences, control
dependence and data dependence. Informally, let Λ1, Λ2 be
two M-S pairs, Λ1 is control dependent on Λ2 if whether
Λ1 can be executed or not depends on the execution of Λ2,
and Λ1 is data dependent on Λ2 if the execution of Λ1 use
variables defined in Λ2. According to the cause of
dependence, dependences in concurrent Ada programs can
be further classified into common control and data
dependence that exist like in sequential programs, intra
and inter task synchronization control dependences and
inter task data dependence.

 Common control and data dependence, which are also
called control and data dependence, happen in one task.

Definition 3.2 (Control Dependence) A M-S pair Λ1 is
control dependent on M-S pair Λ2, denoted by CD(Λ2, Λ1),
if the following hold,

(1) (Λ2, Λ1) is a feasible sequence;
(2) s(Λ2) is a predicate statement, s(Λ1) and s(Λ2) are

statements from one task;
(3) there is a path P from s(Λ2) to s(Λ1) in the

corresponding CFG such that s(Λ1) is a
postdominator of each s≠ s(Λ2) in P and s(Λ1) is not a
postdominator of s(Λ2).

Definition 3.3 (Data Dependence) A M-S pair Λ1 is data
dependent on M-S pair Λ2, denoted by DD(Λ2, Λ1), if
there exists a variable v such that the following hold,
(1) s(Λ2) and s(Λ1) are statements from one task;
(2) Λ2 defines v and Λ1 uses v;
(3) there exists an executable sequence from Λ1 to Λ2 on

which v is not redefined.

In addition to the above dependences, there are other
dependences induced by inter task communication
activities. Rendezvous alternates the control flow of a
program. In some scheduling, rendezvous may not be
triggered or finished, which will make some of the
succeeding statements wait until other tasks abort it.
Consequently, whether these succeeding statements may
execute or not depends on the execution of those
statements that take part in the rendezvous. This
dependence is called intra-task synchronization
dependence.

Definition 3.4 (Intra-task Synchronization
Dependence) A M-S pair Λ1 is intra-task synchronization
dependent on M-S pair Λ2, denoted by SD(Λ2, Λ1), if the
following hold,
(1) s(Λ2) is an entry call, accept statement ;
(2) s(Λ2) is a predominator of s(Λ1) in the corresponding

CFG.

There exist two inter-task synchronization dependences.
One is caused by rendezvous. Entry call and accept
statements are mutually dependent on each other. The
other is caused by task activation or termination. As task
termination and implicit activation have no obvious
dependence between statements, they can be ignored.
Only explicit task activation is considered.

Definition 3.5 (Inter-task Synchronization
Dependence) A M-S pair Λ1 is inter-task synchronization
dependent on M-S pair Λ2, denoted by TSD (Λ2, Λ1), if the
following hold,
(1) s(Λ1) is an entry call and s(Λ2) is an accept statement

or vice versa;
(2) s(Λ1) is a task-begin statement and s(Λ2) is a new

statement that dynamically creates the corresponding
task.

In definition 3.5, considering that multiple entry call

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

34

statements might rendezvous with one accept statement in
some program state, in each possible rendezvous the
accept statement needed to be assigned a serial number for
avoiding unnecessary indirect dependence between these
entry call statements.

Inter task data dependence is generated as a result of data
communications between tasks, such as rendezvous with
parameters, access of shared variables and protected
objects. For rendezvous with parameters, actual
parameters can be substituted for formal parameters as
every rendezvous is instantiated in TCRG. For access of
protected objects, each data member is regarded as a
variable and the set of definition and use of data members
are summarized for the computation of inter task data
dependence.

Definition 3.6 (Inter-task Data Dependence) A M-S pair
Λ1 is data dependent on M-S pair Λ2, denoted by TDD (Λ2,
Λ1), if there exists a variable v such that the following
hold,
(1) s(Λ2) and s(Λ2) are statements from different tasks;
(2) Λ2 defines v and Λ1 uses v;
(3) there exists an executable sequence from Λ1 to Λ2 on

which v is not redefined.

Based on the above definitions, we can define a
dependence graph where nodes are M-S pairs for
concurrent programs.

Definition 3.7 (M-S Pair Dependence Graph) Given the
TCRG of a concurrent Ada program, a M-S Pair
Dependence Graph is a directed graph GD= <M, S, MS,
E>, where M is the set of TSRG-nodes, S is the set of
statements, MS is the set of nodes, MS⊆M×S, E is the set
of edges, E={(Λi, Λj)| dep(Λi, Λj), Λi, Λj∈MS, dep∈{CD,
DD, SD, TSD, TDD}}.

As some executable sequences of a concurrent program
have completely identical dependences except that
program states of a few M-S pairs are different. Such
executable sequences are called equivalent executable
sequences. As we know, if the sequence of M-S pairs
associated with communication statements is established,
statements, which are not communication statements, can
be executed in different program states generated as a
consequence of communication activities that happen in
other tasks. In such situation, the formed executable
sequences are equivalent because it is impossible that
statements, which are not communication statements, are
directly dependent on communication statements from
other tasks. Accordingly, only one of equivalent
executable sequences to analyze is needed to be analyzed.
In order to use TCRG conveniently, we choose those
executable sequences where statements that are not

communication statements are combined with the same
program states as those of the immediate succeeding
communication statement. In Fig 3, if we substitute <m3,
S3> for <m1, S3> in l1, we can get another executable
sequence l2=(< m0, start t1>, <m0, S1>, <m0, S2>, <m0,
cobegin>, < m1, start t2>, <m1, S8>, <m3, S3>, <m3, S4>,
<m5, S5>, <m6, S6>, <m6, S9>, <m7, S7>, <m8,
coend>>. As S3 is not a communication statement, l1 and
l2 is equivalent. And l2 is chosen to be analyzed.

Control and synchronization dependences can be
obtained by combining predicate and synchronization
statements with the corresponding program states in
TCRG. Data flow information, such as reach definition of
variables, will be computed hierarchically. Along TCRG,
we first select the task communication regions where the
communication activity may happen, then compute their
flow information along the subgraphs corresponding to
the TCGs and combine it with program states, finally let
the information flow into the succeeding TCRG-node
related to communication activity. Based on the above
information, data dependence can be easily determined.

Fig4 MSPDG of the program in Fig.1 .

In contrast to conventional concurrent program
dependence graph, MSPDG is built on TCRG.
Dependence in concurrent programs is analyzed globally,
so it is not only precise but also transitive. Below, we
define transitive dependence and then give its proof.

Definition 3.8 (Transitive Dependence) Given the
MSPDG of a concurrent Ada program, a M-S pair Λy is

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

35

transitive dependent on M-S pair Λx, denoted by Dep∗ (Λx,
Λy), if the following hold,
(1) there exists a path l = (Λx =Λ1, Λ2, …, Λy =Λn)in GD;
(2) l is a feasible sequence of the program.

Theorem 3.1 The dependence relation in MSPDG is
transitive.

Proof. Let l=(Λx=Λ1, Λ2, …, Λy =Λn) be an arbitrary path
in MSPDG, according to definition 3.8, if we prove
theorem 3.1, we only need to show that l is a feasible
sequence of the program. As l is a path in MSPDG,
according to the above definitions of dependence, it is
easy to get l satisfies the first requirement of property 3.1.
Below, we show it is also satisfies the second.

Let t be an arbitrary task of the program. When l⎜t = (Δ1,
Δ2, …, Δj) is not empty, for all i, 1≤ i<j-1:

(i) if Δi is adjacent to Δi+1 in l, i.e., Δi+1 is dependent on
Δi, the dependence is an intra task dependence
because s(Δi) and s(Δi+1) are from one task t. From
the definitions of intra task dependence, Pre*(s(Δi),
s(Δi+1)) will be derived;

(ii) if Δi is not adjacent to Δi+1 in l, i.e., Δi+1 is not
dependent on Δi, let the path from Δi to Δi+1 in l be
(Δi, Λu, …, Λu+k, Δi+1), since s(Λu) and s(Λu+k) are
not from task t, s(Δi), s(Λu), s(Λu+k) and s(Δi+1)
should be communication statements. From the
definitions of inter task dependences
Pre*(Succ(m(Δi), s(Δi)), m(Δi+1)) can be derived. Let
(ni, nu, …, nu+k, ni+1) be a sequence which is formed
by extracting the TCG-nodes in task t from (Δi, Λu,
…, Λu+k, Δi+1). Then we can find a path such that (ni,
nu, …, nu+k, ni+1) is a subsequence of the path.
According to the construction of TCG Pre*(s(Δi),
s(Δi+1)) can be obtained.

As l satisfies property 3.1, l is a feasible sequence.
Therefore, theorem 3.1 holds. �

4 Slicing Concurrent Ada Programs

In this section, we first present an algorithm for slicing
concurrent Ada programs based on MSPDG and apply it
in a case, then compare it with other slicing algorithms in
precision and efficiency.

4.1 Slicing Algorithm Based On MSPDG

Let s be a statement, as it might execute in one or multiple
program states, it will combine with these program states

and form one or multiple M-S pairs. We denote the
corresponding set by MS(s).

Definition 4.1 (Slice) Given a statement s, the slice of s is
Slice(s)={ s′ | Dep*(<m′, s′>, <m, s>), <m, s>∈MS(s)}.

Theorem 3.1 shows that dependence relation in MSPDG is
transitive. Therefore, based on it, computation of slice is a
simple graph traversing problem. Fig 5 gives the
corresponding algorithm.

As MSPDG is built on TCRG, which overcomes the
drawbacks of traditional concurrent program flow graph,
dependence in concurrent programs is analyzed globally.
Hence, it is more precise than traditional dependence
analysis. Based on MSPDG, high-precision slice can be
obtained.

Fig. 5 An algorithm of slicing based on MSPDG

To compare with other slicing methods easily, we classify
intransitivity problems into two types. The first type refers
to the problem that dependence relation is intransitive
because dependence sequence does not conform to the
requirement of control flow, i.e., it is not a subsequence of
a possible execution. In the program of Fig 1,
S5→S8→S4 is a dependence sequence, but S4 is not
dependent on S5 because it is not a subsequence of a
possible execution. The second type refers to the problem
that dependence relation is still intransitive although
dependence sequence is a subsequence of a possible
execution. In the program of Fig 1, S1→S4→S7 is a
dependence sequence and it is a subsequence of a possible
execution, however, there exits no execution in which S7
is dependent on S1.

Fig 4 shows the MSPDG of the example. For the first type
of intransitivity problem, if we compute the slice of S4
based on Fig4, we will start from <m1, S4> and <m3, S4>
and traverse it and get {<m1, S4>, <m0, S1>, <m0, start
t1>, <m0, start t2>, <m3, S4>, <m0, cobegin>, <m1, S8>,
<m0, S2>}. After removing the state component and

Input: MSPDG, slicing criterion s and MS(s)
Output: Slice(s) // the slice of s
Initialization: W = MS(s)
1 while W≠Φ do
2 Remove the next element Λfrom W;
3 for each (Λ′, Λ) in MSPDG do
4 if Λ′ is not visited
5 mark Λ′ visited, W = W∪{Λ′};
6 Slice(s) = Slice(s) ∪ {s(Λ′)};
 end if

end for
end while.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

36

additional statements, like cobegin, we can get
Slice(S4)={ start t1, start t2, S1, S2, S4, S8 } which does
not include S5. Observe M-S pair dependence sequences
<m2, S5>→<m4, S8> and <m1, S8>→<m3, S4>, we can
find that distinguishing different execution of S8
effectively cut the intransitive dependence of
S5→S8→S4. For the second type of intransitivity problem,
if we compute the slice of S7, we traverse Fig 4 starting
from <m7, S7>, and get {<m7, S7>, <m2, S8>, <m0, S2>,
<m0, start t1>, <m3, S4>, <m0, start t2>, <m0, cobegin>,
<m1, S8>, <m4, S8>, <m2, S5>, <m6, S6>, <m6, S9>}.
Then we get Slice(S7)={ start t1, start t2, S2, S4, S5, S6,
S7, S8, S9} which does not include S1. Observe M-S pair
dependence sequences <m0, S1>→<m1, S4> and <m3,
S4>→<m7, S7>, we may find that distinguishing different
execution of S4 cut the intransitive dependence of
S1→S4→S7.

Let P be a concurrent program with n statements, k tasks,
and c1 entry call and accept statements, c2 statements of
access of protected objects, shared variables and
dynamical task creation. As every entry call and accept
statement corresponds to two communication points, every
statement of access of protected objects, shared variables
or dynamical task creation corresponds to one
communication point, every task corresponds to one task
entry program point, and other two communication points,
i.e., the program points where the task waits for activation
and termination, the total number of TCG-nodes is (2c1+
c2+3k) in the worst case according to the construction of
TCG. Let the number of TCG-nodes from every task be p1,
p2, … , pk, the number of the generated TCRG-nodes is
p1×p2×…×pk in the worst case. According to Churcy
inequality, p1×p2×…×pk≤ ((2c1+ c2+3k)/k)k. Consequently,
the number of TCRG-nodes is up to ((2c1+c2)/k+3)k at
most. Hence, the number of nodes in MSPDG is n((2c1+
c2)/k +3)k, and the worst complexity of slicing based on
MSPDG is O(n2((2c1+c2)/k +3)2 k).

4.2 Comparison with related methods

 Methods based on concurrent program dependence graph
can not address the second type of intransitivity problem
because of imprecision of data flow analysis [5-14]. For
the first type of intransitivity problem, different traversing
methods may lead to different precision. Not considering
intransitivity problem, Cheng’s algorithm simply traverses
PDN, program dependence net for concurrent Ada
programs, Zhao’s and Hatcliff’s algorithm does so for
concurrent Java programs [6-9]. Consequently, their
methods do not solve the first intransitivity problem
completely and precision of slice is low. We have present
algorithms for slicing concurrent Ada programs [10]. This

method can remove some redundant statements by
computing the set of statements impossible to be included
according to the information of control flow of all
statements in dependence sequence. Since the set is a
conservative result, our algorithm addresses the first
intransitivity problem partially and the precision of the
slice is increased in some extent. Krinke and Nanda
determined whether traversed statements could be added
according to precise control flow information. Their
algorithms guarantee that each dependence sequence is a
subsequence of a possible execution. So Krinke and
Nanda’s methods thoroughly address the first intransitivity
problem. However, the precision of the slice obtained by
their methods is still lower than our method based on
MSPDG in that our method in this paper addresses two
types of intransitivity problems.

Table 1: Comparison of Various Slicing Methods

For convenience, table 1 compares the above slicing
algorithms. In table 1, n indicates the number of
statements in the program, k indicates the number of
concurrent units, and c indicates the number of
communication statements (c=c1+c2). From table 1, we
can find that the most precise slice can be computed by
our method proposed in this paper. Further, as c is much
less n in common case, the efficiency of our method is
higher in worst case than Krinke and Nanda’s method..

5 Conclusions

In this paper, we have proposed task communication
reachability graph for representing executions of
concurrent Ada programs. Based on TCRG, we precisely
determine various dependences in concurrent Ada
programs and construct M-S pair dependence graph. As
dependence relation in MSPDG is precise and transitive,
more precise slice will be obtained more efficiently by

Methods

Address
the first
problem

 Address
the

second
problem

Precision Time
Complexity

Cheng,
Zhao,
and

Hatcliff

No No Low O(n2)

Chen,
Xu

Partially
Address No Middle O(n4)

Krinke,
Nanda Yes No High O(n2(n/k)2k)

Our
method Yes Yes Highest O(n2((2c1+

c2)/k +3)2 k)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

37

traversing MSPDG in contrast to other high-precision
slicing methods. However, due to intrinsic complexity of
concurrent programs, concurrent Ada programs that can
be analyzed with our method in this paper should not
include recursive procedures with communication
activities and tasks with unbounded number [19].Although
our method can get more precise slices than other previous
methods, its efficiency is needed to improve. In future
work, we plan to realize this goal along two ways. One is
to develop a configurative method that combines strengths
of our method and traditional polynomial algorithms and
compute slices with different precision according to
different requirements. The other is to reduce TCRG with
keeping transitive property.

References
[1] Weiser, M. Program Slicing. IEEE Transactions on Software

Engineering, 1984, 16(5): 498-509.
[2] Tip, F. A survey of program slicing techniques. Journal of

programming language, 3(3), 1995.
[3] Horwitz, S. Interprocedural slicing using dependence graphs.

ACM Transactions on Programming Languages and Systems,
1990, 12(1): 26-60.

[4] Chen Z.Q, Xu B.W, Zhao J. J. An overview of methods for
dependence analysis of concurrent programs. ACM
SIGPLAN Notices, 2002, 37 (8): 45–52.

[5] Cheng, J. Task dependence nets for concurrent systems with
Ada 95 and its applications. ACM TRI-Ada International
Conference, St. Louis, Missouri, USA: ACM Press, 1997,
67-78.

[6] Zhao, J.J. Multithreaded dependence graphs for concurrent
Java programs. International Symposium on Software
Engineering for Parallel and Distributed Systems, Los
Angeles, California, USA: IEEE CS press, 1999, 13-23.

[7] Zhao, J.J, Li, B.X. Dependence based representation for
concurrent Java programs and it’s application to slicing.
International Symposium on Future Software Technology
2004 (ISFST2004), Xian, China: 105–112.

[8] Hatcliff, J. A Formal Study of Slicing for Multi-threaded
Programs with JVM Concurrency Primitives. International
Symposium on Static Analysis 1999(SAS'99), September,
Venice, Italy, LNCS1694: 1-18.

[9] Ranganath V.P, Hatcliff, J. Pruning the Detection of
Interference and Ready Dependence for Slicing Concurrent
Java Programs. Technical report, Computing and
Information Sciences Department, Kansas State University,
March 2005.

[10] Chen Z.Q, Xu B.W, Zhao J. J, Yang H.J. Static Dependency
Analysis for Concurrent Ada 95 Programs. Ada-Europe 2002:
219-230.

[11]Krinke, J. Static slicing of threaded program. ACM
SIGPLAN Notices, 1998, 33(7): 35-42.

[12]Krinke, J. Context-Sensitive Slicing of Concurrent Programs.
ACM SIGSOFT Symposium on Foundations of Software
Engineering 2003 held jointly with 9th European Software
Engineering Conference (ESEC/FSE 2003), Helsinki,
Finland, USA: ACM press, 2003, 178-187.

[13]Nanda, M.G, Ramesh, S. Slicing concurrent programs. ACM
SIGSOFT Software Engineering Notes, 2000, 25(5): 180-
190.

[14] Nanda, M.G. Slicing Concurrent Java Programs: Issues and
Solutions. Ph.D. thesis, Indian Institute of Technology,
Bombay, October 2001.

[15] Mohapatra, D. P, Mall, R, Kumar, R. Computing dynamic
slices of concurrent object-oriented programs. J. Information
and Software Technology, 2005, 47(12): 805-817.

 [16] Qi, X. F, Xu, B.W. Dependence analysis of concurrent
programs based on reachability graph and its applications.
International Conference on Computational Science 2004
(ICCS 2004), May, Poland. LNCS3036: 405-408.

[17] ISO/IEC 8652: 1995(E). Ada reference manual-language
and standard libraries.

[18] Pezze, M, Taylor, R. N, Young, M. Graph models for
reachability analysis of concurrent programs. ACM
Transactions on Software Engineering and Methodology,
1995, 4(2): 171-213.

[19] Ramalingam, G. Context-Sensitive Synchronization-
Sensitive Analysis is Undecidable. ACM Transactions on
Programming Languages and Systems, 2000, 22(2): 416-
430.

Xiaofang Qi is a Ph.D. Candidate in the
Department of Computer Science &
Engineering at Southeast University. Ms.
Qi’s research focus is analysis
techniques of concurrent programs. She
has investigated issues in dependence
analysis of program understanding, and
slicing, etc.

Baowen Xu is a professor in the
Department of Computer Science &
Engineering at Southeast University.
Dr. Xu's research focus is
programming languages and
Implementations, software testing
and quality assurance technology,

software reengineering, and intelligent software
technology.

