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Summary 
This paper proposes a method to efficiently develop Plant 
Control Software (PCS) using software components. PCSs are 
typically developed in individual order basis, and the 
conventional component-based development methods have 
difficulty of selecting appropriate software components based on 
design specifications. The proposed method addresses this 
problem by selecting software components using algebraic 
design specification. We have developed a prototype of 
Integrated PCS Development Environment (IPDE). This 
integrated environment supports processes from requirement 
definition through software implementation by gradually 
detailing algebraic design specification. In the IPDE, an initial 
requirement specification can be generated only by defining 
characteristics of targeted PCS using its domain model. Using 
this IPDE, even less experienced PCS developers can easily 
develop PCSs. Furthermore, the IPDE improves development 
efficiency and quality (especially adaptability and reliability) of 
PCSs. As a result of applying the IPDE to the actual PCS 
developments, the PCSs have been developed successfully using 
software components, except input and output parts which 
depend on hardware specification of control equipment. The 
reused rate of the source code is 65[%], and the reduced rate of 
development time is 58[%]. 
Key words: 
Plant, control software, algebraic specification, software 
components, integrated development environment. 
 
1. Introduction 
 
A plant is mechanical facility for manufacturing products 
or for processing materials. Each plant has its own 
manufacturing or processing method depending on the 
intended purposes of customers. Accordingly, each Plant 
Control Software (PCS), which is attached to plants, need 
to have its specific functions. For this reason, PCSs are 
developed individually for the targeted plants, and their 
functions or performance vary depending on the 
experiences of PCS developers. Especially, the 
inconformity in PCSs causes the problems such as lower 
reliability, longer development period, and larger cost. 

To solve these problems and to develop PCSs keeping 
a certain level of quality, development methods must 
consistently support the processes from requirement 

definition through implementation. These problems are 
typically addressed with the methods such as CASE1) or 
Domain Model2). However, these methods impose heavy 
load on PCS developers to be familiar with software 
development methodologies and models. 

  In the area of software development, attention is 
being given to software component-based development 
methods. In this paper, we propose a PCS development 
method which applies software components15). The 
followings are the outline of the proposed method: 
(i) Define the requirements for a PCS, using software 

components for PCS prototype development. 
(ii) Based on the requirement definitions, generate 

requirement specifications described in algebraic 
specification (Z language). 

(iii) By taking an advantage of Z language which allows 
hierarchical description, detail the requirement 
specification hierarchically and create design 
specifications for implementation. 

(iv) Based on the detailed design specification, select 
software components used for PCS development. In 
this selection, the lists of function categories and 
input/output data shall be used. 

(v) Construct the targeted PCS by combining the selected 
software components. Then customize the PCS for 
specific requirements, if necessary. 
We have developed a prototype of Integrated PCS 

Development Environment (IPDE) which  implements 
the above stated method. As a result of applying the IPDE 
to several PCS developments, the PCSs have been 
developed consistently from requirement definition 
through implementation, and the development efficiency 
and the quality of the PCSs have been improved. The 
reused rate of the source code on the software 
component-based PCS developments is 65[%], and 
reduced rate of development time is 58[%]. 

This paper is organized as follows: Chapter 2 
discusses the problems and the solutions on PCS 
developments. Chapter 3 explains how to create 
requirement specifications for PCSs. Chapter 4 describes 
the method to create preliminary and detailed designs. 
Chapter 5 describes the method to select appropriate 
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software components. Chapter 6 evaluates the application 
of IPDE on actual PCS developments. And Chapter 7 
concludes the discussion and mentions about future work. 
 
2. Problems and solution on PCS development  
 
The following factors make it difficult to develop PCSs 
using software components. 
 
• Requirement specifications contain ambiguity because 

they are described in natural language. 
• Without guidelines or reference information, it is 

difficult to fully define additional information used for 
implementation design (preliminary and detailed 
designs) of PCSs. 

• There is a gap between software components and PCS 
requirement specifications because the granularity 
(function range to be covered) of software 
components are too small. 
 
To develop PCSs using software components based 

on requirement specification, design details in preceding 
processes must be transmitted to subsequent processes 
accurately. This requires a language to describe design 
details precisely. We use Z language which allows formal 
specification description. Formal languages4),5),6) like Z 
generally require the knowledge of advanced mathematics 
and software engineering. In this proposed method, 
however, the knowledge of Z language is not required 
because it is used only for transmitting information 
between processes (refer to phase 1 to 3 described below). 
This enables wider application of this development 
method. Moreover, the standardized interfaces between the 
processes enable accurate transmission of design details. Z 
language also allows hierarchical specification description. 
In our proposed method, requirement specifications in Z 
language are hierarchically detailed into preliminary and 
detailed designs. This detailing process is repeated until it 
reaches to granularity of software components. This 
achieves seamless development environment. 

To address the above mentioned three problems, this 
method divides development processes into the following 
three phases. 
 
Phase 1: Describe requirement specification in Z 

language. 
PCSs require similar functions even if the control 

targets or the control methods are different.1) Utilizing this 
characteristic, describe the functions of requirement 
specification in Z language in advance, then additionally 
describe the inherent part of each PCS to complete the 
PCS requirement specification. 
 
 
Phase 2: Create design specification based on 

guidelines. 
Design PCS implementation based on the requirement 

specification in Z language. Firstly, divide a plant into 
sub-plants which represent the actual control units, then 
classify them into two modules: sequence control and 
feedback control. Next, divide the functions of each 
module according to the predetermined design guidelines 
and additionally define the information required for 
implementation. Then output the results as PCS 
implementation specification in Z language. 
 
Phase 3: Construct the target PCS by combining 

software components. 
Based on the PCS implementation specification, 

search for an applicable software component for each 
function unit13). When no applicable software component 
is found, either divides the function unit until the 
applicable software component is found or develops new 
programs for the function unit. 
 
Fig.1 shows the outline of the proposed PCS development 
method. 
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Fig.1 Outline of proposed PCS development method 

 
3. Problems and solution on PCS development  
 
PCSs are normally composed with three modules: 
sequence control, feedback control, and input/output. The 
input/output interfaces of control equipments are not 
determined at requirement specification phase. At this 
phase, functions, performance, and sequences of PCS need 
to be defined.  This chapter discusses how to describe 
requirement specification of sequence control and 
feedback control modules in Z language. 
 
 
 
3.1 Requirement Specification of Sequence control 
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Module in Z Language 
 
Fig.2 shows a natural language version of requirement 
specification for PCS sequence control module. This 
specification consists of four sections which describe: 
sequences, values to be output to machine on each process, 
and machines in plant and its input/output (sensor input 
and operational volume output). Now we discuss the 
standardization of data structure to formalize requirement 
specification of sequence control module. 
 

0,“start”,5,””,””,----
5,“transporter position initialize”,10,“transporter position > 190”,

10,“vacuum pumping start”,20,“intake valve =open”,”exhaust valve = open"

Sequence                                                        
(state ID, state name, next state ID, transition condition, --)

“a”,”transporter”
“a”,”heater”
“d”,”intake valve”
“d”,”exhaust valve”

Machine list

0,“transporter velocity","0"

0,“heater power","0"

0,“intake valve”,“open”

0,“exhaust valve”,“open”

5,“transporter speed”,"100"

5,“heater power”,"0"

5,“intake valve”,“open"

5,”exhaust valve”, “open”
----

Machine output                       
(state ID, machine, output)

Carry out below operation to all digital machine
Pass over the output value in current state ID to machine

Digital control

Carry out below operation to all analog machine
Pass over the output value in current state ID to machine

Analog control

Check the transition condition in the current state
If achieve, transit to next state ID
current state ID = next state ID

Sequence control

“a”,”transporter position“
“d”,”intake valve status”
“d”,”exhaust valve status“

Measurement data list

: data description

: specification description

0,“start”,5,””,””,----
5,“transporter position initialize”,10,“transporter position > 190”,

10,“vacuum pumping start”,20,“intake valve =open”,”exhaust valve = open"

Sequence                                                        
(state ID, state name, next state ID, transition condition, --)

“a”,”transporter”
“a”,”heater”
“d”,”intake valve”
“d”,”exhaust valve”

Machine list

0,“transporter velocity","0"

0,“heater power","0"

0,“intake valve”,“open”

0,“exhaust valve”,“open”

5,“transporter speed”,"100"

5,“heater power”,"0"

5,“intake valve”,“open"

5,”exhaust valve”, “open”
----

Machine output                       
(state ID, machine, output)

0,“transporter velocity","0"

0,“heater power","0"

0,“intake valve”,“open”

0,“exhaust valve”,“open”

5,“transporter speed”,"100"

5,“heater power”,"0"

5,“intake valve”,“open"

5,”exhaust valve”, “open”
----

Machine output                       
(state ID, machine, output)

Carry out below operation to all digital machine
Pass over the output value in current state ID to machine

Digital control

Carry out below operation to all analog machine
Pass over the output value in current state ID to machine

Analog control

Check the transition condition in the current state
If achieve, transit to next state ID
current state ID = next state ID

Sequence control

“a”,”transporter position“
“d”,”intake valve status”
“d”,”exhaust valve status“

Measurement data list
“a”,”transporter position“
“d”,”intake valve status”
“d”,”exhaust valve status“

Measurement data list

: data description

: specification description

 
Fig.2 Sample of requirement specification in natural language (sequence) 

 
At first, we consider the data structure of sequence 

control module. The sequences of plant are described as 
state transition tables. The state of plant means "the unit to 
uniquely distinguish the plant by the combination of 
hardware components' states, such as location of machine 
or On/Off of switches". The transition means "to transit 
the state of plant from A to B by changing the states of 
hardware components". In here, transition criteria are 
defined as "conditions to trigger a transition" such as "if 
the power of the heater is On" or "if the ambient 
temperature is higher than 300[K]". Generally, the relation 
between state and transition criteria is one-to-many 
because more than one criterion needs to be satisfied to 
trigger one state transition. 

At second, we consider the data structure of output 
module. According to the above definitions, the output to 
each machine is defined for each state. The relation 
between a state and machines is one-to-many because 
more than one machine needs to be controlled by sequence 
control. Since a machine has multiple control output ports 
(for control signals), the relation between a machine and 
control output ports is also one-to-many. Again, a machine 
and sensors attached to it are one-to-many relation. The 
data structure of sequence control module according to the 
above is shown in Fig.3. 

 

Process Control
Table
State ID
State Name
Next State ID

……
State Transition
Table
State ID
Next State ID
Transition

Condition ID
Transition

Condition ……

Equipment
Output Table
State ID
Equipment ID
Equipment Type
Port ID
Output ID
Output Value

……
Equipment Table
Equipment ID
Equipment Name
Equipment Type

Digital Sensor Table
Equipment ID
Digital Sensor ID
Digital Sensor

Name
Measured data

……

Digital Output Port 
Table
Equipment ID
Digital Output ID
Digital Data Name
Digital Output

Value
……

Plant 
Configuration Table
Equipment ID
Parent 

Equipment ID
Child 

Equipment ID

1

m

m

11

m

1

1

m

m

1
m

Analog Sensor Table
Equipment ID
Analog Sensor ID
Analog Sensor Name
Analog Sensor Range
Measured data

……

Analog Output Port
Table
Equipment ID
Analog Output ID
Analog Data Name
Range
Analog Output Value

……

m

1
m

１ 1

1

m

Target Management
Table
State ID
Equipment ID
Target Value

……

Control Formula
Management Table
Equipment ID
Operational

Variable
State Variable
P coefficient ……

1m

1

m 1

1

1

mm(+)

(+)
1

“1”,“m” shows multiplication.*1 : 
*2 :
*3 :
*4 :

“ ” Shows Tables related to Process Control.
“ “ Shows Tables related to Feedback Control.
“ ” Shows common Tables.  

Fig.3 PCS data structure – extracted – 
 
//Data Definition Part
define data: machine data
//Machine Table Data  ( Machine Name )
“Transporter"

………………..
define data: measured data 
//Sensor Data List (Machine Name, Measured Data Name, Data Type, Data Unit )
“Transporter",“Transporter Position”,“Analog","mm"
“Transporter",“Transporter Power Unit“,“Digital","on=1/off=0"

………………..
define data: output port data
//Output port List ( Machine Name, Output Port Name, Data Type, Data Unit )
“Transporter",“Transporter Motor RPM“,“Analog",“RPM”
“Transporter",“Transporter Power Unit“,“Digital","on=1/off=0"

………………..
define data: sequence control output data
//Sequence Output Data ( State ID,Machine Name, Output Port, Output Value )
0,“Transporter",“Transporter Motor RPM",0.0
0,“Transporter",“Transporter Power Unit",0

………………..
//Function Definition Part
define function: analog output
//Specification of Analog Output Management
“Get  Output Port Name and Output Value that is shown at Machine ID and State ID."
“Output Output Value through Output Prot that is shown Machine ID, State ID and Output Port Name.”  

Fig.4 Sample of requirement specification in Z (sequence) 
 
//Data Definition Part

State ID={0, 5, 10….} //Definition of State ID

Machine Name={Transporter, Pump,…..} //Definition of Machine Name

Machine ID={1001, 1002,…..} //Definition of Machine ID

Output Port Name={Transporter Motor RPM, ….} //Definition of Output Port

Output Port ID={101, 102,…..} //Definition of Output Port ID

Analog Output =(State ID x Machine ID x Output Port ID) //Definition of 
|->Output Value //Analog Output Data Type

Analog output={(0, 1001, 101)|->0.0, (0, 1002, 102)|-> 0.0,…..} //Definition of Analog Output

//Function Definition Part
-- Analog Output

//Definition of Analog Variables
State ID?, Analog Machine ID?, Analog Output?, Output Value!

--------------------------------
//Prediction of Analog Output Management

State ID?=0 and Analog Machine ID?=1001 and Output Port ID?=101
=>Output Value! = Analog Output  

…………………………………………………………………………..

--------------------------------  
Fig.5 Requirement specification using template in Z (sequence) 

 
At third, we consider the functions of sequence control 
module. The required functions are as follows: 
 
(i) analog and digital measurement functions to read the 

values from sensors attached to machines,  
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(ii) process management function to verify if transition 
criteria are satisfied and to decide the state after the 
transition, using current state ID as a key, and  

(iii) analog and digital data control functions which 
determine the values to be output to each machine, 
using current state ID as a key. 

 
Fig.4 shows an example of these functions described 

in Z language. The analog sensor value in data definition 
section is the value measured from sensor and it is variable. 
The other values are constants since they are determined 
uniquely depending on the process or the machine 
configuration. The schema such as sequence control or 
analog control section is fixed for every plant. Therefore, 
if a template in Z language is described in advance, PCS 
requirement specification of sequence control module can 
be created only by changing the sensor value and the 
constants. Fig.5 shows the resulted output using this tool. 
 

“a”,”heater temperature”

State volume

Out put heater current and heater voltage to 
the predefined analog IO port.

Analog output

Get target value in the current state ID.
Calculate heater current and heater voltage using 
PID logic to become deviation between current and 
target value of heater temperature to zero.

Feedback Control

“a”,”heater current”
“a”,”heater voltage”

Operational volume

0,“heater temperature”,“0”

5,“heater temperature”,“80”

10,“heater temperature”,“160”

---

Machine output
(state ID, machine, value)

: data description

: specification description

“a”,”heater temperature”

State volume

Out put heater current and heater voltage to 
the predefined analog IO port.

Analog output

Get target value in the current state ID.
Calculate heater current and heater voltage using 
PID logic to become deviation between current and 
target value of heater temperature to zero.

Feedback Control

“a”,”heater current”
“a”,”heater voltage”

Operational volume

0,“heater temperature”,“0”

5,“heater temperature”,“80”

10,“heater temperature”,“160”

---

Machine output
(state ID, machine, value)

: data description

: specification description

 
Fig.6 Sample of requirement specification in natural language (feedback) 
 
//Definitions of state Variables and Operational Variables of Each Machine for Feedback Control

define data: machine data
//Machine Table Data(Machine Name)
“Heater”

……….
define data: measured data
//State Variables(Machine Name, Sensor Name, Data Type, Data Unit)
“Heater”,“Heater Temperature”,“analog”, “degree”

……….
define data: output port data
//Operational Variables(Machine Name, Output Port Name, Data Type, Data Unit)
“Heater”,“Heater Current”, “Analog”, “Ampere”
“Heater”,“Heater Voltage“, “Analog”, ”Volt”

……….
define data: feedback output data  
//Target Value (State ID, Machine Name, Output Port Name,Target Value)
0, “Heater”, “Heater Temperature”, 30.0

……….

//Description of Control Method
define function: Feedback Control Output
//Specification of Feedback Control
“Get Target Value that is shown at Machine ID, State ID and Output Port Name”
“Calculate Heater Current and Voltage in order to make Difference between State Value and Target Value”
“Output Heater Current and Heater Voltage through the Output Port

that is shown at Machine ID and State ID”  
Fig.7 Sample of requirement specification in Z (feedback) 

 
3.2 Requirement Specification of Feedback Control 
Module in Z Language 
 
At the phase of creating requirement specification for 
PCSs, it is important to efficiently define state variables, 
operational variables, and outline of control method. Fig.6 
shows the requirement specification of feedback control 
module, which is created using software components. This 

specification consists of two sections: the definitions of 
state variables and operational variables of each machine 
for feedback control, and the description of control method. 
At this phase, it is difficult to further clarify the 
specification since the detailed control method is not 
determined yet. Therefore, this specification is described 
as schema in Z language as it is. Fig.7 shows the result. 
Fig.8 shows the resulted requirement specification of 
feedback control module using this tool. 
 
4. Preliminary and detailed design method for 
PCS 
 
This chapter describes a method to create PCS preliminary 
and detailed designs based on the PCS requirement 
specification in Z language. At this phase, the additional 
information required for PCS development are defined and 
added to the requirement specification. By referring one of 
the representative software development standards, 
"NASDA Software Development Standard (below, 
NASDA Standard. Now, NASDA is called JAXA.)"7), we 
discuss what kind of information need to be additionally 
defined and in which sequence.  NASDA Standard 
divides development in five phases: requirement 
specification, preliminary design, interface specification, 
detailed design, and database file specification. Table 1 
shows the outline of NASDA Standard. 

The development standard of our proposed method 
("the proposed standard") differs from NASDA Standard 
in the following two ways. 
 

Table 1 Outline of NASDA standard for software development 

Development
phase 

Developed 
document 

Contents which have to decide 
in document 

Requirement 
definition 

Requirement 
specification 

System operational procedure, 
required functions, size, 
processing time  

Preliminary 
design 
specification 

Functional configuration, state 
transition, data and control 
flow, global variables, 
functional design, outline of 
input/output data, assignment 
of size and processing time 

Preliminary 
design 

Interface 
design 

Input/output data, input/output 
interface 

Detailed 
design 
specification 

Module configuration, detailed 
data and control flow, module 
design, detailed input/output 
d t

Detailed 
design Database 

design 
specification 

Outline of data file, data model

 
 The proposed standard combines preliminary design 

and interface specification into one document, while 
NASDA Standard creates them separately at the 
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preliminary design phase. 
 The proposed standard creates database definition at 

requirement specification phase, while NASDA 
Standard creates it at the detailed design phase. 

 
The development standard of our proposed method 

differs from NASDA Standard in the following two ways. 
 

 The proposed standard combines preliminary design 
and interface specification into one document, while 
NASDA Standard creates them separately at the 
preliminary design phase. 

 The proposed standard creates database definition at 
requirement specification phase, while NASDA 
Standard creates it at the detailed design phase. 

 
In the proposed standard, the following two tasks are 

carried out at preliminary design phase. 
 
[Preliminary 1]:  

Clarify motion functions described in requirement 
specification. 
 
[Preliminary 2]:  

Clarify input/output data of each function. 
 

The following two tasks are carried out at detailed 
design phase. 
 
[Detail 1]:  

Divide functions described in preliminary design. 
 
[Detail 2]:  

Design input/output data physically. 
 

The following sections discuss methods to create 
preliminary and detailed designs. 
 
4.1 Preliminary and Detailed Design Tools for 
Sequence control Module 
 
This section discusses a method to create preliminary and 
detailed designs of sequence control module. 

The sequence control module performs motion control 
output during the sequence predefined for a plant. The 
contents of the sequence, such as states, transition criteria, 
and motion control output, are already described in 
requirement specification phase, which means no 
preliminary design task is required for sequence control 
module. In detailed design phase, the following tasks 
should be carried out according to the above stated 
definitions. 
 
 
 

[Detail 1]:  
Divide a plant into sub-plants, which are the actual 

units to be controlled. Then divide the sequences (states, 
transition criteria, and motion control output of entire 
plant) and assign them to each sub-plant accordingly. The 
dependent relations must be assigned between the 
sub-plants and the entire plant (for example, Sub-plant A1 
belongs to Plant A). Fig.9 shows sequence data input 
screen using SCDT (explained below). 
 
[Detail 2]:  

Describe the valid digits and the port output format of 
output values. Those should be clarified through the 
preceding design work. 
 

 
Fig.9 Sequence input screen using SCDT 

 

Sub-Plant 
Division Tool

Sub-Sequence 
Division Tool

Z Language 
Transformation Tool 

SCDT

(1)Equipment Table
(2)Digital Output Port Table
(3)Digital Sensor Table

(4)Analog Output Port Table
(5)Analog Sensor Table

(6)Sequence Control Table
(7)Equipment Output Table
(8)State Transition Table (1)Divided Digital Output Port       

Table

Output Data

(2)Divided Digital Sensor Table
(3)Global Digital Variables
(4)Local Digital Variables
(5)Divided Analog port Table
(6)Divided Analog Sensor Table
(7)Global Analog Variables
(8)Local Analog Variables
(9)Divided Process Control Table
(10)Divided Equipment Output 

Table
(11)Divided State Transition Table(1)Global digital Variables that is introduced expediently

(2)Global analog variables that is introduced expediently
(3)Global digital variables that belongs to other equipment
(4)Global analog variables that belongs to other equipment

Sensor Data(Global Data)

 
Fig.10 Outline Of SCDT 

 
We have developed Sequence control Design Tool 

(SCDT) based on the above tasks. Fig.10 shows the 
outline of SCDT. SCDT divides a plant into sub-plants and 
assigns dependent relations to them, using machine 
configuration table (included in PCS requirement 
specification in Z language). Based on the defined 
sub-plant configuration, SCDT divides states, transition 
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criteria, and motion control output table for each sub-plant. 
Finally, SCDT converts the created design into Z language 
and output it as PCS implementation specification. 
 
4.2 Preliminary and Detailed Design Tools for 
Feedback Control Module 
 
This section discusses a method to create preliminary and 
detailed designs of feedback control module. 

Feedback control module calculates motion controls 
(operational volume) and output them to machines. The 
operational volume is calculated based on the sensor 
values (state volume) of the machines and its targeted 
control value8). In most cases, a formula to calculate 
motion controls is not determined at requirement 
definition phase. Therefore, the specification is determined 
at preliminary and detailed design phases. The following 
tasks should be carried out according to the above stated 
definitions. 
 
[Preliminary 1]:  

Define the functional outline of motion control 
formula by describing calculation method with control 
block diagrams such as proportional, differential, and 
integral. Fig.11 shows motion control formula input screen 
using FCDT (explained below). 
 
[Preliminary 2]:  

Describe additional information regarding operational 
volume and state volume which are clarified through the 
preceding design work. 
 
[Detail 1]:  

Describe detailed functions required for PCS 
development, such as delays, filters, and saturation, and 
add them to the control block diagrams created in 
[Preliminary 1]. Then define data transmission between 
block diagrams. 
 
[Detail 2]:  

Describe the valid digits and the port output format of 
output values. Those should be clarified through the 
preceding design work. 
 

We have developed Feedback Control Design Tool 
(FCDT) based on the above tasks. Fig.12 shows the 
outline of FCDT. Based on input/output data of formal 
requirement specification and motion control output 
formulas, FCDT describes motion control formulas using 
feedback control components (block diagrams). The block 
diagrams become more sophisticated by detailing them 
repeatedly. Finally, FCDT converts the created design into 
Z language and output it as PCS implementation 
specification. 

5. Software Components Selection Method 
 
In our proposed method, PCSs are developed by 
combining software components selected from detailed 
specification in Z language. The well-known software 
components selection methods are Faceted Classification9) 
and Specification Matching10), 11). 
 

 
Fig.11 Motion control formula input screen using FCDT 

 

Feedback Control 
Formula

Creation Tool

Z Language 
Transformation Tool 

FCDT
(6)Control formula Management Table
(7)Target Value Management 

Table

Input Data

Output Data

(1)Global digital Variables that is introduced expediently
(2)Global analog variables that is introduced expediently
(3)Global digital variables that belongs to other equipment

(4)Global analog variables that belongs to other equipment

(1)Equipment Table
(2)Digital Output Port Table
(3)Digital Sensor Table
(4)Analog Output Port Table
(5)Analog Sensor Table

(1)Divided Digital Output Port 
Table

(2)Divided Digital Sensor Table
(3)Global Digital Variables
(4)Local Digital Variables
(5)Divided Analog port Table
(6)Divided Analog Sensor 

Table
(7)Global Analog Variables
(8)Local Analog Variables

Sensor Data (Global Data)

 
Fig.12 Outline FCDT 

 
Our method selects and combines software 

components based on: 
 

 input/output interface specification of software 
components, and  

 function classification added by users. 
 
5.1 Software components selection algorithm 
 
This section explains about component lists (shown on 
Table 2) which manage software components (shown on 
Figure 13), and then describes the algorithm for selecting 
software components. 
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Table 2 Outline of software component list 
Component Functio

-nal 
classify
-cation 

Input/ 
Output 

IF 
 

ID Name 
Functional 
explanation 

OS 
IN;  
Count: 
int 

OS1 OsCycle 

Accumulate clocks 
counts, and create 
defined control 
cycle. 

OS 

IN;  
Seq: char 
OUT; 
ET: real 

OS2 OsExe 

Execute software 
components 
according to the 
predefined 

--- --- --- --- --- 
 

Task 
Management
Watch Dog

Loop

State
Management

Creation 
Transition
Condition
Transition

Check

Proportional
Control

Differential
Control
Integral
Control

First Delay 
Second Delay

Saturation

Input Limiter

Output limiter
Differential

Limiter

Output timing
Management

Output
Compensation
Target Value

Pattern 
Creation

Accumulator

And Circuit

Or Circuit
Xor Circuit
Compare

Check

Switch

Analog Output
Management

Analog Output

Analog Output
Driver

Analog Input

Analog Input
Driver

Digital Output
Management

Digital Output

Digital Output
Driver

Digital Input

Digital Input
Driver

Engineering
Unit 

Transform

Command 
Transmit
Driver

Command 
Receive
Driver

Data Editing

Data Analysis

Data Transmit
Driver

Data receive
Driver

Instruction
Test

ROM Test

RAM Test

Timer Test

Closed Loop
IF Test

Common
Inspection

Malfunction 
Code Output
Individual 
Inspection

Equipment
Check Value
Management
Equipment

Check
Output

Test Data
Input

Equipment
Check

Output DriverEmergency 
Stop

Emergency
Stop

output Driver

Fault Detection and RecoverFeedback ControlSequence  Control

Execution Control Input/Output State Indication

Cycle
Management

Exterior 
Interface
Command
Transmit
/Receive

Management

 
Fig.13 Software Component List 

 

Detailed specification in Z

Schema: sort_XXXX

x,y,z:integer

Variables: x?,Y?,Z!

……

Step1: Extract functional classification of detailed 
specification in Z from schema. => sort

Functional
classification

Input/output IF 
information

Component
ID

Component
name

sort Input; x,y : int
Input; z : int s001 intSort

soat Input; x,y : real
Output; ｚ: real s002 relSort

--- --- --- ---

Match functional classification in detailed 
specification and functional classification in 
component list, and narrow down

Functional
classification

Input/output IF
information

Component
ID

Component
name

sort Input;  x,y : int
Output;  z : int s001 intSort

Step2：match input/output 
variables in schema and 
input/output variables in 
component list, and select 
applicable components.

Component list

Component list

Final candidate of applicable components  
Fig.14 Software components selection method 

 
Component lists contain input/output interface 

information and function classification information. The 
input/output interface information is composed using 
argument information of software components provided by 
the authors. The input/output data and their data types are 
listed in the interface information column. The function 
classification column contains the functional outlines of 
software components. Users can select this information 

from classification candidates and add it to the component 
list when registering software components to the list. 

software components are selected in the following 
steps (see Fig.14): 
 
[Step 1]:  

Decide best matching function classification for each 
schema in PCS detailed specification, and match them 
with function classification on the component list. Then 
every software components which belongs to the matched 
function classification are listed. 
 
[Step 2]:  

Narrow down the candidates of software components 
by matching input/output interface on the component list 
and on the detailed specification. This matching uses 
information such as number of variables or data types. 
 
[Step 3]:  

When more than one software components is found, 
all of them are listed and a user selects an appropriate one 
considering performance and data area size. When no 
software component is found, the schema part of detailed 
specification must be reviewed. 
 
5.2 Software component selection and combination 
Tool 
 
Fig.15 shows the outline of software Component Selection 
and Combination Tool (SSCT). 

 

Functional Classification
Extract Tool

Schema (Name)

Functional Classification
Matching Tool

SCI List
(Functional Classification)

I/F Matching Tool

Final Candidate for SCI

Schema(Input/Output I/F)

SCI List（Input/Output I/F）

Functional
Classification

Input/Output
Interface SCI ID

Sort IN ：x,y : int
OUT：ｚ: int s001 intSort1

Sort IN：x,y : int
OUT：ｚ: int s002 intSort2

………. ………. ….. …..

SCI Library

intSort1

intSort2

Component List

SSCT

Selected SCI List

Functional Classification

SCI Name

 
Fig.15 Outline of SSCT 

 
SSCT selects an appropriate function classification 

from component list using schema in detailed 
specifications. We have established the naming rules for 
schema which enable users to distinguish unknown 
functions. We also created the thesaurus of function 
classification to improve an efficiency of software 
component selection. This thesaurus enables users to select 
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similar components even if no component matched exactly. 
SSCT then selects an appropriate component by matching 
interfaces. When more than one candidate is found, SSCT 
lists all of them and allows user to select one. 
 
6. Application and evaluation of Integrated 
PCS development environment 
 
This chapter describes and evaluates the results of 
applying Integrated PCS Development Environment 
(IPDE), which combines SCDT, FCDT, and SSCT, to 
actual PCS developments. 

We have applied the IPDE to five plant developments 
(Plat A to E). Table 3 shows the number of applied 
software components, Table 4 shows the reused rate of 
source codes, and Table 5 shows the development time 
[hours] of each development. The reused rate and the 
development period are defined as below12), 14): 
 

Table 3 Number of existing and newly developed software components 
Components 
of sequence 
control type 
sub-plants 
[pieces] 

Components 
of Feedback 
control type 
sub-plants 
[pieces] 

Components 
of other parts

[pieces] Plant 
Name 

Reus 
-ed 

New 
-ly 

Reus 
-ed 

New 
-ly 

Reus 
-ed 

New
-ly 

RR_
CM
[%]

A 34 31 49 11 8 5 66 
B 24 22 27 8 8 3 64 
C 17 16 124 29 8 3 76 
D 17 15 51 13 8 5 69 
E 44 40 34 15 8 7 58 

 
Table 4 reused source code [LOC] of each development 

LOC of 
sequence 

control type 
sub-plants 

[LOC] 

LOC of 
Feedback 

control type 
sub-plants 

[LOC] 

LOC of 
other parts 

[pieces] Plant 
Name 

Reus 
-ed 

New 
-ly 

Reus 
-ed 

New 
-ly 

Reus 
-ed 

New
-ly 

RR_
CD
[%]

A 6907 3917 2418 897 449 105 67 
B 7108 4554 1574 731 449 81 63 
C 4159 2740 6106 3101 449 465 63 
D 5016 2501 2346 1297 449 282 65 
E 8688 5061 3604 1528 449 303 65 

 
Table 5 development time [hours ] of each development 

Plant name Development 
time in 

established 
method 

Development 
time in 

proposed 
method 

RR_TM 
[%] 

A 548 222 60 
B 720 323 55 
C 396 163 59 
D 387 163 58 
E 751 315 58 

    
(1)              

 
                  (2) 
 
                   (3) 
 

RR_CM:  Reused rate in Components. 
Nrcm: Number of reused components 
Nncm:  Number of newly developed components 
RR_CD:  Reused rate in LOC (Lines Of Codes) 
Nrloc:   Number of reused LOC 
Nnloc:   Number of newly developed LOC 
RR_DT: Reduced rate in Development time 
DTppm: Development time (requirement definition, 

preliminary design, detailed design, 
programming, verification) in proposed method 

DTesm:  Development time (requirement definition, 
preliminary design, detailed design, 
programming, verification) in established 
method 

Video Switch
Power Unit Status

CCD Camera
Transfer Speed 

Valve Status

CCD Camera 
Power Unit Status

CCD Camera
Power Unit

Valve Controller

Video Switch
Power Unit

CCD Camera
Transporter

Fluid Thermal
Control

Fluid Temperature

Hardware
Of Plant A

Control Panel
MIL-STD1553BI/F

Data Indicator
RS422I/F

Exterior Interface

Exterior Interface

Output To Feedback 
Control Machine

Input From Feedback 
Control Machine

Input From   Sequence 
Control Machine

Output To Sequence 
Control Machine

Video Switch
Power Unit Status

CCD Camera
Transfer Speed 

Valve Status

CCD Camera 
Power Unit Status

CCD Camera
Power Unit

Valve Controller

Video Switch
Power Unit

CCD Camera
Transporter

Fluid Thermal
Control

Fluid Temperature

Hardware
Of Plant A

Control Panel
MIL-STD1553BI/F

Data Indicator
RS422I/F

Exterior Interface

Exterior Interface

Output To Feedback 
Control Machine

Input From Feedback 
Control Machine

Input From   Sequence 
Control Machine

Output To Sequence 
Control Machine

 
Fig.16 outline of plant A 
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Fig.17 PCS configuration of plant A 
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Fig.16 shows the hardware configuration of plant A, 

and Fig.17 shows the PCS configuration  of plant A as an 
example. 
 
6.1 Evaluation of Reused Rate and Lines Of Codes 
(LOC) 
 
We evaluate the reused components, reused LOC and 
reduced time in each sub-plant. This is because each 
sub-plant is separately developed in PCS developments 
and the scales of PCSs are proportional to the number of 
sub-plants. Additionally, we discuss sequence control type 
(S-type) and feedback control type (F-type) of sub-plants 
separately. 

S-type PCS is composed of sequence and 
measurement modules. The sequence module consists of 
sequence management, output value management, and 
output drivers. And the measurement module consists of 
sensor measurement, engineering value conversion, and 
input drivers. The functions such as sequence management, 
output value management, sensor measurement, and 
engineering value conversion are implemented with 
software components. Input/output drivers must be 
developed because they depend on input/output interface 
of control equipment. Sequence management contains 
sequence data, and output value management contains 
output value data, which are used for customization. One 
line of sequence management data represents one state as a 
set of a state, transition criteria, and a state after the 
transition. One line of output value management data 
represents values to be output to sub-plants in one state.  

The number of software components in S-type PCS is 
calculated as below. Σ  represents a sum total of all 
sub-plants. 
 

                                              
 

(4) 
 
TNsc:  Total number of S-type software components        
Nsc:   Number of S-type software components 
Nsco:  Number of S-type output driver components 
Nscm:   Number of S-type software components for 

measurement 
Nsci:  Number of S-type input driver components for 

measurement 
Nsmp:  Number of S-type measurement points 
 

Accordingly, the total LOC for S-type PCS is 
calculated as below. The LOC for input/output drivers are 
mean values of Plant A to E. 
                 
 
                         
 

 
 
 

 
 

(5) 
 

TLs: Total LOC for S-type software components 
Lslc:    LOC for S-type software components 
Lslo: LOC for S-type output drivers 
Lslm: LOC for S-type output software components 

for measurement 
Lsli: LOC for S-type input drivers 
Nsmp: Number of S-type measurement points 
Lslp:    LOC for sequence management data per one 

state 
Lsid:    LOC for output measurement data per one state 
Nsls:    Number of state transitions 
Lsla:     LOC appended or modified 
 

Based on (5), the calculated numbers of codes in Plant 
A to E are 11030 [LOC], 11911 [LOC], 7028 [LOC], 7388 
[LOC], and 14242 [LOC] respectively. The errors are 
within 5 [%] between the calculated values and the actual 
values shown in Table 4. This is because that the total 
LOC for software components can be calculated accurately, 
and that the total LOC for newly developed portion is 
small and its estimation error is around 15 [%]. Therefore, 
the total LOC for S-type PCS is estimated based on (5). 

F-type PCS is composed of modules such as 
proportional, differential, integral, delay, limiter, switch, 
output timing management, measurement, AND, OR, input 
drivers, and output drivers. The twenty types of modules 
such as proportional, differential, integral, delay, limiter, 
switch, AND, OR, output timing management, and 
measurement are implemented with software components. 
Input/output drivers must be developed because they 
depend on control methods and input/output interface of 
control equipment. F-type PCSs use similar set of software 
components, although the components are used in different 
order to accomplish appropriate control. F-type PCSs 
contain data (coefficients and time constants) used for 
customizing PID control, however, they can be ignored 
since the data volume is small as compared to the total 
LOC for software components and newly developed 
portion. The number of software components and LOC in 
F-type PCS are calculated as below. Σ represents a sum 
total of all sub-plants. 
 

 
 

                       (6) 
 
TNfc: Total number of F-type software components 
Nfc:     Number of F-type software components 
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Nfco: Number of F-type output driver components 
Nfcm: Number of F-type software components for 

measurement 
Nfci: Number of F-type input driver components 
Nfmp: Number of F-type measurement points 
 

 
 

                                                                          
(7) 

 
TLｆ: Total LOC for F-type software components 
Lflc: Number of codes for F-type software 

components 
Lflo: Number of codes for F-type output drivers 
Lflm: LOC for F-type software components for 

measurement 
Lfli: LOC for F-type input drivers 
Ｎfmp: Number of F-type measurement points 
Lfla: LOC appended or modified 
 

Based on (7), the calculated numbers of codes in Plant 
A to E are 3192 [LOC], 2185 [LOC], 8766 [LOC], 3538 
[LOC], and 4914 [LOC] respectively. The errors are 
within 5 [%] between the calculated values and the actual 
values shown in Table 4. This is because that the total 
LOC for software components can be calculated accurately, 
and that the total LOC for newly developed portion is 
small and its error estimation is around 15 [%]. 

The other parts are composed of cycle management, 
task management, control equipment operation check, 
machine operation check, abnormal interrupts, and 
emergency machine stop. The functions such as cycle 
management, task management, and control equipment 
operation check are implemented with software 
components. Machine operation check, abnormal 
interrupts, and emergency machine stop are the functions 
inherent in each plant. Because the LOC for these inherent 
functions cannot be determined, we estimate it as mean 
value of Plant A to E, which is 247 [LOC]. The total LOC 
for the other parts is calculated as below: 
 

696247449 =+=+= TloliTLolcTLo                (8) 
 
Tlo:    Total LOC for other parts 
TLolc:   Total LOC for the other software components 
TLols:   Total LOC for the other inherent parts of a plant. 
 

Based on Formula (5), (7) and (8), the total LOC for a 
PCS is calculated as below. 
 
 
 
 

 

(9) 
 
TLp: Total LOC for PCS 
 

Based on (9), the calculated total LOC in Plant A to E 
are 11068 [LOC], 7028 [LOC], 11911 [LOC], 7339 [LOC], 
and 14357 [LOC] respectively. The errors are within 10 
[%] between the calculated values and the actual values 
shown in Table 4. This result indicates that (9) is 
applicable to estimate total LOC for PCSs.  

Based on (2), the reused rate in Plant A to E are 67 
[％], 64 [％], 63 [％], 65 [％], and 65 [％] respectively, 
and the average is 65 [％]. In here, input/output drivers are 
treated as new developments. The reused rate should be 
improved if we register frequently used drivers to the 
component list. 
As the result of Table 5, reduced rate of development time 
in Plant A to E are 60[%], 59[%], 55[%], 58[%], and 
58[%] respectively, and the average is 58[%]. Applying 
proposed method reduces PCS development time. This 
strengthens PCS developer’s competitiveness. 
 
6.2 Evaluation of PCS development environment 
 
6.2.1 Evaluation of Tools to Describe PCS 
Requirement Specification in Z Language 
 

 Eliminating ambiguity using Z language 
We have described requirement specifications in Z 

language. This reduces ambiguity in the descriptions and 
enables precise transmission of requirement specification 
information to preliminary and detailed design phase. As a 
result, garbling or back track of tasks has been reduced, 
and shorter development period have been achieved. 
 
6.2.2 Evaluation of sequence control design tool 
 

 Dividing plant into sub-plants 
We have divided an entire plant into sub-plants using 

SCDT. This limits the range controlled by one component. 
 

 Hierarchical state transition 
Description of state transition (sequences) has been 

facilitated by defining them separately for each sub-plant. 
Also, description of coordinated sequences has been 
facilitated by defining state transitions hierarchically 
between plant and sub-plants. As a result, sequence control 
has been simplified and easier verification has been 
enabled. 
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6.2.3 Evaluation of feedback control design tool 
 

 Dividing plant into sub-plants 
FCDT also has prevented controls from being too 

complex and has enabled the development of reliable 
PCSs. 
 

 Dividing motion control functions 
FCDT divides schema in implementation specification 

repeatedly until it matches to functions registered on 
component list. This enables less experienced developers 
to determine how far the functions should be divided. 
6.2.4 Evaluation of software component selection 
and combination tool 
 

 Automatic extraction of appropriate components 
SSCT extracts the candidates of software components 

automatically. This has extensively saved labor to search 
applicable components from software component libraries. 
 

 Refine specification through repetition of selecting 
software components 

When no applicable component is found, SSCT 
allows developers to divide functions further and to search 
for applicable components repeatedly. When no applicable 
component is found after the repetition, then new 
programs need to be developed. However, new programs 
are developed much easier since the functions and the 
input/output interfaces of the programs are clarified 
sufficiently after the repeated division. 
 
7. Conclusion and future works  
 
This paper has proposed a method for seamless PCS 
development from requirement definition through 
implementation. The results of applying IPDE to actual 
PCS developments have indicated that this method is 
highly effective for seamless PCS development. The 
reused rate of pre-defined software components was 65 
[%]. Consequently, only inherent functions in each plant, 
such as input/output drivers and abnormal sequences, need 
to be newly developed. The reused rate shall be improved 
by increasing types of software components and 
registering developed programs to libraries as software 
components. The reduced rate of development time was 
58[%]. Consequently, this proposed method enables us to 
develop PCS effectively. 

In this method, we have adopted Z language to 
standardize the interfaces of specifications described in 
each development phase and to transmit information 
precisely between the phases. This has enabled to use 
different tools for each development phase, and the 
flexible PCS development environment has been 
accomplished. 

As a future work, we will improve operability of PCS 

development environment. We will also reduce labor to 
manage and maintain the environment by implementing 
methods or tools to create component lists automatically 
based on information of black-box components. 
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