
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

69

Manuscript revised January 26, 2006.

An efficient development method for plant control software

using algebraic specification and software components

Masakazu Takahashi†, Satoru Takahashi††, and Kazuhiko Tsuda††

†Shimane University, Nishikawatsu 1060, Matsue, Shimane, 690-8504 Japan
 ††Tsukuba University, Otsuka 3-29-1, bunkyo-ku , Tokyo, 112-0012 Japan

Summary
This paper proposes a method to efficiently develop Plant
Control Software (PCS) using software components. PCSs are
typically developed in individual order basis, and the
conventional component-based development methods have
difficulty of selecting appropriate software components based on
design specifications. The proposed method addresses this
problem by selecting software components using algebraic
design specification. We have developed a prototype of
Integrated PCS Development Environment (IPDE). This
integrated environment supports processes from requirement
definition through software implementation by gradually
detailing algebraic design specification. In the IPDE, an initial
requirement specification can be generated only by defining
characteristics of targeted PCS using its domain model. Using
this IPDE, even less experienced PCS developers can easily
develop PCSs. Furthermore, the IPDE improves development
efficiency and quality (especially adaptability and reliability) of
PCSs. As a result of applying the IPDE to the actual PCS
developments, the PCSs have been developed successfully using
software components, except input and output parts which
depend on hardware specification of control equipment. The
reused rate of the source code is 65[%], and the reduced rate of
development time is 58[%].
Key words:
Plant, control software, algebraic specification, software
components, integrated development environment.

1. Introduction

A plant is mechanical facility for manufacturing products
or for processing materials. Each plant has its own
manufacturing or processing method depending on the
intended purposes of customers. Accordingly, each Plant
Control Software (PCS), which is attached to plants, need
to have its specific functions. For this reason, PCSs are
developed individually for the targeted plants, and their
functions or performance vary depending on the
experiences of PCS developers. Especially, the
inconformity in PCSs causes the problems such as lower
reliability, longer development period, and larger cost.

To solve these problems and to develop PCSs keeping
a certain level of quality, development methods must
consistently support the processes from requirement

definition through implementation. These problems are
typically addressed with the methods such as CASE1) or
Domain Model2). However, these methods impose heavy
load on PCS developers to be familiar with software
development methodologies and models.

 In the area of software development, attention is
being given to software component-based development
methods. In this paper, we propose a PCS development
method which applies software components15). The
followings are the outline of the proposed method:
(i) Define the requirements for a PCS, using software

components for PCS prototype development.
(ii) Based on the requirement definitions, generate

requirement specifications described in algebraic
specification (Z language).

(iii) By taking an advantage of Z language which allows
hierarchical description, detail the requirement
specification hierarchically and create design
specifications for implementation.

(iv) Based on the detailed design specification, select
software components used for PCS development. In
this selection, the lists of function categories and
input/output data shall be used.

(v) Construct the targeted PCS by combining the selected
software components. Then customize the PCS for
specific requirements, if necessary.
We have developed a prototype of Integrated PCS

Development Environment (IPDE) which implements
the above stated method. As a result of applying the IPDE
to several PCS developments, the PCSs have been
developed consistently from requirement definition
through implementation, and the development efficiency
and the quality of the PCSs have been improved. The
reused rate of the source code on the software
component-based PCS developments is 65[%], and
reduced rate of development time is 58[%].

This paper is organized as follows: Chapter 2
discusses the problems and the solutions on PCS
developments. Chapter 3 explains how to create
requirement specifications for PCSs. Chapter 4 describes
the method to create preliminary and detailed designs.
Chapter 5 describes the method to select appropriate

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

70

software components. Chapter 6 evaluates the application
of IPDE on actual PCS developments. And Chapter 7
concludes the discussion and mentions about future work.

2. Problems and solution on PCS development

The following factors make it difficult to develop PCSs
using software components.

• Requirement specifications contain ambiguity because

they are described in natural language.
• Without guidelines or reference information, it is

difficult to fully define additional information used for
implementation design (preliminary and detailed
designs) of PCSs.

• There is a gap between software components and PCS
requirement specifications because the granularity
(function range to be covered) of software
components are too small.

To develop PCSs using software components based

on requirement specification, design details in preceding
processes must be transmitted to subsequent processes
accurately. This requires a language to describe design
details precisely. We use Z language which allows formal
specification description. Formal languages4),5),6) like Z
generally require the knowledge of advanced mathematics
and software engineering. In this proposed method,
however, the knowledge of Z language is not required
because it is used only for transmitting information
between processes (refer to phase 1 to 3 described below).
This enables wider application of this development
method. Moreover, the standardized interfaces between the
processes enable accurate transmission of design details. Z
language also allows hierarchical specification description.
In our proposed method, requirement specifications in Z
language are hierarchically detailed into preliminary and
detailed designs. This detailing process is repeated until it
reaches to granularity of software components. This
achieves seamless development environment.

To address the above mentioned three problems, this
method divides development processes into the following
three phases.

Phase 1: Describe requirement specification in Z

language.
PCSs require similar functions even if the control

targets or the control methods are different.1) Utilizing this
characteristic, describe the functions of requirement
specification in Z language in advance, then additionally
describe the inherent part of each PCS to complete the
PCS requirement specification.

Phase 2: Create design specification based on

guidelines.
Design PCS implementation based on the requirement

specification in Z language. Firstly, divide a plant into
sub-plants which represent the actual control units, then
classify them into two modules: sequence control and
feedback control. Next, divide the functions of each
module according to the predetermined design guidelines
and additionally define the information required for
implementation. Then output the results as PCS
implementation specification in Z language.

Phase 3: Construct the target PCS by combining

software components.
Based on the PCS implementation specification,

search for an applicable software component for each
function unit13). When no applicable software component
is found, either divides the function unit until the
applicable software component is found or develops new
programs for the function unit.

Fig.1 shows the outline of the proposed PCS development
method.

Creation of
Requirement
Specification

Preliminary
&

Detailed
Design

Selection &
Combination
of Software
Components

Input:
User

Requirement

Phase 1: Creation
of Requirement
Specification

Phase 2: Preliminary
Design & Detailed

Design

Phase 3: Implementation

Output:
Object
PCS

: PCS Development Process

: Output of every Process

Z’s
Requirement
Specification

Z’s Design
Specification

Adapted
Software

Components
List

Customizing
Parameters
Of Software
Components

Fig.1 Outline of proposed PCS development method

3. Problems and solution on PCS development

PCSs are normally composed with three modules:
sequence control, feedback control, and input/output. The
input/output interfaces of control equipments are not
determined at requirement specification phase. At this
phase, functions, performance, and sequences of PCS need
to be defined. This chapter discusses how to describe
requirement specification of sequence control and
feedback control modules in Z language.

3.1 Requirement Specification of Sequence control

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

71

Module in Z Language

Fig.2 shows a natural language version of requirement
specification for PCS sequence control module. This
specification consists of four sections which describe:
sequences, values to be output to machine on each process,
and machines in plant and its input/output (sensor input
and operational volume output). Now we discuss the
standardization of data structure to formalize requirement
specification of sequence control module.

0,“start”,5,””,””,----
5,“transporter position initialize”,10,“transporter position > 190”,

10,“vacuum pumping start”,20,“intake valve =open”,”exhaust valve = open"

Sequence
(state ID, state name, next state ID, transition condition, --)

“a”,”transporter”
“a”,”heater”
“d”,”intake valve”
“d”,”exhaust valve”

Machine list

0,“transporter velocity","0"

0,“heater power","0"

0,“intake valve”,“open”

0,“exhaust valve”,“open”

5,“transporter speed”,"100"

5,“heater power”,"0"

5,“intake valve”,“open"

5,”exhaust valve”, “open”

Machine output
(state ID, machine, output)

Carry out below operation to all digital machine
Pass over the output value in current state ID to machine

Digital control

Carry out below operation to all analog machine
Pass over the output value in current state ID to machine

Analog control

Check the transition condition in the current state
If achieve, transit to next state ID
current state ID = next state ID

Sequence control

“a”,”transporter position“
“d”,”intake valve status”
“d”,”exhaust valve status“

Measurement data list

: data description

: specification description

0,“start”,5,””,””,----
5,“transporter position initialize”,10,“transporter position > 190”,

10,“vacuum pumping start”,20,“intake valve =open”,”exhaust valve = open"

Sequence
(state ID, state name, next state ID, transition condition, --)

“a”,”transporter”
“a”,”heater”
“d”,”intake valve”
“d”,”exhaust valve”

Machine list

0,“transporter velocity","0"

0,“heater power","0"

0,“intake valve”,“open”

0,“exhaust valve”,“open”

5,“transporter speed”,"100"

5,“heater power”,"0"

5,“intake valve”,“open"

5,”exhaust valve”, “open”

Machine output
(state ID, machine, output)

0,“transporter velocity","0"

0,“heater power","0"

0,“intake valve”,“open”

0,“exhaust valve”,“open”

5,“transporter speed”,"100"

5,“heater power”,"0"

5,“intake valve”,“open"

5,”exhaust valve”, “open”

Machine output
(state ID, machine, output)

Carry out below operation to all digital machine
Pass over the output value in current state ID to machine

Digital control

Carry out below operation to all analog machine
Pass over the output value in current state ID to machine

Analog control

Check the transition condition in the current state
If achieve, transit to next state ID
current state ID = next state ID

Sequence control

“a”,”transporter position“
“d”,”intake valve status”
“d”,”exhaust valve status“

Measurement data list
“a”,”transporter position“
“d”,”intake valve status”
“d”,”exhaust valve status“

Measurement data list

: data description

: specification description

Fig.2 Sample of requirement specification in natural language (sequence)

At first, we consider the data structure of sequence

control module. The sequences of plant are described as
state transition tables. The state of plant means "the unit to
uniquely distinguish the plant by the combination of
hardware components' states, such as location of machine
or On/Off of switches". The transition means "to transit
the state of plant from A to B by changing the states of
hardware components". In here, transition criteria are
defined as "conditions to trigger a transition" such as "if
the power of the heater is On" or "if the ambient
temperature is higher than 300[K]". Generally, the relation
between state and transition criteria is one-to-many
because more than one criterion needs to be satisfied to
trigger one state transition.

At second, we consider the data structure of output
module. According to the above definitions, the output to
each machine is defined for each state. The relation
between a state and machines is one-to-many because
more than one machine needs to be controlled by sequence
control. Since a machine has multiple control output ports
(for control signals), the relation between a machine and
control output ports is also one-to-many. Again, a machine
and sensors attached to it are one-to-many relation. The
data structure of sequence control module according to the
above is shown in Fig.3.

Process Control
Table
State ID
State Name
Next State ID

……
State Transition
Table
State ID
Next State ID
Transition

Condition ID
Transition

Condition ……

Equipment
Output Table
State ID
Equipment ID
Equipment Type
Port ID
Output ID
Output Value

……
Equipment Table
Equipment ID
Equipment Name
Equipment Type

Digital Sensor Table
Equipment ID
Digital Sensor ID
Digital Sensor

Name
Measured data

……

Digital Output Port
Table
Equipment ID
Digital Output ID
Digital Data Name
Digital Output

Value
……

Plant
Configuration Table
Equipment ID
Parent

Equipment ID
Child

Equipment ID

1

m

m

11

m

1

1

m

m

1
m

Analog Sensor Table
Equipment ID
Analog Sensor ID
Analog Sensor Name
Analog Sensor Range
Measured data

……

Analog Output Port
Table
Equipment ID
Analog Output ID
Analog Data Name
Range
Analog Output Value

……

m

1
m

１ 1

1

m

Target Management
Table
State ID
Equipment ID
Target Value

……

Control Formula
Management Table
Equipment ID
Operational

Variable
State Variable
P coefficient ……

1m

1

m 1

1

1

mm(+)

(+)
1

“1”,“m” shows multiplication.*1 :
*2 :
*3 :
*4 :

“ ” Shows Tables related to Process Control.
“ “ Shows Tables related to Feedback Control.
“ ” Shows common Tables.

Fig.3 PCS data structure – extracted –

//Data Definition Part
define data: machine data
//Machine Table Data (Machine Name)
“Transporter"

………………..
define data: measured data
//Sensor Data List (Machine Name, Measured Data Name, Data Type, Data Unit)
“Transporter",“Transporter Position”,“Analog","mm"
“Transporter",“Transporter Power Unit“,“Digital","on=1/off=0"

………………..
define data: output port data
//Output port List (Machine Name, Output Port Name, Data Type, Data Unit)
“Transporter",“Transporter Motor RPM“,“Analog",“RPM”
“Transporter",“Transporter Power Unit“,“Digital","on=1/off=0"

………………..
define data: sequence control output data
//Sequence Output Data (State ID,Machine Name, Output Port, Output Value)
0,“Transporter",“Transporter Motor RPM",0.0
0,“Transporter",“Transporter Power Unit",0

………………..
//Function Definition Part
define function: analog output
//Specification of Analog Output Management
“Get Output Port Name and Output Value that is shown at Machine ID and State ID."
“Output Output Value through Output Prot that is shown Machine ID, State ID and Output Port Name.”

Fig.4 Sample of requirement specification in Z (sequence)

//Data Definition Part

State ID={0, 5, 10….} //Definition of State ID

Machine Name={Transporter, Pump,…..} //Definition of Machine Name

Machine ID={1001, 1002,…..} //Definition of Machine ID

Output Port Name={Transporter Motor RPM, ….} //Definition of Output Port

Output Port ID={101, 102,…..} //Definition of Output Port ID

Analog Output =(State ID x Machine ID x Output Port ID) //Definition of
|->Output Value //Analog Output Data Type

Analog output={(0, 1001, 101)|->0.0, (0, 1002, 102)|-> 0.0,…..} //Definition of Analog Output

//Function Definition Part
-- Analog Output

//Definition of Analog Variables
State ID?, Analog Machine ID?, Analog Output?, Output Value!

//Prediction of Analog Output Management

State ID?=0 and Analog Machine ID?=1001 and Output Port ID?=101
=>Output Value! = Analog Output

…………………………………………………………………………..

Fig.5 Requirement specification using template in Z (sequence)

At third, we consider the functions of sequence control
module. The required functions are as follows:

(i) analog and digital measurement functions to read the

values from sensors attached to machines,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

72

(ii) process management function to verify if transition
criteria are satisfied and to decide the state after the
transition, using current state ID as a key, and

(iii) analog and digital data control functions which
determine the values to be output to each machine,
using current state ID as a key.

Fig.4 shows an example of these functions described

in Z language. The analog sensor value in data definition
section is the value measured from sensor and it is variable.
The other values are constants since they are determined
uniquely depending on the process or the machine
configuration. The schema such as sequence control or
analog control section is fixed for every plant. Therefore,
if a template in Z language is described in advance, PCS
requirement specification of sequence control module can
be created only by changing the sensor value and the
constants. Fig.5 shows the resulted output using this tool.

“a”,”heater temperature”

State volume

Out put heater current and heater voltage to
the predefined analog IO port.

Analog output

Get target value in the current state ID.
Calculate heater current and heater voltage using
PID logic to become deviation between current and
target value of heater temperature to zero.

Feedback Control

“a”,”heater current”
“a”,”heater voltage”

Operational volume

0,“heater temperature”,“0”

5,“heater temperature”,“80”

10,“heater temperature”,“160”

Machine output
(state ID, machine, value)

: data description

: specification description

“a”,”heater temperature”

State volume

Out put heater current and heater voltage to
the predefined analog IO port.

Analog output

Get target value in the current state ID.
Calculate heater current and heater voltage using
PID logic to become deviation between current and
target value of heater temperature to zero.

Feedback Control

“a”,”heater current”
“a”,”heater voltage”

Operational volume

0,“heater temperature”,“0”

5,“heater temperature”,“80”

10,“heater temperature”,“160”

Machine output
(state ID, machine, value)

: data description

: specification description

Fig.6 Sample of requirement specification in natural language (feedback)

//Definitions of state Variables and Operational Variables of Each Machine for Feedback Control

define data: machine data
//Machine Table Data(Machine Name)
“Heater”

……….
define data: measured data
//State Variables(Machine Name, Sensor Name, Data Type, Data Unit)
“Heater”,“Heater Temperature”,“analog”, “degree”

……….
define data: output port data
//Operational Variables(Machine Name, Output Port Name, Data Type, Data Unit)
“Heater”,“Heater Current”, “Analog”, “Ampere”
“Heater”,“Heater Voltage“, “Analog”, ”Volt”

……….
define data: feedback output data
//Target Value (State ID, Machine Name, Output Port Name,Target Value)
0, “Heater”, “Heater Temperature”, 30.0

……….

//Description of Control Method
define function: Feedback Control Output
//Specification of Feedback Control
“Get Target Value that is shown at Machine ID, State ID and Output Port Name”
“Calculate Heater Current and Voltage in order to make Difference between State Value and Target Value”
“Output Heater Current and Heater Voltage through the Output Port

that is shown at Machine ID and State ID”
Fig.7 Sample of requirement specification in Z (feedback)

3.2 Requirement Specification of Feedback Control
Module in Z Language

At the phase of creating requirement specification for
PCSs, it is important to efficiently define state variables,
operational variables, and outline of control method. Fig.6
shows the requirement specification of feedback control
module, which is created using software components. This

specification consists of two sections: the definitions of
state variables and operational variables of each machine
for feedback control, and the description of control method.
At this phase, it is difficult to further clarify the
specification since the detailed control method is not
determined yet. Therefore, this specification is described
as schema in Z language as it is. Fig.7 shows the result.
Fig.8 shows the resulted requirement specification of
feedback control module using this tool.

4. Preliminary and detailed design method for
PCS

This chapter describes a method to create PCS preliminary
and detailed designs based on the PCS requirement
specification in Z language. At this phase, the additional
information required for PCS development are defined and
added to the requirement specification. By referring one of
the representative software development standards,
"NASDA Software Development Standard (below,
NASDA Standard. Now, NASDA is called JAXA.)"7), we
discuss what kind of information need to be additionally
defined and in which sequence. NASDA Standard
divides development in five phases: requirement
specification, preliminary design, interface specification,
detailed design, and database file specification. Table 1
shows the outline of NASDA Standard.

The development standard of our proposed method
("the proposed standard") differs from NASDA Standard
in the following two ways.

Table 1 Outline of NASDA standard for software development

Development
phase

Developed
document

Contents which have to decide
in document

Requirement
definition

Requirement
specification

System operational procedure,
required functions, size,
processing time

Preliminary
design
specification

Functional configuration, state
transition, data and control
flow, global variables,
functional design, outline of
input/output data, assignment
of size and processing time

Preliminary
design

Interface
design

Input/output data, input/output
interface

Detailed
design
specification

Module configuration, detailed
data and control flow, module
design, detailed input/output
d t

Detailed
design Database

design
specification

Outline of data file, data model

 The proposed standard combines preliminary design

and interface specification into one document, while
NASDA Standard creates them separately at the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

73

preliminary design phase.
 The proposed standard creates database definition at

requirement specification phase, while NASDA
Standard creates it at the detailed design phase.

The development standard of our proposed method

differs from NASDA Standard in the following two ways.

 The proposed standard combines preliminary design
and interface specification into one document, while
NASDA Standard creates them separately at the
preliminary design phase.

 The proposed standard creates database definition at
requirement specification phase, while NASDA
Standard creates it at the detailed design phase.

In the proposed standard, the following two tasks are

carried out at preliminary design phase.

[Preliminary 1]:

Clarify motion functions described in requirement
specification.

[Preliminary 2]:

Clarify input/output data of each function.

The following two tasks are carried out at detailed
design phase.

[Detail 1]:

Divide functions described in preliminary design.

[Detail 2]:

Design input/output data physically.

The following sections discuss methods to create
preliminary and detailed designs.

4.1 Preliminary and Detailed Design Tools for
Sequence control Module

This section discusses a method to create preliminary and
detailed designs of sequence control module.

The sequence control module performs motion control
output during the sequence predefined for a plant. The
contents of the sequence, such as states, transition criteria,
and motion control output, are already described in
requirement specification phase, which means no
preliminary design task is required for sequence control
module. In detailed design phase, the following tasks
should be carried out according to the above stated
definitions.

[Detail 1]:
Divide a plant into sub-plants, which are the actual

units to be controlled. Then divide the sequences (states,
transition criteria, and motion control output of entire
plant) and assign them to each sub-plant accordingly. The
dependent relations must be assigned between the
sub-plants and the entire plant (for example, Sub-plant A1
belongs to Plant A). Fig.9 shows sequence data input
screen using SCDT (explained below).

[Detail 2]:

Describe the valid digits and the port output format of
output values. Those should be clarified through the
preceding design work.

Fig.9 Sequence input screen using SCDT

Sub-Plant
Division Tool

Sub-Sequence
Division Tool

Z Language
Transformation Tool

SCDT

(1)Equipment Table
(2)Digital Output Port Table
(3)Digital Sensor Table

(4)Analog Output Port Table
(5)Analog Sensor Table

(6)Sequence Control Table
(7)Equipment Output Table
(8)State Transition Table (1)Divided Digital Output Port

Table

Output Data

(2)Divided Digital Sensor Table
(3)Global Digital Variables
(4)Local Digital Variables
(5)Divided Analog port Table
(6)Divided Analog Sensor Table
(7)Global Analog Variables
(8)Local Analog Variables
(9)Divided Process Control Table
(10)Divided Equipment Output

Table
(11)Divided State Transition Table(1)Global digital Variables that is introduced expediently

(2)Global analog variables that is introduced expediently
(3)Global digital variables that belongs to other equipment
(4)Global analog variables that belongs to other equipment

Sensor Data(Global Data)

Fig.10 Outline Of SCDT

We have developed Sequence control Design Tool

(SCDT) based on the above tasks. Fig.10 shows the
outline of SCDT. SCDT divides a plant into sub-plants and
assigns dependent relations to them, using machine
configuration table (included in PCS requirement
specification in Z language). Based on the defined
sub-plant configuration, SCDT divides states, transition

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

74

criteria, and motion control output table for each sub-plant.
Finally, SCDT converts the created design into Z language
and output it as PCS implementation specification.

4.2 Preliminary and Detailed Design Tools for
Feedback Control Module

This section discusses a method to create preliminary and
detailed designs of feedback control module.

Feedback control module calculates motion controls
(operational volume) and output them to machines. The
operational volume is calculated based on the sensor
values (state volume) of the machines and its targeted
control value8). In most cases, a formula to calculate
motion controls is not determined at requirement
definition phase. Therefore, the specification is determined
at preliminary and detailed design phases. The following
tasks should be carried out according to the above stated
definitions.

[Preliminary 1]:

Define the functional outline of motion control
formula by describing calculation method with control
block diagrams such as proportional, differential, and
integral. Fig.11 shows motion control formula input screen
using FCDT (explained below).

[Preliminary 2]:

Describe additional information regarding operational
volume and state volume which are clarified through the
preceding design work.

[Detail 1]:

Describe detailed functions required for PCS
development, such as delays, filters, and saturation, and
add them to the control block diagrams created in
[Preliminary 1]. Then define data transmission between
block diagrams.

[Detail 2]:

Describe the valid digits and the port output format of
output values. Those should be clarified through the
preceding design work.

We have developed Feedback Control Design Tool
(FCDT) based on the above tasks. Fig.12 shows the
outline of FCDT. Based on input/output data of formal
requirement specification and motion control output
formulas, FCDT describes motion control formulas using
feedback control components (block diagrams). The block
diagrams become more sophisticated by detailing them
repeatedly. Finally, FCDT converts the created design into
Z language and output it as PCS implementation
specification.

5. Software Components Selection Method

In our proposed method, PCSs are developed by
combining software components selected from detailed
specification in Z language. The well-known software
components selection methods are Faceted Classification9)
and Specification Matching10), 11).

Fig.11 Motion control formula input screen using FCDT

Feedback Control
Formula

Creation Tool

Z Language
Transformation Tool

FCDT
(6)Control formula Management Table
(7)Target Value Management

Table

Input Data

Output Data

(1)Global digital Variables that is introduced expediently
(2)Global analog variables that is introduced expediently
(3)Global digital variables that belongs to other equipment

(4)Global analog variables that belongs to other equipment

(1)Equipment Table
(2)Digital Output Port Table
(3)Digital Sensor Table
(4)Analog Output Port Table
(5)Analog Sensor Table

(1)Divided Digital Output Port
Table

(2)Divided Digital Sensor Table
(3)Global Digital Variables
(4)Local Digital Variables
(5)Divided Analog port Table
(6)Divided Analog Sensor

Table
(7)Global Analog Variables
(8)Local Analog Variables

Sensor Data (Global Data)

Fig.12 Outline FCDT

Our method selects and combines software

components based on:

 input/output interface specification of software
components, and

 function classification added by users.

5.1 Software components selection algorithm

This section explains about component lists (shown on
Table 2) which manage software components (shown on
Figure 13), and then describes the algorithm for selecting
software components.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

75

Table 2 Outline of software component list
Component Functio

-nal
classify
-cation

Input/
Output

IF

ID Name
Functional
explanation

OS
IN;
Count:
int

OS1 OsCycle

Accumulate clocks
counts, and create
defined control
cycle.

OS

IN;
Seq: char
OUT;
ET: real

OS2 OsExe

Execute software
components
according to the
predefined

--- --- --- --- ---

Task
Management
Watch Dog

Loop

State
Management

Creation
Transition
Condition
Transition

Check

Proportional
Control

Differential
Control
Integral
Control

First Delay
Second Delay

Saturation

Input Limiter

Output limiter
Differential

Limiter

Output timing
Management

Output
Compensation
Target Value

Pattern
Creation

Accumulator

And Circuit

Or Circuit
Xor Circuit
Compare

Check

Switch

Analog Output
Management

Analog Output

Analog Output
Driver

Analog Input

Analog Input
Driver

Digital Output
Management

Digital Output

Digital Output
Driver

Digital Input

Digital Input
Driver

Engineering
Unit

Transform

Command
Transmit
Driver

Command
Receive
Driver

Data Editing

Data Analysis

Data Transmit
Driver

Data receive
Driver

Instruction
Test

ROM Test

RAM Test

Timer Test

Closed Loop
IF Test

Common
Inspection

Malfunction
Code Output
Individual
Inspection

Equipment
Check Value
Management
Equipment

Check
Output

Test Data
Input

Equipment
Check

Output DriverEmergency
Stop

Emergency
Stop

output Driver

Fault Detection and RecoverFeedback ControlSequence Control

Execution Control Input/Output State Indication

Cycle
Management

Exterior
Interface
Command
Transmit
/Receive

Management

Fig.13 Software Component List

Detailed specification in Z

Schema: sort_XXXX

x,y,z:integer

Variables: x?,Y?,Z!

……

Step1: Extract functional classification of detailed
specification in Z from schema. => sort

Functional
classification

Input/output IF
information

Component
ID

Component
name

sort Input; x,y : int
Input; z : int s001 intSort

soat Input; x,y : real
Output; ｚ: real s002 relSort

--- --- --- ---

Match functional classification in detailed
specification and functional classification in
component list, and narrow down

Functional
classification

Input/output IF
information

Component
ID

Component
name

sort Input; x,y : int
Output; z : int s001 intSort

Step2：match input/output
variables in schema and
input/output variables in
component list, and select
applicable components.

Component list

Component list

Final candidate of applicable components
Fig.14 Software components selection method

Component lists contain input/output interface

information and function classification information. The
input/output interface information is composed using
argument information of software components provided by
the authors. The input/output data and their data types are
listed in the interface information column. The function
classification column contains the functional outlines of
software components. Users can select this information

from classification candidates and add it to the component
list when registering software components to the list.

software components are selected in the following
steps (see Fig.14):

[Step 1]:

Decide best matching function classification for each
schema in PCS detailed specification, and match them
with function classification on the component list. Then
every software components which belongs to the matched
function classification are listed.

[Step 2]:

Narrow down the candidates of software components
by matching input/output interface on the component list
and on the detailed specification. This matching uses
information such as number of variables or data types.

[Step 3]:

When more than one software components is found,
all of them are listed and a user selects an appropriate one
considering performance and data area size. When no
software component is found, the schema part of detailed
specification must be reviewed.

5.2 Software component selection and combination
Tool

Fig.15 shows the outline of software Component Selection
and Combination Tool (SSCT).

Functional Classification
Extract Tool

Schema (Name)

Functional Classification
Matching Tool

SCI List
(Functional Classification)

I/F Matching Tool

Final Candidate for SCI

Schema(Input/Output I/F)

SCI List（Input/Output I/F）

Functional
Classification

Input/Output
Interface SCI ID

Sort IN ：x,y : int
OUT：ｚ: int s001 intSort1

Sort IN：x,y : int
OUT：ｚ: int s002 intSort2

………. ………. ….. …..

SCI Library

intSort1

intSort2

Component List

SSCT

Selected SCI List

Functional Classification

SCI Name

Fig.15 Outline of SSCT

SSCT selects an appropriate function classification

from component list using schema in detailed
specifications. We have established the naming rules for
schema which enable users to distinguish unknown
functions. We also created the thesaurus of function
classification to improve an efficiency of software
component selection. This thesaurus enables users to select

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

76

similar components even if no component matched exactly.
SSCT then selects an appropriate component by matching
interfaces. When more than one candidate is found, SSCT
lists all of them and allows user to select one.

6. Application and evaluation of Integrated
PCS development environment

This chapter describes and evaluates the results of
applying Integrated PCS Development Environment
(IPDE), which combines SCDT, FCDT, and SSCT, to
actual PCS developments.

We have applied the IPDE to five plant developments
(Plat A to E). Table 3 shows the number of applied
software components, Table 4 shows the reused rate of
source codes, and Table 5 shows the development time
[hours] of each development. The reused rate and the
development period are defined as below12), 14):

Table 3 Number of existing and newly developed software components
Components
of sequence
control type
sub-plants
[pieces]

Components
of Feedback
control type
sub-plants
[pieces]

Components
of other parts

[pieces] Plant
Name

Reus
-ed

New
-ly

Reus
-ed

New
-ly

Reus
-ed

New
-ly

RR_
CM
[%]

A 34 31 49 11 8 5 66
B 24 22 27 8 8 3 64
C 17 16 124 29 8 3 76
D 17 15 51 13 8 5 69
E 44 40 34 15 8 7 58

Table 4 reused source code [LOC] of each development

LOC of
sequence

control type
sub-plants

[LOC]

LOC of
Feedback

control type
sub-plants

[LOC]

LOC of
other parts

[pieces] Plant
Name

Reus
-ed

New
-ly

Reus
-ed

New
-ly

Reus
-ed

New
-ly

RR_
CD
[%]

A 6907 3917 2418 897 449 105 67
B 7108 4554 1574 731 449 81 63
C 4159 2740 6106 3101 449 465 63
D 5016 2501 2346 1297 449 282 65
E 8688 5061 3604 1528 449 303 65

Table 5 development time [hours] of each development

Plant name Development
time in

established
method

Development
time in

proposed
method

RR_TM
[%]

A 548 222 60
B 720 323 55
C 396 163 59
D 387 163 58
E 751 315 58

(1)

 (2)

 (3)

RR_CM: Reused rate in Components.
Nrcm: Number of reused components
Nncm: Number of newly developed components
RR_CD: Reused rate in LOC (Lines Of Codes)
Nrloc: Number of reused LOC
Nnloc: Number of newly developed LOC
RR_DT: Reduced rate in Development time
DTppm: Development time (requirement definition,

preliminary design, detailed design,
programming, verification) in proposed method

DTesm: Development time (requirement definition,
preliminary design, detailed design,
programming, verification) in established
method

Video Switch
Power Unit Status

CCD Camera
Transfer Speed

Valve Status

CCD Camera
Power Unit Status

CCD Camera
Power Unit

Valve Controller

Video Switch
Power Unit

CCD Camera
Transporter

Fluid Thermal
Control

Fluid Temperature

Hardware
Of Plant A

Control Panel
MIL-STD1553BI/F

Data Indicator
RS422I/F

Exterior Interface

Exterior Interface

Output To Feedback
Control Machine

Input From Feedback
Control Machine

Input From Sequence
Control Machine

Output To Sequence
Control Machine

Video Switch
Power Unit Status

CCD Camera
Transfer Speed

Valve Status

CCD Camera
Power Unit Status

CCD Camera
Power Unit

Valve Controller

Video Switch
Power Unit

CCD Camera
Transporter

Fluid Thermal
Control

Fluid Temperature

Hardware
Of Plant A

Control Panel
MIL-STD1553BI/F

Data Indicator
RS422I/F

Exterior Interface

Exterior Interface

Output To Feedback
Control Machine

Input From Feedback
Control Machine

Input From Sequence
Control Machine

Output To Sequence
Control Machine

Fig.16 outline of plant A

Video Power
Status Digital

Input

Cycle
Management

Task
Management
Watch Dog

Loop

Plant A State
Management

Plant A
Creation
Transition
Condition
Plant A

Transition
Check

CCD Camera
Transport

Analog Output
management
CCD Camera

Transport
Speed

Analog Output
CCD Camera

Transport
Speed Output

Driver

CCD Camera
Transport
Speed E/U
Transform

Fluid Temp
Proposal
Control

Fluid Temp
Derivative

Control
Fluid Temp

Integral
Control

Measured
Temp

1st Delay

Fluid Temp
Integral

Saturation

Heater
Current

Output Limiter

Creation
Control

Target Pattern

AND Circuit

OR Circuit
CCD Camera

Transport
Speed

Input DriverHeater
Voltage

Output Limiter

Fluid Temp
E/U

Transform

Fluid Temp
Input Driver

Heater
Voltage

Output Driver

Heater Current
Output Driver

Electric Valve
Digital Output
management

Video Power
Digital Output
Management

Electric Valve
Digital Output

Video Power
Digital Output

Electric Valve
Digital Output

Driver

Electric valve
Status Input

Driver

Video Power
Status Input

Driver

Instruction
Test

ROM Test

RAM Test

Timer Test

Inspection

Malfunction
Code Output

Equipment
Check Value
Management
Equipment

Check Output
Equipment
Check Test
Data Input

Emergency
Stop

Emergency
Stop Output

Driver

Equipment
Check output

Driver

Execution
Control

Sequence
Control

Feedback
Control

Electric Valve
Open/Close

Check
Video Power
On/Off Check
CCD Camera
Power On/Off

Check

Analog In/Output Digital In/Output

Engineering
Unit Transform

Filtering

MIL-STD
1553B

Command T/R
management

MIL-STD
1553B

Transmit
Driver

MIL-STD
1553B

Receive
Driver

Data Editing

Data Analysis

RS422 Data
Transmit

Driver
RS422 Data

Receive
Driver

Exterior Interface

State indicator

Control Equipment
Function Check

Inspection

Equipment Check

Emergency Stop

Video power
Output Driver

CCD Camera
Transport

Speed Analog
Input

Electric Valve
Status Digital

input

Heater Power
Analog Output

Heater Current
Analog Output

Fluid Temp
Analog Input

CCD Camera
Power Digital

Output
Management
CCD Camera

Power
Digital Output

CCD Camera
Power Status
Input Driver

CCD Camera
Power On/Off
Output Driver
CCD Camera

Power
Digital Input

Fig.17 PCS configuration of plant A

⎟
⎠
⎞

⎜
⎝
⎛ −×=

+
×=

+
×=

DTesm
DTppmDTRR

NnlocNrloc
NrlocCDRR

NncmNrcm
NrcmCMRR

1100_

100_

100_

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

77

∑
∑

∑

×+×+=

+×+×+++=

+×++
×+++=

)2174699(

)512)70104()86562((
))(
)()((

NslsNsmp

NslsNsmp
LslaNslsLsidLslp

NsmpLsliLslmLsloLslcTLs
Fig.16 shows the hardware configuration of plant A,

and Fig.17 shows the PCS configuration of plant A as an
example.

6.1 Evaluation of Reused Rate and Lines Of Codes
(LOC)

We evaluate the reused components, reused LOC and
reduced time in each sub-plant. This is because each
sub-plant is separately developed in PCS developments
and the scales of PCSs are proportional to the number of
sub-plants. Additionally, we discuss sequence control type
(S-type) and feedback control type (F-type) of sub-plants
separately.

S-type PCS is composed of sequence and
measurement modules. The sequence module consists of
sequence management, output value management, and
output drivers. And the measurement module consists of
sensor measurement, engineering value conversion, and
input drivers. The functions such as sequence management,
output value management, sensor measurement, and
engineering value conversion are implemented with
software components. Input/output drivers must be
developed because they depend on input/output interface
of control equipment. Sequence management contains
sequence data, and output value management contains
output value data, which are used for customization. One
line of sequence management data represents one state as a
set of a state, transition criteria, and a state after the
transition. One line of output value management data
represents values to be output to sub-plants in one state.

The number of software components in S-type PCS is
calculated as below. Σ represents a sum total of all
sub-plants.

(4)

TNsc: Total number of S-type software components
Nsc: Number of S-type software components
Nsco: Number of S-type output driver components
Nscm: Number of S-type software components for

measurement
Nsci: Number of S-type input driver components for

measurement
Nsmp: Number of S-type measurement points

Accordingly, the total LOC for S-type PCS is
calculated as below. The LOC for input/output drivers are
mean values of Plant A to E.

(5)

TLs: Total LOC for S-type software components
Lslc: LOC for S-type software components
Lslo: LOC for S-type output drivers
Lslm: LOC for S-type output software components

for measurement
Lsli: LOC for S-type input drivers
Nsmp: Number of S-type measurement points
Lslp: LOC for sequence management data per one

state
Lsid: LOC for output measurement data per one state
Nsls: Number of state transitions
Lsla: LOC appended or modified

Based on (5), the calculated numbers of codes in Plant
A to E are 11030 [LOC], 11911 [LOC], 7028 [LOC], 7388
[LOC], and 14242 [LOC] respectively. The errors are
within 5 [%] between the calculated values and the actual
values shown in Table 4. This is because that the total
LOC for software components can be calculated accurately,
and that the total LOC for newly developed portion is
small and its estimation error is around 15 [%]. Therefore,
the total LOC for S-type PCS is estimated based on (5).

F-type PCS is composed of modules such as
proportional, differential, integral, delay, limiter, switch,
output timing management, measurement, AND, OR, input
drivers, and output drivers. The twenty types of modules
such as proportional, differential, integral, delay, limiter,
switch, AND, OR, output timing management, and
measurement are implemented with software components.
Input/output drivers must be developed because they
depend on control methods and input/output interface of
control equipment. F-type PCSs use similar set of software
components, although the components are used in different
order to accomplish appropriate control. F-type PCSs
contain data (coefficients and time constants) used for
customizing PID control, however, they can be ignored
since the data volume is small as compared to the total
LOC for software components and newly developed
portion. The number of software components and LOC in
F-type PCS are calculated as below. Σ represents a sum
total of all sub-plants.

 (6)

TNfc: Total number of F-type software components
Nfc: Number of F-type software components

∑
∑

×+=

×+++=

)23(

))((

Nsmp

NsmpNsciNscmNscoNscTNsc

∑
∑

×+=

×+++=

)221(

))((

Nfmp

NfmpNfciNfcmNfcoNfcTNfc

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

78

Nfco: Number of F-type output driver components
Nfcm: Number of F-type software components for

measurement
Nfci: Number of F-type input driver components
Nfmp: Number of F-type measurement points

(7)

TLｆ: Total LOC for F-type software components
Lflc: Number of codes for F-type software

components
Lflo: Number of codes for F-type output drivers
Lflm: LOC for F-type software components for

measurement
Lfli: LOC for F-type input drivers
Ｎfmp: Number of F-type measurement points
Lfla: LOC appended or modified

Based on (7), the calculated numbers of codes in Plant
A to E are 3192 [LOC], 2185 [LOC], 8766 [LOC], 3538
[LOC], and 4914 [LOC] respectively. The errors are
within 5 [%] between the calculated values and the actual
values shown in Table 4. This is because that the total
LOC for software components can be calculated accurately,
and that the total LOC for newly developed portion is
small and its error estimation is around 15 [%].

The other parts are composed of cycle management,
task management, control equipment operation check,
machine operation check, abnormal interrupts, and
emergency machine stop. The functions such as cycle
management, task management, and control equipment
operation check are implemented with software
components. Machine operation check, abnormal
interrupts, and emergency machine stop are the functions
inherent in each plant. Because the LOC for these inherent
functions cannot be determined, we estimate it as mean
value of Plant A to E, which is 247 [LOC]. The total LOC
for the other parts is calculated as below:

696247449 =+=+= TloliTLolcTLo (8)

Tlo: Total LOC for other parts
TLolc: Total LOC for the other software components
TLols: Total LOC for the other inherent parts of a plant.

Based on Formula (5), (7) and (8), the total LOC for a
PCS is calculated as below.

(9)

TLp: Total LOC for PCS

Based on (9), the calculated total LOC in Plant A to E
are 11068 [LOC], 7028 [LOC], 11911 [LOC], 7339 [LOC],
and 14357 [LOC] respectively. The errors are within 10
[%] between the calculated values and the actual values
shown in Table 4. This result indicates that (9) is
applicable to estimate total LOC for PCSs.

Based on (2), the reused rate in Plant A to E are 67
[％], 64 [％], 63 [％], 65 [％], and 65 [％] respectively,
and the average is 65 [％]. In here, input/output drivers are
treated as new developments. The reused rate should be
improved if we register frequently used drivers to the
component list.
As the result of Table 5, reduced rate of development time
in Plant A to E are 60[%], 59[%], 55[%], 58[%], and
58[%] respectively, and the average is 58[%]. Applying
proposed method reduces PCS development time. This
strengthens PCS developer’s competitiveness.

6.2 Evaluation of PCS development environment

6.2.1 Evaluation of Tools to Describe PCS
Requirement Specification in Z Language

 Eliminating ambiguity using Z language
We have described requirement specifications in Z

language. This reduces ambiguity in the descriptions and
enables precise transmission of requirement specification
information to preliminary and detailed design phase. As a
result, garbling or back track of tasks has been reduced,
and shorter development period have been achieved.

6.2.2 Evaluation of sequence control design tool

 Dividing plant into sub-plants
We have divided an entire plant into sub-plants using

SCDT. This limits the range controlled by one component.

 Hierarchical state transition
Description of state transition (sequences) has been

facilitated by defining them separately for each sub-plant.
Also, description of coordinated sequences has been
facilitated by defining state transitions hierarchically
between plant and sub-plants. As a result, sequence control
has been simplified and easier verification has been
enabled.

∑
∑

∑

×+=

+×+++=

+×+++=

)174886(

)81)70104()79726((

))()((

Nfmp

Nsmp

LflaNfmpLfliLflmLfloLflcTLf

696)174886(

)0.2174699(

+×++

×+×+=

++=

∑
∑

Nfmp

NslsNsmp
TLoTLfTLsTLp

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

79

6.2.3 Evaluation of feedback control design tool

 Dividing plant into sub-plants
FCDT also has prevented controls from being too

complex and has enabled the development of reliable
PCSs.

 Dividing motion control functions
FCDT divides schema in implementation specification

repeatedly until it matches to functions registered on
component list. This enables less experienced developers
to determine how far the functions should be divided.
6.2.4 Evaluation of software component selection
and combination tool

 Automatic extraction of appropriate components
SSCT extracts the candidates of software components

automatically. This has extensively saved labor to search
applicable components from software component libraries.

 Refine specification through repetition of selecting
software components

When no applicable component is found, SSCT
allows developers to divide functions further and to search
for applicable components repeatedly. When no applicable
component is found after the repetition, then new
programs need to be developed. However, new programs
are developed much easier since the functions and the
input/output interfaces of the programs are clarified
sufficiently after the repeated division.

7. Conclusion and future works

This paper has proposed a method for seamless PCS
development from requirement definition through
implementation. The results of applying IPDE to actual
PCS developments have indicated that this method is
highly effective for seamless PCS development. The
reused rate of pre-defined software components was 65
[%]. Consequently, only inherent functions in each plant,
such as input/output drivers and abnormal sequences, need
to be newly developed. The reused rate shall be improved
by increasing types of software components and
registering developed programs to libraries as software
components. The reduced rate of development time was
58[%]. Consequently, this proposed method enables us to
develop PCS effectively.

In this method, we have adopted Z language to
standardize the interfaces of specifications described in
each development phase and to transmit information
precisely between the phases. This has enabled to use
different tools for each development phase, and the
flexible PCS development environment has been
accomplished.

As a future work, we will improve operability of PCS

development environment. We will also reduce labor to
manage and maintain the environment by implementing
methods or tools to create component lists automatically
based on information of black-box components.

Acknowledgments

This research is conducted as a part of "Preliminary
Technology for Next Generation Transportation System
Design", which is a delegation from New Energy and
Industrial Technology Development Organization
(NEDO).
References

[1] Matsumoto M. et. al. : Specifications reuse process modeling

and CASE study-based Evaluations, COMPSAC91, Proc.
of the 15’th annual international computer software &
applications (1991).

[2] Natori M., Kagaya S. and Honiden S.: Reuse of Requirements
Specification Based on Domain Analysis, Information
Processing Society of Japan，No.37, Vol.3， 393/408(1996).
(In Japanese)

[3] Takahashi M. and Tsuda K.: The Efficient Method of Plant
Software Requirement Definition, Information Processing
Society of Japan, No.42, Vol.3, pp.518-528（2001）. (In
japanese)

[4] Norcliffe A. and Slater G.: Mathematics of Software
Construction, Ellis Horwood（1991）.

[5] Kawakita M.，Sakai M., Yamamoto S. and Agusa S.: A Model
for Reuse Based on Formal Specifications, Information
Processing Society of Japan, Vol.36, No.5, pp.1050-1058
(1995). (In Japanese)

[6] Kobayashi H., Kawata Y., Maekawa M. Kawasaki A., Yabu A.
and Onogawa K.: Modeling External Objects of Process
Control Systems in Executable Specifications, Information
Processing Society of Japan, Vol.35, No.7, pp.1402-1409
(1994). (In Japanese)

[7] National Space Development Agency of Japan (NASDA,
JAXA at present): NASDA Parts Application Standard
（NDC-1-9-1）, NASDA(1996). (In Japanese)

[8] Teshima S., Inamori Y. and Agusa K: EPS ProgramModel for
Embedded Real-Time Syatem abd EFS-Based CASE Tool
Schetch, The Institute of Electronics, Information and
Communication Engineers， Vol.80 D-I, No.8, pp.691-702
(1997). (In Japanese)

[9] Prito-Diatz，R: Implementing Faceted Classification for
Software Reuse, Communications of ACM, Vol.34, No.5,
pp.89-97 (1991).

[10] Jeng,J and Cheng B: Specification Matching for Sotware
Reuse: A Foundation, In Proceedings of Software
Engineering and Knowledge Engineering, Vol.2, No.4,
pp.523-546 (1992).

[11] Penix J. and Alexsander P.: Classification and retrieval of
reusable componets using semantic feature, In proc. Of 9th
knowledge-based software engineering conference,
pp.131-138 (1995).

[12] Matsumoto M.: Software Modeling and Reuse, Kyoritsu
publishing (1996). (In Japanese)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

80

[13] Richard W.: Enabling Reuse-Based Software Development
of Large Scale Systems, IEEE Transactions on Software
Engineering, Vol.31, No.6, pp.495-510 (2005).

[14] Jose J. D., A Validation of the Component-Based Method for
Software Size Estimation, IEEE Transactions on Software
Engineering, Vol.26, No.10, pp.1006-1021 (2000).

[15] Robert B, Dae-Kyoo Kim, Sudipto Ghosh and Eunjee Song,
A UML-Based Pattern Specification Technique, EEE
Transactions on Software Engineering, Vol.30, No.3,
pp.193-206 (2004).

Masakazu Takahashi received his BA
in 1988 from Rikkyo University, Japan,
his MA degree in 1998 and Ph.D. degree
in 2001, both in Systems Management
from University of Tsukuba, Japan. He
was with Ishikawajima-Harima Heavy
Industries Co., Ltd. during 1988 and
2005, and he was assigned to a subsidiary
of IHI, and Galaxy Express Corporation

during 2002 and 2005. He is an associate professor in department
of mathematics and computer science, interdisciplinary faculty of
science and engineering, Shimane University. He is a member of
The Information Processing Society of Japan, The Society of
Instrument and Control Engineers, and The Institute of Electrical
Engineers of Japan.

Satoru Takahashi received the B.S. and
M.S. from Tokyo University of Science in
1996 and 1998 respectively, and received
M.B.A from in 2004. He is a Ph. D.
candidate in Graduate School of Systems
Management, University of Tsukuba. Since
1998, he has been with Mitsui Asset Trust
and Banking Co., Ltd. He is a member of
The Information Processing Society of
Japan.

Kazuhiko Tsuda received his BA degree in
1986 and Ph. D. degree in 1994, both in
engineering and from Tokushima
University, Japan. He was with Mitsubishi
Electric Corporation during 1986 and 1990,
and with Sumitomo Metal Industries Ltd.
during 1991 and 1998. He is an associate
professor in Graduate School of Business
Management, University of Tsukuba,
Tokyo, Japan during 1998-2005, professor

since 2005. His research interests include natural language
processing, database, and human-computer interaction. He is a
member of The Information Processing Society of Japan and The
Institute of Electrical Engineers of Japan, Information and
Communication Engineers.

