
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

38

Manuscript received January 2005
Manuscript revised March 1, 2005

†

Active Garbage Collection Algorithm for
Sender-based Message Logging

JinHo Ahn

Dept. of Computer Science, Kyonggi University, Suwon-si Gyeonggi-do, Korea

Summary
The traditional sender-based message logging protocols
use a garbage collection algorithm to result in a large
number of additional messages and forced checkpoints. So,
in our previous work, an algorithm was introduced to
allow each process to autonomously remove useless log
information in its volatile storage by piggybacking only
some additional information without requiring any extra
message and forced checkpoint. However, even after a
process has executed the algorithm, its storage buffer may
still be overloaded in some communication and
checkpointing patterns. This paper proposes a new
garbage collection algorithm AGCA for sender-based
message logging to address all the problems mentioned
above. The algorithm considerably reduces the number of
processes to participate in the garbage collection by using
the size of the log information of each process. Thus,
AGCA incurs more additional messages and forced
checkpoints than our previous algorithm. However, it can
avoid the risk of overloading the storage buffers regardless
of the specific checkpointing and communication patterns.
Also, AGCA reduces the number of additional messages
and forced checkpoints compared with the traditional
algorithm.
Key words:
Distributed Systems, Log-based Recovery, Sender-based
Message Logging, Garbage Collection.

1. Introduction

Recently, distributed systems containing multiple
powerful computers connected by communication
networks are rapidly available because of very low costs
of computer processors and the availability of super high-
speed networks to link the computers. Thus, the systems
are becoming a cost-effective solution for high
performance distributed and parallel computing instead of
expensive special-purpose supercomputers. However, one
of big challenges the distributed systems should address is
providing fault-tolerance. In other words, even if the

failure of a single process in a distributed application
occurs, it may lead to restarting the application from its
initial state, which is critical to long-running scientific and
engineering applications.
Rollback-recovery techniques such as checkpointing-
based recovery and log-based recovery are very attractive
for supporting transparent fault-tolerance to the
applications because the techniques require fewer special
resources compared to process replication techniques [5].
In checkpointing-based recovery, when some processes
crash, the processes affected by the failures roll back to
their last checkpoints such that the recovered system state
is consistent. But, this technique may not restore the
maximum recoverable state because it relies only on
checkpoints of processes saved on the stable storage.
Log-based recovery performing careful recording of
messages received by each process with its checkpoints
enables a system to be recovered beyond the most recent
consistent set of checkpoints. This feature is desirable for
the applications that frequently interact with the outside
world consisting of input and output components that
cannot roll back [5]. In this technique, messages can be
logged either by their senders or by their receivers. First,
receiver-based message logging (RBML) approach [8, 14]
logs the recovery information of every received message
to the stable storage before the message is delivered to the
receiving process. Thus, the approach simplifies the
recovery procedure of failed processes. However, its main
drawback is the high failure-free overhead caused by
synchronous logging. Sender-based message logging
(SBML) approach [2, 4, 9, 11, 13] enables each message
to be logged in the volatile memory of its corresponding
sender for avoiding logging messages to stable storage.
Therefore, it reduces the failure-free overhead compared
with the RBML approach.
However, the SBML approach forces each process to
maintain in its limited volatile storage the log information
of its sent messages required for recovering receivers of
the messages when they crash. Thus, as enough empty
buffer space for logging messages sent in future should be
ensured in this approach, it requires an efficient algorithm
to garbage collect log information of each process [1].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

39

Traditional SBML protocols [2, 4, 9, 11, 13] use one
between two message log management procedures to
ensure system consistency despite future failures
according to each cost. The first procedure just flushes the
message log to the stable storage. It is very simple, but
may result in a large number of stable storage accesses
during failure-free operation and recovery. The second
procedure forces messages in the log to be useless for
future failures and then removes them. In other wards, the
procedure checks whether receivers of the messages has
indeed received the corresponding messages and then
taken no checkpoint since. If so, it forces the receivers to
take their checkpoints. Thus, this behavior may lead to
high communication and checkpointing overheads as
inter-process communication rate increases.
To address their problems, in our previous work, a low-
cost algorithm called PGCA [1] was presented to have the
volatile memory of each process for message logging
become full as late as possible with no extra message and
forced checkpoint. The algorithm allows each process to
locally and independently remove useless log information
from its volatile storage by piggybacking only some
additional information. However, the limitation of the
algorithm is that after a process has performed the
algorithm, the storage buffer of the process may still be
overloaded in some communication and checkpointing
patterns. In this paper, we propose an active garbage
collection algorithm called AGCA to lift the limitation. For
this, the algorithm AGCA uses an array recording the size
of the log information for each process. When the free
buffer space in the volatile storage is needed, the
algorithm selects a small number of processes based on the
array that take part in having the messages previously
logged for them be useless despite their future failures.
Therefore, AGCA may result in low communication and
checkpointing overheads compared with the traditional
ones while avoiding the drawback of the algorithm PGCA.
The rest of the paper is organized as follows. Sections 2
and 3 explain the system model and introduce the
algorithm AGCA with its correctness respectively.
Sections 4 and 5 show simulation results for performance
evaluation and conclude this paper.

2. System Model

A distributed computation consists of a set P of n(n>0)
sequential processes executed on hosts in the system and
there is a stable storage that every process can always
access that persists beyond processor failures [5].
Processes have no global memory and global clock. The
system is asynchronous: each process is executed at its
own speed and communicates with each other only
through messages at finite but arbitrary transmission
delays. We assume that the communication network is

immune to partitioning, there is a stable storage that every
process can always access and hosts fail according to the
fail stop model [10]. Events of processes occurring in a
failure-free execution are ordered using Lamport's
happened before relation [6]. The execution of each
process is piecewise deterministic [12]: At any point
during the execution, a state interval of the process is
determined by a non-deterministic event, which in this
paper is delivery of a received message to the appropriate
application. The k-th state interval of process p, denoted
by sip

k(k>0), is started by the delivery event of the k-th
message m of p, denoted by devp

k(m). Therefore, given p's
initial state, sp

0, and the non-deterministic events, [devp
1,

devp
2, ..., devp

i], its corresponding state sp
i is uniquely

determined by handling all the events from sp
0 in receipt

sequence order. sp
i and sq

j (p ≠ q) are mutually consistent
if all messages from q that p has delivered to the
application in sp

i were sent to p by q in sq
j, and vice versa.

A set of states, which consists of only one from each
process in the system, is a globally consistent state if any
pair of the states is mutually consistent [3]. sp

k is stable if a
determinant of devp

k(m) is saved on stable storage and is
recoverable if p can replay its execution up to sip

k even in
future failures. The log information of each message kept
by its sender consists of four fields, its receiving process'
identifier(rid), send sequence number(ssn), receive
sequence number(rsn) and data(data). In this paper, the
log information of message m and the message log in
process p's volatile memory are denoted by e(m) and logp.

3. Active Garbage Collection Algorithm

3.1 Basic Idea

The sender-based message logging needs an algorithm to
allow each process to remove the log information in its
volatile storage while ensuring system consistency in case
of failures. This algorithm should force the log
information to become useless for future recovery to
satisfy the goal. In the traditional sender-based message
logging protocols, to garbage collect every e(m) in logp, p
requests that the receiver of m (m.rid) takes a checkpoint
if it has indeed received m and taken no checkpoint since.
Also, processes occasionally exchange the state interval
indexes of their most recent checkpoints for garbage
collecting the log information in their volatile storages.
However, this algorithm may result in a large number of
additional messages and forced checkpoints needed by the
forced garbage collection. To illustrate how to remove the
log information in the algorithm, consider the example
shown in figure 1. Suppose p3 intends to remove the log
information in logp3 at the marked point. In this case, the
algorithm forces p3 to send checkpoint requests to p1, p2

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

40

and p4. When receiving the request, p1, p2 and p4 take their
checkpoints, respectively. Then, the three processes send
each a checkpoint reply to p3. After receiving all the
replies, p3 can remove (e(m1), e(m2), e(m3), e(m4), e(m5),
e(m6), e(m7), e(m8)) from logp3.
Also, in this checkpointing and communication pattern,
the protocol proposed in [1] cannot allow p3 to
autonomously decide whether log information of each sent
message is useless for recovery of the receiver of the
message by using some piggybacking information. Thus,
even after executing the protocol, p3 should maintain all
the log information of the eight messages in logp3.

p 2

p 1

m 5

m 1m 1

C 1.iC 1.i

C 2.jC 2.j

p 3

C 3.kC 3.k

log 3(e(m 1), e(m 2), e(m 3), e(m 4), e(m 5), e(m 6), e(m 7), e(m 8))

time

p 4

C 4.lC 4.l

m 2m 2 m 4m 4 m 6m 6 m 8m 8

m 3 m 7
garbage

co llec tion
po int

C 1.i+1

C 2.j+1

C 4.l+1

Fig. 1. An example showing the problem of the traditional sender-based
message logging protocols

To solve the problem, we present an algorithm AGCA
(Active Garbage Collection Algorithm) based on the
following observation: if the requested empty space (=ε) is
less than or equal to the sum (=Y) of sizes of e(m1), e(m2),
e(m4), e(m6) and e(m8), p3 has only to force p2 to take a
checkpoint. This observation implies that the number of
extra messages and forced checkpoints may be reduced if
p3 knows sizes of the respective log information for p1, p2
and p4 in its volatile storage. AGCA obtains such
information by maintaining an array, LogSizep, to save the
size of the log information in the volatile storage by
process. Thus, AGCA can reduce the number of additional
messages and forced checkpoints by using the vector
compared with the traditional algorithm.
In AGCA, each process p should maintain the data
structures shown in figure 2. First, LogSizep is a vector
where LogSizep[q] is the sum of sizes of all e(m)s in logp,
such that p sent message m to q. Whenever p sends m to q,
it increments LogSizep by the size of e(m). When p needs
more empty buffer space, it executes AGCA. It first
chooses a set of processes, denoted by participatingProcs,
which will participate in the forced garbage collection. It
selects the largest, LogSizep[q], among the remaining
elements of LogSizep, and then appends q to
participatingProcs until the required buffer size is
satisfied. Then p sends a request message with the rsn of
the last message, sent from p to q, to all q ∈
participatingProcs such that the receiver of m is q for
∃e(m) ∈ logp. When q receives the request message with

the rsn from p, it checks whether the rsn is greater than
LrsnInLchkptp. If so, it should take a checkpoint and then
send p a reply message. Otherwise, it has only to send p a
reply message. When p receives the reply message from q,
it removes all e(m)s from logp such that the receiver of m
is q.

Fig. 2. Data structures for every process p in AGCA

For example, in figure 3, when p3 attempts to execute
AGCA at the marked point after it has sent m8 to p2, it
should create participatingProcs. In this figure, we can
see that LogSizep3[p2](= Y) is the largest (Y ≥ Z ≥ X)
among all the elements of LogSizep3 due to e(m1), e(m2),
e(m4), e(m6) and e(m8) in logp3. Thus, it first selects and
appends p2 to participatingProcs. Suppose that the
requested empty space ε is less than or equal to Y. In this
case, it needs to select any process like p1 and p4 no longer.
Therefore, p3 sends a checkpoint request message with
m8.rsn to only p2 in participatingProcs. When p2 receives
the request message, it should take a forced checkpoint
like in this figure because the rsn included in the message
is greater than LrsnInLchkptp2. Then it sends p3 a reply.
When p3 receives a reply message from p2, it can remove
e(m1), e(m2), e(m4), e(m6) and e(m8) from logp3. From this
example, we can see that AGCA chooses a small number
of processes to participate in the garbage collection based
on LogSizep3 compared with the traditional algorithm.
Thus, AGCA may reduce the number of additional
messages and forced checkpoints.

-logp: It is a set saving e(rid, ssn, rsn,
data) of each message sent by p. It is
initialized to an empty set.

-Lssnp: It is the send sequence number of the
latest message sent by p. It is initialized
to 0.

-Lrsnp: It is the receive sequence number of
the latest message delivered to p. It is
initialized to 0.

-LssnVecp: It is a vector where LssnVecp[q]
records the send sequence number of the
latest message received by p that q sent.
Each element of the vector is initialized to
0.

-LogSizep: It is a vector where LogSizep[q] is
the sum of sizes of all e(m)s in logp such
that p sent m to q. LogSizep[q] is
initialized to 0.

-LrsnInLchkptp: It is the rsn of the latest
message delivered to p before p's having
taken its last checkpoint. It is initialized
to 0.

-ENsendp: It is a set of rsns that aren't yet
recorded at the senders of their messages.
It is initialized to an empty set. It is
used for indicating whether p can send
messages to other processes (when ENsendp is
an empty set) or not.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

41

p 2

p 1

m 5

m 1m 1

C 1 .iC 1 .i

C 2 .jC 2 .j

p 3

C 3.kC 3.k

log 3(e(m 1), e(m 2), e(m 3), e(m 4), e(m 5), e (m 6), e(m 7), e(m 8))
t im e

p 4

C 4.lC 4.l

m 2m 2 m 4m 4 m 6m 6 m 8m 8

m 3 m 7
garb age

c o llec tio n
p o int

C 2 .j+ 1

L ogS ize3[1] = X
L ogS ize3[2] = Y If Y ≥ Z ≥ X a nd Y ≥ ε
L ogS ize3[4] = Z

Fig. 3. An example of executing our algorithm AGCA

3.2 Procedures

The procedures for process p in our algorithm are formally
described in figure 4. MSend() is the procedure executed
when each process p sends a message m to q and logs it to
its volatile memory. In this case, p adds the size of e(m) to
LogSizep[q] after transmitting the message. Procedure
Mrecv() is executed when p receives a message. In
procedure Ack-Recv(), process p receives the rsn of its
previously sent message and updates the third field of the
element for the message in its log to the rsn. Then, it
confirms fully logging of the message to its receiver,
which executes procedure Confirm-Recv(). If process p
attempts to take a local checkpoint, it calls procedure
Checkpointing(). In this procedure, LrsnInLchkptp is
updated to the rsn of the last message received before the
checkpoint. AGC() is the procedure executed when each
process attempts to initiate the forced garbage collection,
and CheckLrsnInLchkpt() is the procedure for forcing the
log information to become useless for future recovery.

3.3 Correctness

In this section, we prove the correctness of AGCS.

Lemma 1. If siq

j is created by message m from p to q
(p≠q) for all p, q ∈ P and then q takes its latest checkpoint
in siq

l (l ≥ j), e(m) need not be maintained in logp for q's
future recovery in the sender-based message logging.

Proof: We prove this lemma by contradiction. Assume
that e(m) in logp is useful for q's future recovery in case of
the condition. If q fails, it restarts execution from its latest
checkpointed state for its recovery in the sender-based
message logging. In this case, p need not retransmit m to q
because devq(m) occurs before the checkpointed state.
Thus, e(m) in logp is not useful for q's recovery. This
contradicts the hypothesis.

Fig. 4. Procedures for every process p in AGCA

Theorem 1. After every process has performed AGCS in
the sender-based message logging, the system can recover
to a globally consistent state despite process failures.

procedure MSend(data, q)
wait until(ENsendp is an empty set);
Lssnp ← Lssnp + 1;
send m(Lssnp, data) to q;
logp ← logp ∪ {(q, Lssnp, -1, data)};
LogSizep[q] ← LogSizep[q] + size of (q, Lssnp,
 -1, data);

procedure MRecv(m(ssn, data), sid)
if(LssnVecp[sid] < m.ssn) then {
 Lrsnp ← Lrsnp + 1;
 LssnVecp[sid] ← m.ssn;
 send ack(m.ssn, Lrsnp) to sid;
 ENsendp ← ENsendp ∪ {Lrsnp};
 deliver m.data to the application;
}else discard m;

procedure Ack-Recv(ack(ssn, rsn), rid)
find ∃e ∈ logp st ((e.rid = rid) ∧ (e.ssn =
 ack.ssn));
e.rsn ← ack.rsn;
send confirm(ack.rsn) to rid;

procedure Confirm-Recv(confirm(rsn))
ENsendp ← ENsendp - {rsn};

procedure Checkpointing()
LrsnInLchkptp ← Lrsnp;
take its local checkpoint on the stable storage;

procedure AGC(sizeOflogSpace)
participatingProcs ← Φ;
while sizeOflogSpace > 0 do
 if(there is r st ((r ∈ P)∧
 (r ∉ participatingProcs)∧(LogSizep[r] ≠ 0)
 ∧(max LogSizep[r]))) then {
 sizeOflogSpace←sizeOflogSpace-LogSizep[r];
 participatingProcs←participatingProcs∪{r};

 }

 T: for all u ∈ participatingProcs do {
 MaximumRsn ← (max e(m).rsn) st
 ((e(m) ∈ logp)∧(u = e(m).rid));
 send Request(MaximumRsn) to u;
 }
 while participatingProcs ≠ Φ do {
 receive Reply() from u st
 (u ∈ participatingProcs);
 for all e(m) ∈ logp st (u = e(m).rid) do
 remove e(m) from logp;
 LogSizep[u] ← 0;
 participatingProcs←participatingProcs-{u};

 }

procedure CheckLrsnInLchkpt(Request(MaximumRsn),q)
if(LrsnInLchkptp < MaximumRsn) then
 Checkpointing();
send Reply() to q;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

42

Proof: AGCS only removes the following useful log
information in the storage buffer of every process as
follows.

(Case 1): Process p for all p ∈ P removes any e(m) in logp.
In this case, it sends a request message with the rsn of the
last message, sent from p to e(m).rid, to e(m).rid. When
e(m).rid receives the request message with the rsn from p,
it checks whether the rsn is greater than
LrsnInLchkpte(m).rid.
(Case 1.1): The rsn is greater than LrsnInLchkpte(m).rid.
In this case, e(m).rid takes a checkpoint. Afterwards, e(m)
becomes useless for the sender-based message logging by
lemma 1.
(Case 1.2): The rsn is less than or equal to
LrsnInLchkpte(m).rid.
In this case, e(m).rid took its latest checkpoint after having
received m. Thus, e(m) is useless for the sender-based
message logging by lemma 1.

Thus, all the useful log information for the sender-based
message logging is always maintained in the system in all
cases. Therefore, after every process has performed AGCS,
the system can recover to a globally consistent state
despite process failures.

4. Simulation

In this section, we perform extensive simulations to
compare the proposed algorithm AGCA with the
traditional algorithm TGCA using simjava discrete-event
simulation language [7]. Two performance indexes are
used for comparison; the average number of additional
messages (NOAM) and the average number of forced
checkpoints (NOFC) required for garbage collection per
process. In the literature, these two indexes dominate the
overhead caused by garbage collection during failure-free
operation [5]. A system with 20 nodes connected through
a general network was simulated. Each node has one
process executing on it and, for simplicity, the processes
are assumed to be initiated and completed together. The
message transmission capacity of a link in the network is
100Mbps. For the simulation, 20 processes have been
executed for 72 hours per simulation run. Every process
has a 10MB buffer space for storing its logp. The message
size ranges from 50KB to 200KB. Normal checkpointing
is initiated at each process with an interval following an
exponential distribution with a mean Tckpt=360 seconds.
The simulation parameter is the mean message sending
interval, Tms, following an exponetial distribution.

Figure 5 shows NOAM for the various Tms values,
respectively. In these figures, we can see that NOAMs of
the two algorithms increase as Tms decreases. The reason
is that forced garbage collection should frequently be
performed because the high inter-process communication
rate causes the storage buffer of each process to be
overloaded quickly. However, NOAM of AGCA is much
lower than that of TGCA. AGCA reduces about 38% - 50%
of NOAM compared with TGCA.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

10 20 30 40 50 60

Tms

N
O
A
M

TGCA

AGCA

Fig. 5. NOAM vs. Tms

0

5

10

15

20

25

30

35

40

45

50

55

60

10 20 30 40 50 60

Tms

N
O
F
C

TGCA

AGCA

Fig. 6. NOFC vs. Tms

Figure 6 illustrates NOFC for the various communication
patterns for the various Tms values, respectively. In this
figure, we can also see that NOFCs of the two algorithms
increase as Tms decreases. The reason is that as the inter-
process communication rate increases, a process may take
a forced checkpoint when it performs forced garbage

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

43

collection. In the figure, NOFC of AGCA is lower than
that of TGCA. AGCA reduces about 25% - 51% of NOFC
compared with TGCA.
Therefore, we can conclude from the simulation results
that regardless of the specific communication patterns,
AGCA enables the garbage collection overhead occurring
during failure-free operation to be significantly reduced
compared with TGCA.

5. Conclusion

In this paper, we presented a garbage collection algorithm
AGCA for efficiently removing log information of each
process in causal message logging. AGCA allows each
process to keep an array to save the size of the log
information for every process in its storage by process. It
chooses a minimum number of processes to participate in
the forced garbage collection based on the array. Thus, it
incurs more additional messages and forced checkpoints
than our previous algorithm. However, it can avoid the
risk of overloading the storage buffers unlike the latter.
Moreover, AGCA reduces the number of additional
messages and forced checkpoints needed by the garbage
collection compared with the traditional algorithm TGCA.
From our simulation experiments, we can see that AGCA
significantly reduces about 38% - 50% of NOAM and 25%
- 51% of NOFC regardless of the communication patterns
compared with TGCA.

References

[1] J. Ahn, “Low-Overhead Garbage Collection Algorithm
for Sender-based Message Logging in Distributed
Systems,” International Journal of Computer Science and
Network Security, Vol. 5, No. 8, pp. 37-41, Aug. 2005.

[2] A. Bouteiller, F. Cappello, T. Herault, G. Krawezik, P.
Lemarinier and F. Magniette, “MPICH-V2: a Fault
Tolerant MPI for Volatile Nodes based on Pessimistic
Sender Based Message Logging,” In Proc. of the 15th
International Conference on High Performance
Networking and Computing (SC2003), November 2003.

[3] K. M. Chandy, and L. Lamport, “Distributed Snapshots:
Determining Global States of Distributed Systems,”
ACM Transactions on Computer Systems, 3(1): 63-75,
1985.

[4] D. B. Johnson and W. Zwaenpoel, “Sender-Based
Message Logging,” In Digest of Papers: 17th
International Symposium on Fault-Tolerant Computing,
pp. 14-19, 1987.

[5] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B.
Johnson, “A Survey of Rollback-Recovery Protocols in
Message-Passing Systems,” ACM Computing Surveys,
34(3), pp. 375-408, 2002.

[6] L. Lamport, “Time, Clocks, and the Ordering of Events
in a Distributed System,” Communications of the ACM,
21, pp. 558-565, 1978.

[7] R. McNab and F. W. Howell, “simjava: a discrete event
simulation package for Java with applications in

computer systems modeling,” In Proc. First International
Conference on Web-based Modelling and Simulation,
1998.

[8] M. L. Powell and D. L. Presotto, “Publishing: A reliable
broadcast communication mechanism”, In Proc. of the
9th International Symposium on Operating System
Principles, pp. 100-109, 1983.

[9] P. Sens and B. Folliot, “The STAR Fault Tolerant
manager for Distributed Operating Environments,”
Software Practice and Experience, 28(10), pp. 1079-1099,
1998.

[10] R. D. Schlichting and F. B. Schneider, “Fail-stop
processors: an approach to designing fault-tolerant
distributed computing systems,” ACM Transactions on
Computer Systems, 1, pp. 222-238, 1985.

[11] R. E. Strom, D. F. Bacon and S. A. Yemeni, “Volatile
Logging in n-Fault-Tolerant Distributed Systems,” In
Digest of Papers: the 18th International Symposium on
Fault-Tolerant Computing, pp. 44-49, 1988.

[12] R. E. Strom and S. A. Yemeni, “Optimistic recovery in
distributed systems,” ACM Transactions on Computer
Systems, 3, pp. 204-226, 1985.

[13] J. Xu, R. B. Netzer and M. Mackey, “Sender-based
message logging for reducing rollback propagation,” In
Proc. of the 7th International Symposium on Parallel and
Distributed Processing, pp. 602-609, 1995.

[14] B. Yao, K. -F. Ssu and W. K. Fuchs, “Message Logging
in Mobile Computing”, In Proc. of the 29th International
Symposium on Fault-Tolerant Computing, pp. 14-19,
1999.

JinHo Ahn received his B.S.,
M.S. and Ph.D. degrees in Computer
Science and Engineering from Korea
University, Korea, in 1997, 1999 and
2003, respectively. He has been an
Assistant Professor in department of
Computer Science, Kyonggi University.
His research interests include distributed
computing, fault-tolerance, mobile
computing systems, mobile agent

systems and sensor networks.

