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Summary    
Program slicing is an important technique applied in 
many software engineering activities, such as program 
debugging, testing, maintenance, measurement, 
reengineering and etc. This paper presents an effective 
representation for concurrent Ada programs, which is 
called task communication reachability graph (TCRG). 
Based on TCRG, we can precisely determine various 
dependences in concurrent Ada programs and construct a 
new dependence graph (MSPDG) which vertex is a pair 
composed of program state and statement. Dependence 
relation in MSPDG is precise and transitive. By traversing 
MSPDG, we can obtain high-precision slice for 
concurrent Ada programs. Compared with other high-
precision slicing methods, the slice based on MSDG is 
more precise and its efficiency is higher in worst case. 
Key words: 
dependence analysis, slice, Ada, concurrent programs, 
reachability analysis 

Introduction 

The concept of program slice was originally introduced by 
Weiser [1]. A program slice consists of those statements of 
a program that potentially affect the values computed at 
some point of interest [2]. The task of finding program 
slice is called program slicing. In the past twenty years, 
program slicing has gradually become a well-known 
program analysis technique and has been widely applied in 
many engineering activities, such as program 
understanding, debugging, testing, maintenance, 
measurement, reengineering and etc [1-15]. So far, 
methods for slicing sequential programs are established 
[2,3], but due to nondeterministic behaviors of concurrent 
programs, there exist many difficulties in slicing 
concurrent programs, including how to represent 
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executions of concurrent programs effectively, solve 
intransitivity problem of dependence relation between 
statements and obtain more precise slice efficiently [4-15]. 

Presently most researches into slicing concurrent programs 
employ concurrent program flow graph to represent 
executions of concurrent programs, based on this model 
determine various dependencies between statements and 
construct concurrent program dependence graphs, finally 
obtain slice by traversing dependence graphs [4 -15]. As 
for intransitivity problem of dependence relation, various 
traversing methods are proposed and slices with different 
precision are achieved. Cheng, Zhao and Hatcliff did not 
consider intransitivity problem, traversed program directly 
and hence got low-precision slice [5-9]. To get more 
precise slice, we proposed an algorithm to remove some 
redundant statements by computing the set of statements 
impossible to be included [10]. Krinke and Nanda 
determined whether traversed statements could be added 
according to control flow information [11-14]. Mohapatra 
has computed dynamic slices of concurrent object-oriented 
programs based on dependence graph [15 ].  

 In the above methods, the most precise slice can be 
obtained by using the method proposed by Krinke and 
Nanda (K-N method). Despite of that, there are still some 
problems in slicing concurrent programs. Firstly, as 
concurrent program flow graph is a simple connection of 
all control flow graphs each representing a single 
concurrent unit by appending edges representing 
interaction between concurrent units, it is difficult to 
precisely determine possible synchronization activities 
with the model. As we know, synchronization activities 
change the control flow of concurrent unit and influence 
the precision of various dependence analysis. More over, 
since concurrent program flow graph also can not 
effectively represent non-deterministic asynchronous 
communication sequence, it is inevitable to ignore the 
override of the data flow in a single concurrent unit 
because of variable redefinition in other concurrent unit. 
So it is impossible to analyze data dependence between 
concurrent units globally for concurrent program as a 
whole. The corresponding concurrent dependence graph is 
not only imprecise, but also is a simple connection of all 
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dependence graphs each representing a single concurrent 
unit with synchronization and interference dependent 
edges [10-14]. Another critical issue is that K-N method 
has not solved intransitivity problem in essential. 
Intransitivity between statements is aroused by not 
distinguishing different executions of statements and 
hence not guaranteeing that simple connection of a 
dependence relation is a feasible dependence sequence. If 
transitive dependence is created, more precise slice would 
be expected to be obtained. 

This paper is focus on computing high-precise slices for 
concurrent programs and is an extension of our early work 
[16]. Since Ada contains abundant concurrent facilities 
[17], research into dependence analysis and slicing 
techniques for it can be easily extended to other 
concurrent languages. We select Ada as our research 
language. In this paper, we present task communication 
graph, a concise and effective representation for 
concurrent Ada programs. Based on task communication 
graph, we construct a new dependence graph (MSPDG) 
which vertex is a pair composed of program state and 
statement. Dependence in MSPDG is precise and 
transitive. By traversing MSPDG, more precise slice will 
be obtained more efficiently compared with other high-
precision slicing methods. The rest of sections are 
organized as follows. Section 2 introduces task 
communication graph, section 3 discusses various 
dependences in concurrent Ada programs and proves that 
dependences in MSPDG are transitive, section 4 gives our 
slicing algorithm based on MSPDG and related work, 
section 5 concludes this paper. 

2. Task Communication Reachability Graph 

Ada supports concurrent programming by task mechanism 
[17]. Tasks are concurrent units and main communication 
means among them are rendezvous, protected objects and 
share variables. As concurrent program flow graph can not 
meet the need of high-precise dependence analysis, in this 
section we propose a new representation for concurrent 
Ada programs, which is called task communication graph. 
Task communication graph is obtained by extending 
traditional reachability analysis. The cost of reachability 
analysis in statement level is high [18], so we simplify the 
representation for tasks and get task communication graph 
before constructing task communication reachability graph. 
For convenience to describe, we first introduce a few 
related basic concepts, notations and terminologies. 

 

Definition 2.1 (Directed Graph) A directed graph G is a 

pair <N, E>, where N is a finite non-empty set of elements 
called nodes, E⊆ N×N, is the set of edges between nodes.  

For any edge (n1, n2)∈E, n1 is called a direct predecessor 
of n2, and n2 is called a direct successor of n1, denoted by 
Pred(n1, n2). A path from n1 to nk in G is a sequence of 
nodes P=(n1, …, nk) such that (ni, ni+1)∈E for all 1≤ i< k. 
If there is a path from n1 to nk in G, n1 is called a 
predecessor of nk, and nk is called a successor of n1, 
denoted by Pred∗(n1, nk).Generally, if we do not consider 
nest and creation of tasks, each task has only a sequential 
execution flow and can be represented by control flow 
graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 An  example program 

Definition 2.2 (Control Flow Graph) A control flow 
graph is a directed graph Gc=<S, E, sS, sE>, where S is the 
node set and represents statements or predicates, E is the 
edge set and represents the flow of control between nodes, 

procedure MAIN is
protected type SharedInt(InitVal: Integer) is 

procedure Write(NewInt: Integer);                    function Read return Integer;               private              IntData: Integer := InitVal; 
end SharedInt; 

 
task T is 

entry P(X: in Integer); 
end T; 

 
protected body SharedInt is                    procedure Write(NewInt: Integer) is 

                      begin 
                           IntData := NewInt; 
                      end Write;                    function Read return Integer is 
                      begin 
                            return IntData; 
 end Read; 

end SharedInt; 
 

S1            A: SharedInt(1);                 
S2            B: SharedInt(5); 

 
task body T is 

C: Integer; 
                begin                          
S3                  C:=10; 
S4                  A.Write(A.Read +1);  // A=A+1 
S5                  B.Write(10);               // B=10 
S6                  accept P(X: in Interger) do 
S7                       C:= X+5; 
                       end P; 

           end T;                        
  

begin                             
S8            A.Write(B.Read);             // A=B      
S9            T.P(A.Read);                   

end MAIN;                       
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the start node sS and the exit node sE are two special nodes 
representing the beginning and the end of the program 
respectively.  

If every path from node sS to sy passes through node sx, sx 
is called a predominator of sy. If every path from sx to sE 
passes through sy, sy is called a postdominator of sx. 

A concurrent Ada program consists of one or more tasks. 
Each task proceeds independently and concurrently 
between the points where it interacts with other tasks. 
Statements, like new, select, entry call, accept, and access 
of protected objects or shared variables indicate such 
interactions. In this paper, these statements are called 
communication statements, interactions induced by 
synchronization or asynchronous communications are 
called communication activities, the program points where 
communication activities take place are called by 
communication points. As some communication 
statements, such as entry call and accept with accept body, 
correspond to two communication activities, they are 
replaced by two statements in order to describe 
conveniently. If s is an entry call or accept statement with 
accept body, s is replaced with s.s and s.e in corresponding 
communication points. For implicit task activation and 
termination, two statements, cobegin and coend, are added 
in corresponding communication points. Each segment 
extracted between communication points is called a task 
communication region. Given the CFG of a task, if we 
traverse all paths starting from the start node of the task or 
a statement that immediately follows a communication 
point, and end with communication statements, task 
communication regions of the task can be automatically 
extracted. If each task communication region is 
represented as a node (called TCG-node), edges between 
nodes represent the control flow of interactions and the 
corresponding directed graph is called task communication 
graph. 

Definition 2.3 (Task Communication Graph) Task 
communication graph is a labeled directed graph GT =<N, 
E, nS, F, L>, where N is the set of nodes representing task 
communication regions, E⊆N×N, is the set of edges 
representing communication activities, L is a function that 
assigns a label to each edge, the initial node nS represents 
the region where the task initiates its execution, F is the 
final nodes where the task may finish its execution. 

There are four kinds of labels for communication activities. 
For entry E, the starting and ending edges of the entry 
call(accept) are labeled with E.cs, E.ce (E.as, E.ae) or 
reduced as E.c, E.a for no accept body. The edge is labeled 
with t → (td1, td2,  …, tdr) if task td1, td2, …, td r are activated 
by parent task t in some activation. The edge is labeled 

with t ← (td1, td2, …, td r) if master task t must wait for the 
terminations of task td1, t d2, …, td r before its termination. 
Edges of access of protected objects or shared variables 
are labeled with its statement label. Fig 1 Gives an 
example of Ada program. Fig 2 shows CFGs and TCGs of 
task t1 and t2 of the program. 

Suppose that a concurrent Ada program is composed of k 
tasks and the main program is regarded as the first task. 
The TCG of the ith task is denoted by TCGi = <Ni, Ei, nS

i, 
Fi, Li>(1≤i≤k). According to label matching of 
communication activities in TCGs, we can make 
reachability analysis and construct task communication 
reachability graph. In task communication reachability 
graph, nodes, which are called TCRG-nodes or marks and 
correspond to reachable states of the concurrent program 
as a result of a sequence of communication activities, can 
be represented by a k-tuple of TCG-nodes where the ith 
component is a TCG-node in the ith task, and edges 
represent communication activities that make state 
transition happen. Reachability analysis is started from an 
initial mark denoted by mS where mS = (nS

0, #, … , #) and 
# indicates that the corresponding task is inactive, 
successors are generated according to possible 
communication activities. In order to get all possible 
states, at one time only one communication activity is 
permitted to takes place. For any succeeding mark, it is 
different from its direct precedent mark only in variations 
of components where the corresponding communication 
activity happens. The following lemma 2.1 gives the 
generating rule. 

 

Fig. 2   CFG and TCG of  task t1 and t2. 

Lemma 2.1 Let m and m′ be two marks, m′ is a 
succeeding mark of m iff any one of the following 
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conditions holds (1≤ i, j, p<k) where k is the number of 
tasks: 
(1) there exist i and j such that for all p≠i, j, m[p] = m′[p] 

and 
        (i) (m[i], m′[i])∈Ei and (m[j], m′[j])∈Ej 
        (ii) L(m[i], m′[i])=E.cs and L(m[j], m′[j])=E.as, or 

L(m[i], m′[i])=E.ce and L(m[j], m′[j])=E.ae, or 
L(m[i], m′[i])=E.c and L(m[j], m′[j])=E.a ;  

  (2) there exist i, j1, j2, …, jr such that for all p≠i, j1, j2, 
…, jr, m[p]=m′[p] and 

        (i) (m[i], m′[i])∈Ei and L (m[i], m′ [i])= ti → (tj1, tj2, 
…, tjr) 

        (ii) For any j in j1, j2, …, jr, m[j]=# ∧ m′ [j]=nS j ; 
(3) there exist i, j1, j2, …, jr such that for all p≠i, j1, j2, 

…, jr, m[p]=m′[p] and 
        (i) (m[i], m′[i])∈Ei and L(m[i], m′ [i])=ti ← (tj1, tj2, …, 

tjr) 
       (ii) For any j in j1, j2, …, jr, m[j]∈Fj and m′[j]=# ; 
(4) there exists i such that for all p≠i, m[p]=m′[p] and 
     (m[i], m′[i])∈Ei and L(m[i], m′ [i]) is a statement label. 

The four conditions correspond to rendezvous, task 
activation, waiting for termination and access of protected 
objects or shared variables respectively. Fig3 shows 
TCRG of  the program in Fig 1. 

 

Fig.3  TCRG of  the program in Fig.1 . 

By TCRG which describes the flow of communication 
activities for concurrent programs as a whole, mutual 
control and data flow influences in tasks maybe precisely 
analyzed. Once the sequence of communication activities 
is established, the behavior of concurrent program is 
equivalent to the behavior of a sequential program. From 
this point of view, every path from the initial TCRG-node 

to a final TCRG-node corresponds to one sequential 
program and then TCRG is a representation of a 
combination of multiple sequential programs. Therefore, 
typical analysis techniques for sequential programs may be 
applied in TCRG. 

3 Dependence Analysis Based on TCRG  

In this section, we discuss dependence analysis based on 
TCRG. First we present a few concepts related to 
dependence analysis, then analyze various primary 
dependences in concurrent Ada programs and construct a 
dependence graph which node is a pair of program 
reachable state and statement, finally prove that 
dependence in the dependence graph is transitive. 

3.1 Related concepts and property 

In TCRG, due to different sequences of communication 
activities one statement may appear in different executions 
and might have different control or data flow information. 
As mentioned in section 1, not distinguishing different 
appearances of one statement in different executions may 
result in intransitivity problem. As TCRG is a sequential 
flow graph where each mark indicates one program state 
associated with communication activities, statement and 
mark can form to a pair to represent different executions 
of one statement. This pair is called M-S pair, represented 
by symbol Λ. We define the function m(Λ) and s(Λ) to 
return the state and statement component of Λ. For any 
mark m, each statement that appears in some component 
(TCG) of m may execute in the state of m and only these 
statements can be combined with m, i.e., any combination 
of m with other statements is meaningless.  

Based on the concept of M-S pair, we define executable 
sequence to represent an execution of a concurrent 
program.  

Definition 3.1 (Executable Sequence) Given the TCRG 
of a concurrent Ada program, GT, an executable sequence 
in GT is an ordered sequence of M-S pair (Λ1, Λ2, …, Λn ) 
which forms a valid execution of the program. 

All executable sequences in GT is denoted by ES(GT). If 
one sequence of M-S pair is a subsequence of some 
executable sequence in ES(GT), it is called a feasible 
sequence of the program. In Fig 3, l1=(<m0, start t1>, <m0, 
S1>, <m0, S2>, <m0, cobegin>, < m1, start t2>, <m1, S8>, 
<m1, S3>, <m3, S4>, <m5, S5>, <m6, S6>, <m6, S9>, 
<m7, S7>, <m8, coend>）is an executable sequence of the 
example. If we pick up some nodes in l1 and form a 
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sequence (<m0, S1>, <m3, S4>, <m7, S7>) it is a feasible 
sequence. 

In TCRG, program states are tightly associated with 
communication activities. Once a communication activity 
takes place in some program state, the corresponding 
program state will change. In some program states there 
exist multiple possible communication activities, so 
different program states will be reached after different 
communication activities. If one communication activity, 
denoted by s, happen in the state of m, we denote the 
generated state by Succ(m, s). In the analysis of data flow, 
only the data flow information related to s will reach 
Succ(m, s).    

According to the above definitions, we can get the 
following property of feasible sequences. 

Property 3.1 Given a concurrent program consisting of k 
tasks, let l be an ordered sequence of M-S pairs (Λ1, Λ2, …, 
Λn ), l is a feasible sequence of the program iff    
（1）for all i, 1≤ i<n, either 

(i) m(Λi)=m(Λi+1) or Pred*(m(Λi), m(Λi+1)) if (Λi) is 
not a communication statement  

or (ii)Succ(m(Λi),s(Λi))=m(Λi+1) or Pred*(Succ(m(Λi), 
s(Λi)), m(Λi+1)) if s(Λi) is a communication 
statement; 

(2)  for all t in the program,  
l⎜t = (Δ1, Δ2, …, Δj ) ⇒ ∀1≤ p< j-1: Pred*(s(Δp), 

s(Δp+1)) 
where l⎜t is the subsequence of l in which all M-S pairs, 
which statement components do not appear in task t, have 
been removed. 

3.2 Dependence Analysis 

In General, there are two types of dependences, control 
dependence and data dependence. Informally, let Λ1, Λ2 be 
two M-S pairs, Λ1 is control dependent on Λ2 if whether 
Λ1 can be executed or not depends on the execution of Λ2, 
and Λ1 is data dependent on Λ2 if the execution of Λ1 use 
variables defined in Λ2. According to the cause of 
dependence, dependences in concurrent Ada programs can 
be further classified into common control and data 
dependence that exist like in sequential programs, intra 
and inter task synchronization control dependences and 
inter task data dependence. 

 Common control and data dependence, which are also 
called control and data dependence, happen in one task.       

Definition 3.2 (Control Dependence) A M-S pair Λ1 is 
control dependent on M-S pair Λ2, denoted by CD(Λ2, Λ1), 
if the following hold,   

(1) (Λ2, Λ1) is a feasible sequence;  
(2) s(Λ2) is a predicate statement, s(Λ1) and s(Λ2) are 

statements from one task; 
(3) there is a path P from s(Λ2) to s(Λ1) in the 

corresponding CFG such that s(Λ1) is a 
postdominator of each s≠ s(Λ2) in P and s(Λ1) is not a 
postdominator of s(Λ2). 

Definition 3.3 (Data Dependence) A M-S pair Λ1 is data 
dependent on M-S pair Λ2, denoted by DD(Λ2, Λ1), if 
there exists a variable v such that the following hold,  
(1)  s(Λ2) and s(Λ1) are statements from one task; 
(2)  Λ2 defines v and Λ1 uses v; 
(3)  there exists an executable sequence from Λ1 to Λ2 on 

which v is not redefined. 

In addition to the above dependences, there are other 
dependences induced by inter task communication 
activities. Rendezvous alternates the control flow of a 
program. In some scheduling, rendezvous may not be 
triggered or finished, which will make some of the 
succeeding statements wait until other tasks abort it. 
Consequently, whether these succeeding statements may 
execute or not depends on the execution of those 
statements that take part in the rendezvous. This 
dependence is called intra-task synchronization 
dependence.  

Definition 3.4 (Intra-task Synchronization 
Dependence) A M-S pair Λ1 is intra-task synchronization 
dependent on M-S pair Λ2, denoted by SD(Λ2, Λ1), if the 
following hold, 
(1)  s(Λ2) is an entry call, accept statement ; 
(2)  s(Λ2) is a predominator of s(Λ1) in the corresponding 

CFG. 

There exist two inter-task synchronization dependences. 
One is caused by rendezvous. Entry call and accept 
statements are mutually dependent on each other. The 
other is caused by task activation or termination. As task 
termination and implicit activation have no obvious 
dependence between statements, they can be ignored. 
Only explicit task activation is considered. 

Definition 3.5 (Inter-task Synchronization 
Dependence) A M-S pair Λ1 is inter-task synchronization 
dependent on M-S pair Λ2, denoted by TSD (Λ2, Λ1), if the 
following hold, 
(1) s(Λ1) is an entry call and s(Λ2) is an accept statement 

or vice versa;  
(2) s(Λ1) is a task-begin statement and s(Λ2) is a new 

statement that dynamically creates the corresponding 
task. 

In definition 3.5, considering that multiple entry call 
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statements might rendezvous with one accept statement in 
some program state, in each possible rendezvous the 
accept statement needed to be assigned a serial number for 
avoiding unnecessary indirect dependence between these 
entry call statements.  

Inter task data dependence is generated as a result of data 
communications between tasks, such as rendezvous with 
parameters, access of shared variables and protected 
objects. For rendezvous with parameters, actual 
parameters can be substituted for formal parameters as 
every rendezvous is instantiated in TCRG. For access of 
protected objects, each data member is regarded as a 
variable and the set of definition and use of data members 
are summarized for the computation of inter task data 
dependence.  

Definition 3.6 (Inter-task Data Dependence) A M-S pair 
Λ1 is data dependent on M-S pair Λ2, denoted by TDD (Λ2, 
Λ1), if there exists a variable v such that the following 
hold,  
(1)  s(Λ2) and s(Λ2) are statements from different tasks; 
(2)  Λ2 defines v and Λ1 uses v; 
(3)  there exists an executable sequence from Λ1 to Λ2 on 

which v is not redefined. 

Based on the above definitions, we can define a 
dependence graph where nodes are M-S pairs for 
concurrent programs. 

Definition 3.7 (M-S Pair Dependence Graph) Given the 
TCRG of a concurrent Ada program, a M-S Pair 
Dependence Graph is a directed graph GD= <M, S, MS, 
E>, where M is the set of TSRG-nodes, S is the set of 
statements, MS is the set of nodes, MS⊆M×S, E is the set 
of edges, E={(Λi, Λj)| dep(Λi, Λj), Λi, Λj∈MS, dep∈{CD, 
DD, SD, TSD, TDD}}. 

As some executable sequences of a concurrent program 
have completely identical dependences except that 
program states of a few M-S pairs are different. Such 
executable sequences are called equivalent executable 
sequences. As we know, if the sequence of M-S pairs 
associated with communication statements is established, 
statements, which are not communication statements, can 
be executed in different program states generated as a 
consequence of communication activities that happen in 
other tasks. In such situation, the formed executable 
sequences are equivalent because it is impossible that 
statements, which are not communication statements, are 
directly dependent on communication statements from 
other tasks. Accordingly, only one of equivalent 
executable sequences to analyze is needed to be analyzed. 
In order to use TCRG conveniently, we choose those 
executable sequences where statements that are not 

communication statements are combined with the same 
program states as those of the immediate succeeding 
communication statement. In Fig 3, if we substitute <m3, 
S3> for <m1, S3> in l1, we can get another executable 
sequence l2=(< m0, start t1>, <m0, S1>, <m0, S2>, <m0, 
cobegin>, < m1, start t2>, <m1, S8>, <m3, S3>, <m3, S4>, 
<m5, S5>, <m6, S6>, <m6, S9>, <m7, S7>, <m8, 
coend>>. As S3 is not a communication statement, l1 and 
l2 is equivalent. And l2 is chosen to be analyzed. 

Control and synchronization dependences can be 
obtained by combining predicate and synchronization 
statements with the corresponding program states in 
TCRG. Data flow information, such as reach definition of 
variables, will be computed hierarchically. Along TCRG, 
we first select the task communication regions where the 
communication activity may happen, then compute their 
flow information along the subgraphs corresponding to 
the TCGs and combine it with program states, finally let 
the information flow into the succeeding TCRG-node 
related to communication activity. Based on the above 
information, data dependence can be easily determined.  

 
Fig4  MSPDG of  the program in Fig.1 . 

In contrast to conventional concurrent program 
dependence graph, MSPDG is built on TCRG. 
Dependence in concurrent programs is analyzed globally, 
so it is not only precise but also transitive. Below, we 
define transitive dependence and then give its proof. 

Definition 3.8 (Transitive Dependence) Given the 
MSPDG of a concurrent Ada program, a M-S pair Λy is 
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transitive dependent on M-S pair Λx, denoted by Dep∗ (Λx, 
Λy), if the following hold, 
(1) there exists a path l = (Λx =Λ1, Λ2, …, Λy =Λn)in GD; 
(2) l is a feasible sequence of the program. 

Theorem 3.1 The dependence relation in MSPDG is 
transitive. 

Proof.  Let l=(Λx=Λ1, Λ2, …, Λy =Λn) be an arbitrary path 
in MSPDG, according to definition 3.8, if we prove 
theorem 3.1, we only need to show that l is a feasible 
sequence of the program. As l is a path in MSPDG, 
according to the above definitions of dependence, it is 
easy to get l satisfies the first requirement of property 3.1. 
Below, we show it is also satisfies the second. 

Let t be an arbitrary task of the program. When l⎜t = (Δ1, 
Δ2, …, Δj ) is not empty, for all i, 1≤ i<j-1: 

(i) if Δi is adjacent to Δi+1 in l, i.e., Δi+1 is dependent on 
Δi, the dependence is an intra task dependence 
because s(Δi) and s(Δi+1) are from one task t. From 
the definitions of intra task dependence, Pre*(s(Δi), 
s(Δi+1)) will be derived; 

(ii) if Δi is not adjacent to Δi+1 in l, i.e., Δi+1 is not 
dependent on Δi, let the path from Δi to Δi+1 in l be 
(Δi, Λu, …, Λu+k, Δi+1), since s(Λu ) and s(Λu+k) are 
not from task t, s(Δi), s(Λu), s(Λu+k) and  s(Δi+1) 
should be communication statements. From the 
definitions of inter task dependences 
Pre*(Succ(m(Δi), s(Δi)), m(Δi+1)) can be derived. Let 
(ni, nu, …, nu+k, ni+1) be a sequence which is formed 
by extracting the TCG-nodes in task t from (Δi, Λu, 
…, Λu+k, Δi+1). Then we can find a path such that (ni, 
nu, …, nu+k, ni+1) is a subsequence of the path. 
According to the construction of TCG Pre*(s(Δi), 
s(Δi+1)) can be obtained.  

As l satisfies property 3.1, l is a feasible sequence. 
Therefore, theorem 3.1 holds.                                          � 

4 Slicing Concurrent Ada Programs    

In this section, we first present an algorithm for slicing 
concurrent Ada programs based on MSPDG and apply it 
in a case, then compare it with other slicing algorithms in 
precision and efficiency. 

4.1 Slicing Algorithm Based On MSPDG 

Let s be a statement, as it might execute in one or multiple 
program states, it will combine with these program states 

and form one or multiple M-S pairs. We denote the 
corresponding set by MS(s). 

Definition 4.1 (Slice) Given a statement s, the slice of s is 
Slice(s)={ s′ | Dep*(<m′, s′>, <m, s>), <m, s>∈MS(s)}. 

Theorem 3.1 shows that dependence relation in MSPDG is 
transitive. Therefore, based on it, computation of slice is a 
simple graph traversing problem. Fig 5 gives the 
corresponding algorithm. 

As MSPDG is built on TCRG, which overcomes the 
drawbacks of traditional concurrent program flow graph, 
dependence in concurrent programs is analyzed globally. 
Hence, it is more precise than traditional dependence 
analysis. Based on MSPDG, high-precision slice can be 
obtained.  
 

Fig. 5   An algorithm of slicing based on MSPDG 

To compare with other slicing methods easily, we classify 
intransitivity problems into two types. The first type refers 
to the problem that dependence relation is intransitive 
because dependence sequence does not conform to the 
requirement of control flow, i.e., it is not a subsequence of 
a possible execution. In the program of Fig 1, 
S5→S8→S4 is a dependence sequence, but S4 is not 
dependent on S5 because it is not a subsequence of a 
possible execution. The second type refers to the problem 
that dependence relation is still intransitive although 
dependence sequence is a subsequence of a possible 
execution. In the program of Fig 1, S1→S4→S7 is a 
dependence sequence and it is a subsequence of a possible 
execution, however, there exits no execution in which S7 
is dependent on S1. 

Fig 4 shows the MSPDG of the example. For the first type 
of intransitivity problem, if we compute the slice of S4 
based on Fig4, we will start from <m1, S4> and <m3, S4> 
and traverse it and get {<m1, S4>, <m0, S1>, <m0, start 
t1>, <m0, start t2>, <m3, S4>, <m0, cobegin>, <m1, S8>, 
<m0, S2>}.  After removing the state component and 

Input: MSPDG, slicing criterion s and MS(s) 
Output: Slice(s) // the slice of s   
Initialization: W = MS(s) 
1 while W≠Φ do 
2    Remove the next element Λfrom W;  
3    for each (Λ′, Λ) in MSPDG do 
4       if  Λ′ is not visited    
5          mark Λ′ visited, W = W∪{Λ′}; 
6          Slice(s) = Slice(s) ∪ {s(Λ′)}; 
        end if  

end for 
end while.  
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additional statements, like cobegin, we can get 
Slice(S4)={ start t1, start t2, S1, S2, S4, S8 } which does 
not include S5. Observe M-S pair dependence sequences 
<m2, S5>→<m4, S8> and <m1, S8>→<m3, S4>, we can 
find that distinguishing different execution of S8 
effectively cut the intransitive dependence of  
S5→S8→S4. For the second type of intransitivity problem, 
if we compute the slice of S7, we traverse Fig 4 starting 
from <m7, S7>, and get {<m7, S7>, <m2, S8>, <m0, S2>, 
<m0, start t1>, <m3, S4>, <m0, start t2>, <m0, cobegin>, 
<m1, S8>, <m4, S8>, <m2, S5>, <m6, S6>, <m6, S9>}. 
Then we get Slice(S7)={ start t1, start t2, S2, S4, S5, S6, 
S7, S8, S9} which does not include S1. Observe M-S pair 
dependence sequences <m0, S1>→<m1, S4> and <m3, 
S4>→<m7, S7>, we may find that distinguishing different 
execution of S4 cut the intransitive dependence of 
S1→S4→S7. 

Let P be a concurrent program with n statements, k tasks, 
and c1 entry call and accept statements, c2 statements of 
access of protected objects, shared variables and 
dynamical task creation. As every entry call and accept 
statement corresponds to two communication points, every 
statement of access of protected objects, shared variables 
or dynamical task creation corresponds to one 
communication point, every task corresponds to one task 
entry program point, and other two communication points, 
i.e., the program points where the task waits for activation 
and termination, the total number of TCG-nodes is (2c1+ 
c2+3k) in the worst case according to the construction of 
TCG. Let the number of TCG-nodes from every task be p1, 
p2, … , pk, the number of the generated TCRG-nodes is 
p1×p2×…×pk in the worst case. According to Churcy 
inequality, p1×p2×…×pk≤ ((2c1+ c2+3k)/k)k. Consequently, 
the number of TCRG-nodes is up to ((2c1+c2)/k+3)k at 
most. Hence, the number of nodes in MSPDG is n((2c1+ 
c2)/k +3)k, and the worst complexity of slicing based on 
MSPDG is O(n2((2c1+c2)/k +3)2 k ). 

4.2 Comparison with related methods 

 Methods based on concurrent program dependence graph 
can not address the second type of intransitivity problem 
because of imprecision of data flow analysis [5-14]. For 
the first type of intransitivity problem, different traversing 
methods may lead to different precision. Not considering 
intransitivity problem, Cheng’s algorithm simply traverses 
PDN, program dependence net for concurrent Ada 
programs, Zhao’s and Hatcliff’s algorithm does so for 
concurrent Java programs [6-9]. Consequently, their 
methods do not solve the first intransitivity problem 
completely and precision of slice is low. We have present 
algorithms for slicing concurrent Ada programs [10]. This 

method can remove some redundant statements by 
computing the set of statements impossible to be included 
according to the information of control flow of all 
statements in dependence sequence. Since the set is a 
conservative result, our algorithm addresses the first 
intransitivity problem partially and the precision of the 
slice is increased in some extent. Krinke and Nanda 
determined whether traversed statements could be added 
according to precise control flow information. Their 
algorithms guarantee that each dependence sequence is a 
subsequence of a possible execution. So Krinke and 
Nanda’s methods thoroughly address the first intransitivity 
problem. However, the precision of the slice obtained by 
their methods is still lower than our method based on 
MSPDG in that our method in this paper addresses two 
types of intransitivity problems.  

Table 1: Comparison of Various Slicing Methods  

 

For convenience, table 1 compares the above slicing 
algorithms. In table 1, n indicates the number of 
statements in the program, k indicates the number of 
concurrent units, and c indicates the number of 
communication statements (c=c1+c2). From table 1, we 
can find that the most precise slice can be computed by 
our method proposed in this paper. Further, as c is much 
less n in common case, the efficiency of our method is 
higher in worst case than Krinke and Nanda’s method..  

5 Conclusions 

In this paper, we have proposed task communication 
reachability graph for representing executions of 
concurrent Ada programs. Based on TCRG, we precisely 
determine various dependences in concurrent Ada 
programs and construct M-S pair dependence graph. As 
dependence relation in MSPDG is precise and transitive, 
more precise slice will be obtained more efficiently by 

Methods

Address 
the first 
problem

 Address 
the 

second 
problem 

Precision Time 
Complexity

Cheng, 
Zhao, 
and 

Hatcliff

No No Low O(n2) 

Chen, 
Xu 

Partially 
Address No Middle O(n4) 

Krinke, 
Nanda Yes No High O(n2(n/k)2k)

Our 
method Yes Yes Highest O(n2((2c1+ 

c2)/k +3)2 k )
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traversing MSPDG in contrast to other high-precision 
slicing methods. However, due to intrinsic complexity of 
concurrent programs, concurrent Ada programs that can 
be analyzed with our method in this paper should not 
include recursive procedures with communication 
activities and tasks with unbounded number [19].Although 
our method can get more precise slices than other previous 
methods, its efficiency is needed to improve. In future 
work, we plan to realize this goal along two ways. One is 
to develop a configurative method that combines strengths 
of our method and traditional polynomial algorithms and 
compute slices with different precision according to 
different requirements. The other is to reduce TCRG with 
keeping transitive property.  
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