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Summary 
The traditional sender-based message logging protocols 
use a garbage collection algorithm to result in a large 
number of additional messages and forced checkpoints. So, 
in our previous work, an algorithm was introduced to 
allow each process to autonomously remove useless log 
information in its volatile storage by piggybacking only 
some additional information without requiring any extra 
message and forced checkpoint. However, even after a 
process has executed the algorithm, its storage buffer may 
still be overloaded in some communication and 
checkpointing patterns. This paper proposes a new 
garbage collection algorithm AGCA for sender-based 
message logging to address all the problems mentioned 
above. The algorithm considerably reduces the number of 
processes to participate in the garbage collection by using 
the size of the log information of each process. Thus, 
AGCA incurs more additional messages and forced 
checkpoints than our previous algorithm. However, it can 
avoid the risk of overloading the storage buffers regardless 
of the specific checkpointing and communication patterns. 
Also, AGCA reduces the number of additional messages 
and forced checkpoints compared with the traditional 
algorithm. 
Key words: 
Distributed Systems, Log-based Recovery, Sender-based 
Message Logging, Garbage Collection. 

1. Introduction 

Recently, distributed systems containing multiple 
powerful computers connected by communication 
networks are rapidly available because of very low costs 
of computer processors and the availability of super high-
speed networks to link the computers. Thus, the systems 
are becoming a cost-effective solution for high 
performance distributed and parallel computing instead of 
expensive special-purpose supercomputers. However, one 
of big challenges the distributed systems should address is 
providing fault-tolerance. In other words, even if the 

failure of a single process in a distributed application 
occurs, it may lead to restarting the application from its 
initial state, which is critical to long-running scientific and 
engineering applications. 
Rollback-recovery techniques such as checkpointing-
based recovery and log-based recovery are very attractive 
for supporting transparent fault-tolerance to the 
applications because the techniques require fewer special 
resources compared to process replication techniques [5]. 
In checkpointing-based recovery, when some processes 
crash, the processes affected by the failures roll back to 
their last checkpoints such that the recovered system state 
is consistent. But, this technique may not restore the 
maximum recoverable state because it relies only on 
checkpoints of processes saved on the stable storage. 
Log-based recovery performing careful recording of 
messages received by each process with its checkpoints 
enables a system to be recovered beyond the most recent 
consistent set of checkpoints. This feature is desirable for 
the applications that frequently interact with the outside 
world consisting of input and output components that 
cannot roll back [5]. In this technique, messages can be 
logged either by their senders or by their receivers. First, 
receiver-based message logging (RBML) approach [8, 14] 
logs the recovery information of every received message 
to the stable storage before the message is delivered to the 
receiving process. Thus, the approach simplifies the 
recovery procedure of failed processes. However, its main 
drawback is the high failure-free overhead caused by 
synchronous logging. Sender-based message logging 
(SBML) approach [2, 4, 9, 11, 13] enables each message 
to be logged in the volatile memory of its corresponding 
sender for avoiding logging messages to stable storage. 
Therefore, it reduces the failure-free overhead compared 
with the RBML approach. 
However, the SBML approach forces each process to 
maintain in its limited volatile storage the log information 
of its sent messages required for recovering receivers of 
the messages when they crash. Thus, as enough empty 
buffer space for logging messages sent in future should be 
ensured in this approach, it requires an efficient algorithm 
to garbage collect log information of each process [1]. 
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Traditional SBML protocols [2, 4, 9, 11, 13] use one 
between two message log management procedures to 
ensure system consistency despite future failures 
according to each cost. The first procedure just flushes the 
message log to the stable storage. It is very simple, but 
may result in a large number of stable storage accesses 
during failure-free operation and recovery. The second 
procedure forces messages in the log to be useless for 
future failures and then removes them. In other wards, the 
procedure checks whether receivers of the messages has 
indeed received the corresponding messages and then 
taken no checkpoint since. If so, it forces the receivers to 
take their checkpoints. Thus, this behavior may lead to 
high communication and checkpointing overheads as 
inter-process communication rate increases. 
To address their problems, in our previous work, a low-
cost algorithm called PGCA [1] was presented to have the 
volatile memory of each process for message logging 
become full as late as possible with no extra message and 
forced checkpoint. The algorithm allows each process to 
locally and independently remove useless log information 
from its volatile storage by piggybacking only some 
additional information. However, the limitation of the 
algorithm is that after a process has performed the 
algorithm, the storage buffer of the process may still be 
overloaded in some communication and checkpointing 
patterns. In this paper, we propose an active garbage 
collection algorithm called AGCA to lift the limitation. For 
this, the algorithm AGCA uses an array recording the size 
of the log information for each process. When the free 
buffer space in the volatile storage is needed, the 
algorithm selects a small number of processes based on the 
array that take part in having the messages previously 
logged for them be useless despite their future failures. 
Therefore, AGCA may result in low communication and 
checkpointing overheads compared with the traditional 
ones while avoiding the drawback of the algorithm PGCA. 
The rest of the paper is organized as follows. Sections 2 
and 3 explain the system model and introduce the 
algorithm AGCA with its correctness respectively. 
Sections 4 and 5 show simulation results for performance 
evaluation and conclude this paper. 

2. System Model 

A distributed computation consists of a set P of n(n>0) 
sequential processes executed on hosts in the system and 
there is a stable storage that every process can always 
access that persists beyond processor failures [5]. 
Processes have no global memory and global clock. The 
system is asynchronous: each process is executed at its 
own speed and communicates with each other only 
through messages at finite but arbitrary transmission 
delays. We assume that the communication network is 

immune to partitioning, there is a stable storage that every 
process can always access and hosts fail according to the 
fail stop model [10]. Events of processes occurring in a 
failure-free execution are ordered using Lamport's 
happened before relation [6]. The execution of each 
process is piecewise deterministic [12]: At any point 
during the execution, a state interval of the process is 
determined by a non-deterministic event, which in this 
paper is delivery of a received message to the appropriate 
application. The k-th state interval of process p, denoted 
by sip

k(k>0), is started by the delivery event of the k-th 
message m of p, denoted by devp

k(m). Therefore, given p's 
initial state, sp

0, and the non-deterministic events, [devp
1, 

devp
2, ..., devp

i], its corresponding state sp
i is uniquely 

determined by handling all the events from sp
0 in receipt 

sequence order. sp
i and sq

j (p ≠ q) are mutually consistent 
if all messages from q that p has delivered to the 
application in sp

i were sent to p by q in sq
j, and vice versa. 

A set of states, which consists of only one from each 
process in the system, is a globally consistent state if any 
pair of the states is mutually consistent [3]. sp

k is stable if a 
determinant of devp

k(m) is saved on stable storage and is 
recoverable if p can replay its execution up to sip

k even in 
future failures. The log information of each message kept 
by its sender consists of four fields, its receiving process' 
identifier(rid), send sequence number(ssn), receive 
sequence number(rsn) and data(data). In this paper, the 
log information of message m and the message log in 
process p's volatile memory are denoted by e(m) and logp. 

3. Active Garbage Collection Algorithm 

3.1 Basic Idea 

The sender-based message logging needs an algorithm to 
allow each process to remove the log information in its 
volatile storage while ensuring system consistency in case 
of failures. This algorithm should force the log 
information to become useless for future recovery to 
satisfy the goal. In the traditional sender-based message 
logging protocols, to garbage collect every e(m) in logp, p 
requests that the receiver of m (m.rid) takes a checkpoint 
if it has indeed received m and taken no checkpoint since. 
Also, processes occasionally exchange the state interval 
indexes of their most recent checkpoints for garbage 
collecting the log information in their volatile storages. 
However, this algorithm may result in a large number of 
additional messages and forced checkpoints needed by the 
forced garbage collection. To illustrate how to remove the 
log information in the algorithm, consider the example 
shown in figure 1. Suppose p3 intends to remove the log 
information in logp3 at the marked point. In this case, the 
algorithm forces p3 to send checkpoint requests to p1, p2 
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and p4. When receiving the request, p1, p2 and p4 take their 
checkpoints, respectively. Then, the three processes send 
each a checkpoint reply to p3. After receiving all the 
replies, p3 can remove (e(m1), e(m2), e(m3), e(m4), e(m5), 
e(m6), e(m7), e(m8)) from logp3. 
Also, in this checkpointing and communication pattern, 
the protocol proposed in [1] cannot allow p3 to 
autonomously decide whether log information of each sent 
message is useless for recovery of the receiver of the 
message by using some piggybacking information. Thus, 
even after executing the protocol, p3 should maintain all 
the log information of the eight messages in logp3. 
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Fig. 1. An example showing the problem of the traditional sender-based 
message logging protocols 

To solve the problem, we present an algorithm AGCA 
(Active Garbage Collection Algorithm) based on the 
following observation: if the requested empty space (=ε) is 
less than or equal to the sum (=Y) of sizes of e(m1), e(m2), 
e(m4), e(m6) and e(m8), p3 has only to force p2 to take a 
checkpoint. This observation implies that the number of 
extra messages and forced checkpoints may be reduced if 
p3 knows sizes of the respective log information for p1, p2 
and p4 in its volatile storage. AGCA obtains such 
information by maintaining an array, LogSizep, to save the 
size of the log information in the volatile storage by 
process. Thus, AGCA can reduce the number of additional 
messages and forced checkpoints by using the vector 
compared with the traditional algorithm.  
In AGCA, each process p should maintain the data 
structures shown in figure 2. First, LogSizep is a vector 
where LogSizep[q] is the sum of sizes of all e(m)s in logp, 
such that p sent message m to q. Whenever p sends m to q, 
it increments LogSizep by the size of e(m). When p needs 
more empty buffer space, it executes AGCA. It first 
chooses a set of processes, denoted by participatingProcs, 
which will participate in the forced garbage collection. It 
selects the largest, LogSizep[q], among the remaining 
elements of LogSizep, and then appends q to 
participatingProcs until the required buffer size is 
satisfied. Then p sends a request message with the rsn of 
the last message, sent from p to q, to all q ∈ 
participatingProcs such that the receiver of m is q for 
∃e(m) ∈ logp. When q receives the request message with 

the rsn from p, it checks whether the rsn is greater than 
LrsnInLchkptp. If so, it should take a checkpoint and then 
send p a reply message. Otherwise, it has only to send p a 
reply message. When p receives the reply message from q, 
it removes all e(m)s from logp such that the receiver of m 
is q.  

Fig. 2. Data structures for every process p in AGCA 

 
For example, in figure 3, when p3 attempts to execute 
AGCA at the marked point after it has sent m8 to p2, it 
should create participatingProcs. In this figure, we can 
see that LogSizep3[p2](= Y) is the largest (Y ≥ Z ≥ X) 
among all the elements of LogSizep3 due to e(m1), e(m2), 
e(m4), e(m6) and e(m8) in logp3. Thus, it first selects and 
appends p2 to participatingProcs. Suppose that the 
requested empty space ε is less than or equal to Y. In this 
case, it needs to select any process like p1 and p4 no longer. 
Therefore, p3 sends a checkpoint request message with 
m8.rsn to only p2 in participatingProcs. When p2 receives 
the request message, it should take a forced checkpoint 
like in this figure because the rsn included in the message 
is greater than LrsnInLchkptp2. Then it sends p3 a reply. 
When p3 receives a reply message from p2, it can remove 
e(m1), e(m2), e(m4), e(m6) and e(m8) from logp3. From this 
example, we can see that AGCA chooses a small number 
of processes to participate in the garbage collection based 
on LogSizep3 compared with the traditional algorithm. 
Thus, AGCA may reduce the number of additional 
messages and forced checkpoints. 

 
-logp: It is a set saving e(rid, ssn, rsn, 
data) of each message sent by p. It is 
initialized to an empty set. 

-Lssnp: It is the send sequence number of the 
latest message sent by p. It is initialized 
to 0. 

-Lrsnp: It is the receive sequence number of 
the latest message delivered to p. It is 
initialized to 0.  

-LssnVecp: It is a vector where LssnVecp[q] 
records the send sequence number of the 
latest message received by p that q sent. 
Each element of the vector is initialized to 
0.  

-LogSizep: It is a vector where LogSizep[q] is 
the sum of sizes of all e(m)s in logp such 
that p sent m to q. LogSizep[q] is 
initialized to 0. 

-LrsnInLchkptp: It is the rsn of the latest 
message delivered to p before p's having 
taken its last checkpoint. It is initialized 
to 0.  

-ENsendp: It is a set of rsns that aren't yet 
recorded at the senders of their messages. 
It is initialized to an empty set. It is 
used for indicating whether p can send 
messages to other processes (when ENsendp is 
an empty set) or not. 
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Fig. 3. An example of executing our algorithm AGCA 

3.2 Procedures 

The procedures for process p in our algorithm are formally 
described in figure 4. MSend() is the procedure executed 
when each process p sends a message m to q and logs it to 
its volatile memory. In this case, p adds the size of e(m) to 
LogSizep[q] after transmitting the message. Procedure 
Mrecv() is executed when p receives a message. In 
procedure Ack-Recv(), process p receives the rsn of its 
previously sent message and updates the third field of the 
element for the message in its log to the rsn. Then, it 
confirms fully logging of the message to its receiver, 
which executes procedure Confirm-Recv(). If process p 
attempts to take a local checkpoint, it calls procedure 
Checkpointing(). In this procedure, LrsnInLchkptp is 
updated to the rsn of the last message received before the 
checkpoint. AGC() is the procedure executed when each 
process attempts to initiate the forced garbage collection, 
and CheckLrsnInLchkpt() is the procedure for forcing the 
log information to become useless for future recovery. 

3.3 Correctness 

In this section, we prove the correctness of AGCS. 
 
Lemma 1. If siq

j is created by message m from p to q 
(p≠q) for all p, q ∈ P and then q takes its latest checkpoint 
in siq

l (l ≥ j), e(m) need not be maintained in logp for q's 
future recovery in the sender-based message logging. 
 
Proof: We prove this lemma by contradiction. Assume 
that e(m) in logp is useful for q's future recovery in case of 
the condition. If q fails, it restarts execution from its latest 
checkpointed state for its recovery in the sender-based 
message logging. In this case, p need not retransmit m to q 
because devq(m) occurs before the checkpointed state. 
Thus, e(m) in logp is not useful for q's recovery. This 
contradicts the hypothesis.  
 

Fig. 4. Procedures for every process p in AGCA 

Theorem 1. After every process has performed AGCS in 
the sender-based message logging, the system can recover 
to a globally consistent state despite process failures. 

procedure MSend(data, q) 
wait until(ENsendp is an empty set); 
Lssnp ← Lssnp + 1; 
send m(Lssnp, data) to q; 
logp ← logp ∪ {(q, Lssnp, -1, data)}; 
LogSizep[q] ← LogSizep[q] + size of (q, Lssnp,  
                                    -1, data); 

procedure MRecv(m(ssn, data), sid) 
if(LssnVecp[sid] < m.ssn) then { 
  Lrsnp ← Lrsnp + 1; 
  LssnVecp[sid] ← m.ssn; 
  send ack(m.ssn, Lrsnp) to sid; 
  ENsendp ← ENsendp ∪ {Lrsnp}; 
  deliver m.data to the application; 
}else discard m; 

procedure Ack-Recv(ack(ssn, rsn), rid) 
find ∃e ∈ logp st ((e.rid = rid) ∧ (e.ssn =  
                                    ack.ssn));  
e.rsn ← ack.rsn; 
send confirm(ack.rsn) to rid; 

procedure Confirm-Recv(confirm(rsn)) 
ENsendp ← ENsendp - {rsn}; 

procedure Checkpointing() 
LrsnInLchkptp ← Lrsnp;  
take its local checkpoint on the stable storage; 

procedure AGC(sizeOflogSpace) 
participatingProcs ← Φ; 
while sizeOflogSpace > 0 do 
  if(there is r st ((r ∈ P)∧ 
    (r ∉ participatingProcs)∧(LogSizep[r] ≠ 0)  
     ∧(max LogSizep[r]))) then { 
    sizeOflogSpace←sizeOflogSpace-LogSizep[r]; 
    participatingProcs←participatingProcs∪{r}; 

   } 

 T: for all u ∈ participatingProcs do { 
     MaximumRsn ← (max e(m).rsn) st  
               ((e(m) ∈ logp)∧(u = e(m).rid)); 
     send Request(MaximumRsn) to u; 
   } 
   while participatingProcs ≠ Φ do { 
     receive Reply() from u st  
                     (u ∈ participatingProcs); 
     for all e(m) ∈ logp st (u = e(m).rid) do  
       remove e(m) from logp;  
     LogSizep[u] ← 0; 
     participatingProcs←participatingProcs-{u}; 

    } 

procedure CheckLrsnInLchkpt(Request(MaximumRsn),q) 
if(LrsnInLchkptp < MaximumRsn) then  
  Checkpointing(); 
send Reply() to q; 
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Proof: AGCS only removes the following useful log 
information in the storage buffer of every process as 
follows.  
 
(Case 1): Process p for all p ∈ P removes any e(m) in logp. 
In this case, it sends a request message with the rsn of the 
last message, sent from p to e(m).rid, to e(m).rid. When 
e(m).rid receives the request message with the rsn from p, 
it checks whether the rsn is greater than 
LrsnInLchkpte(m).rid. 
(Case 1.1): The rsn is greater than LrsnInLchkpte(m).rid.  
In this case, e(m).rid takes a checkpoint. Afterwards, e(m) 
becomes useless for the sender-based message logging by 
lemma 1. 
(Case 1.2): The rsn is less than or equal to 
LrsnInLchkpte(m).rid. 
In this case, e(m).rid took its latest checkpoint after having 
received m. Thus, e(m) is useless for the sender-based 
message logging by lemma 1. 
 
Thus, all the useful log information for the sender-based 
message logging is always maintained in the system in all 
cases. Therefore, after every process has performed AGCS, 
the system can recover to a globally consistent state 
despite process failures.  

 

4. Simulation 
 
In this section, we perform extensive simulations to 
compare the proposed algorithm AGCA with the 
traditional algorithm TGCA using simjava discrete-event 
simulation language [7]. Two performance indexes are 
used for comparison; the average number of additional 
messages (NOAM) and the average number of forced 
checkpoints (NOFC) required for garbage collection per 
process. In the literature, these two indexes dominate the 
overhead caused by garbage collection during failure-free 
operation [5]. A system with 20 nodes connected through 
a general network was simulated. Each node has one 
process executing on it and, for simplicity, the processes 
are assumed to be initiated and completed together. The 
message transmission capacity of a link in the network is 
100Mbps. For the simulation, 20 processes have been 
executed for 72 hours per simulation run. Every process 
has a 10MB buffer space for storing its logp. The message 
size ranges from 50KB to 200KB. Normal checkpointing 
is initiated at each process with an interval following an 
exponential distribution with a mean Tckpt=360 seconds. 
The simulation parameter is the mean message sending 
interval, Tms, following an exponetial distribution. 

Figure 5 shows NOAM for the various Tms values, 
respectively. In these figures, we can see that NOAMs of 
the two algorithms increase as Tms decreases. The reason 
is that forced garbage collection should frequently be 
performed because the high inter-process communication 
rate causes the storage buffer of each process to be 
overloaded quickly. However, NOAM of AGCA is much 
lower than that of TGCA. AGCA reduces about 38% - 50% 
of NOAM compared with TGCA. 
 

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

10 20 30 40 50 60

Tms

N
O
A
M

TGCA

AGCA

 

Fig. 5. NOAM vs. Tms 
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Fig. 6. NOFC vs. Tms 

Figure 6 illustrates NOFC for the various communication 
patterns for the various Tms values, respectively. In this 
figure, we can also see that NOFCs of the two algorithms 
increase as Tms decreases. The reason is that as the inter-
process communication rate increases, a process may take 
a forced checkpoint when it performs forced garbage 
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collection. In the figure, NOFC of AGCA is lower than 
that of TGCA. AGCA reduces about 25% - 51% of NOFC 
compared with TGCA. 
Therefore, we can conclude from the simulation results 
that regardless of the specific communication patterns, 
AGCA enables the garbage collection overhead occurring 
during failure-free operation to be significantly reduced 
compared with TGCA. 
 
5. Conclusion 
 
In this paper, we presented a garbage collection algorithm 
AGCA for efficiently removing log information of each 
process in causal message logging. AGCA allows each 
process to keep an array to save the size of the log 
information for every process in its storage by process. It 
chooses a minimum number of processes to participate in 
the forced garbage collection based on the array. Thus, it 
incurs more additional messages and forced checkpoints 
than our previous algorithm. However, it can avoid the 
risk of overloading the storage buffers unlike the latter. 
Moreover, AGCA reduces the number of additional 
messages and forced checkpoints needed by the garbage 
collection compared with the traditional algorithm TGCA. 
From our simulation experiments, we can see that AGCA 
significantly reduces about 38% - 50% of NOAM and 25% 
- 51% of NOFC regardless of the communication patterns 
compared with TGCA. 
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