
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

99

Manuscript revised January 30, 2006.

Model-Based Product Redesign

LI Zhan-Shan†,†† ,KOU Fei-hong†,†† ,Cheng Xiao-chun†††,Wang Tao††††

†College of Computer Science and Technology , Jilin University , Changchun ,130012 China
††National Laboratory of Symbol Computation and Knowledge Engineering, Changchun,130012 China
†††Department of Computer Science, The University of Reading, Reading, RG6 6AY, UK
††††Department of Computer Science and Engineering, Changchun University of Technology,Changchun,130012,China

Summary
Based on Model-based theories, this paper explores
the application of model-based reasoning for product
design, proposes the concept of redesign, analyzes
design conflicts, then develops an algorithm to solve
system redesign problems, and finally compares with
existing research results.

Key words:
model-based reasoning, design conflict, redesign.

1. Introduction

When one has to design a new product in manufacturing
field, often an existing , somehow similar product is used
for the new design. Therefore design process is often a
redesign. The reuse of a given design can be a good way of
developing a new product. As reuse means reusing
knowledge, machinery etc., redesign can be seen as a
good approach to lowering cost and improving efficiency.
If new requirements have arisen that ask for a famous
brand new product, then trying to adapt an existing
product is a waste of time and cost, to the problem, it is
necessary that we should study a solution to decreasing the
waste of time and cost for redesign. the advantages of
redesign is that a part of the new product is known in
advance, and conversely, the part that needs to be adapted,
has to be determined. Although the problem has been
investigated in reference[1], unfortunately, the authors did
not formally characterize them. In recent, some
researchers[2-3] have been applying Model-based reasoning
methods to this problem. Their main idea is to regard new
requirements for the system as constraints or observations
in the system to be diagnosed, and compute the part of the
system to be altered using the built system models, but
their efforts were limited to reassign values to some

attributes in the system, so that the results were not
suitable to the situates that the components or structure
needs to be altered. In the paper, based on results which
we have obtained [4-5], we investigate the solutions to the
problems described as above within the diagnosis
framework, we propose the notions of redesign problem,
redesign conflict, redesign diagnosis, redesign, and give an
algorithm to solve redesign problem.

The rest of this paper is organized as follows.
Section 2 first describes product redesign, then
provides necessary definitions. Section 3 gives
an algorithm to solving redesign problem
according to the results in Section 2. Related
work and conclusions are discussed in Section 4
and 5.

2. Product redesign

Product design plays an important role in the production
process of manufacture, which has a direct effect on the
quality and cost of a product, so how to improve the
quality and efficiency of product design is a problem to
which designers must face. When one has to design a new
product in practice, often some existing somehow similar
products are used as the basis for the new design, therefore
design process is often a redesign. Therefore, the problem
that designers must solve is how to redesign an existing
product to satisfy the new requirements. This section
characterizes the methods of solving the problem within
the diagnosis framework. Reconfiguration for a product is
a special case of design activity[6],which includes not only
the choice of parts but also their connections and assigning
values to parameters. The objective of reconfiguration for
a product is the same as that of diagnosis finding out
suspect components, besides, the process of configuration
need decide what requirements to be met and product

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

100

configurator can compute proper components, the
connections between them and assigning values to
parameters, to satisfy these requirements. To present
reconfiguration problem using diagnosis methods, we still
use those terms in diagnosis.
Component is a part of a system, which provides some
functions, from diagnosis viewpoint, if the choice of a
variable value has an effect upon the effectiveness of a
configuration, then the variable can be viewed as the cause
for the abnormal behavior, such that the variable is
regarded as a component. As follow, we illustrate the
process of reconfiguration with an example[1].

Fig2.1 redesign for a circuit
Example: figure 2.1 shows a circuit consisting of
multipliers and adders to be redesigned, where
O=pI1*qI2(p=3,q=2),is the instance specification of
multiplier in it, the behavior of a multiplier M is described
by variables p ,q(instantiated 3 and 2) , function * and its
variables I1 and I2. Therefore, to meet new requirements
for the circuit, we can reach the reconfiguration through
three methods:
Firstly, reassign values of parameters instantiation. For
instance, Modify the specification to be O=2I1*I2 by
reassigning the new value 2 to p and 1 to q.
Secondly, replace a component with another one. For
example, we use adder specified as O=4I1+3I2 instead of
the multiplier, which is considered as changing function,
parameters and varieties of a component.

Finally, change structure of some parts of a system.
There are two adders that are replaced by component
M1M2 which is specified as O1=2I1*5I3*3I4, O2=I1+2I2*I3
See figure 2.1 b.

The redesign above mentioned, which is a descriptive
modification indicates that it is feasible to do this
modification. However, how to make these modification is
usually done by experts of design department. Therefore, it
is incomprehensive and less effective to solve this problem
inevitably. In order to improve the quality and efficiency
of the product design, this section we will describe

automatically calculating the modification of system using
model-based diagnosis. The following definitions are
introduced necessary.
Definition 2.1 (Design Problem) In general ,we assume a
design problem is defined by a pair (SD,SRS）where SD
and SRS are set of logical sentences.
SD represents a system description(a design knowledge
base),and SRS specifies the particular system requirements
which is usually provided by users.
Definition 2.2 (Design) Given a design problem
(SD,SRS）,a design CONF is a disjunction of literals :
type(ci,tj), val(cr, as, vt) ci,cr∈COMPS as∈ATTRS, iff
SD∪SRS∪CONF is consistent and SD∪CONF|=SRS.
This definition allows that a design is not only consistent
with SD and SRS, but also SD and CONF can draw SRS.
A design is a minimal design iff no other CONF′ such that
CONF′⊂CONF is a design. A minimal design can save the
cost of a product.
Definition 2.3 (Redesign Problem) Let a design CONF
for a design problem (SD, SRS) , a redesign problem for
CONF is defined by a pair (SD,SRS′),SRS′∩SRS≠φ and
SRS′≠ SRS ,where SD and SRS ′ are set of logical
sentences.
Definition 2.4 (Redesign Conflict) A conflict C for a
redesign problem（SD,SRS′）is a literal set of part of
COMPS and ATTRS, i.e.
C={type(c1,ti),type(c2,tj),...type(cn,tk),val(ci,aj,vk),...,val(cr,a
s,vt)} such that SD and SRS is inconsistent with C.

Because customers alter the system′s requirement, a
redesign conflict which is consistent with SD and SRS has
become inconsistent with SD and SRS′.Therefore, the
redesign conflict is relate to the modification to the
existing system(the design CONF), which is the
beginning we work. A redesign conflict C is a minimal
redesign conflict iff no other C′ such that C′⊂C is a
redesign conflict.
Definition 2.5[7] Given C is a collection of sets, σ⊂
∪S∈CS is a hitting set of C, such that ∀S∈C，σ∩S≠φ.A
hitting set is minimal iff no proper subset of it is a hitting
set.

Theorem 2.1 (Redesign Diagnosis) Suppose (SD, SRS′)
is a redesign problem, CS is the collection of all minimal
redesign conflict sets for (SD, SRS′). DIAG is a redesign
diagnosis iff DIAG is a minimal hitting set for CS.
It is obviously that the literals of DIAG represents the
components and values of CONF which is inconsistent
with SRS′.We consider DIAG as the part of what to be
altered to the original design CONF. As for different types
of literals in a design, there are a lot of redesign methods
dealing with them correspondingly. Here we mention three
methods such as reassign value of attribute, replace
component and change structure of the original design. In
general, the complexity of the three methods is increasing
step by step.

M1I1

M2

M3

A1

A2

I2

I3
I4
I5
I6

a

M1
M2

M3

A1

A2

I1
I2
I3
I4

I5
I6

b

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

101

Definition 2.6 (Redesign) A redesign CONF′ based on
redesign diagnosis DIAG is consistent with SD and SRS′,
and SD∪CONF′∪CONF¥DIAG|=SRS′.

Given a general product tree , because of new
system′s requirements SRS′, a design that is consistent
with SD and SRS became inconsistent with SD and
SRS′.There are more than one redesign diagnosis for a
redesign problems, As for a DIAG, According to the
theorem 2.1 ,the literals of DIAG is what need to be
alerted, so that CONF¥DIAG is the unnecessary changed
literals of the original design CONF, i.e. it is the remaining
parts of CONF, Which is also a subset of redesign.

In the next section we provide an algorithm to solving
redesign problem based on redesign diagnosis DIAG.

3. Redesign Problem Solving

According to the results discussed in Section 2, solving
redesign is focus on CONF¥DIAG. In practice, we reach
the redesign via altering the literals of DIAG. Thus how to
alter the literals became the most important task. We now
employ an algorithm (cf. Figure 3.1) based on the generic
product tree. Because there are two different types of
literals in DIAG, val and type, we adopt two functions
(methods reset and replaceComps)to deal with them
respectively in step 3. As for literal val, configurator reset
value of the attribute. But for literal type, our algorithm is
to find a replaceable component instead of the component
labeled by this literal. Actually, extending a component is
to set values of all attributes of it. Generally speaking, the
complexity of method reset is lower than that of method
replaceComps. So we should alter val literal firstly. Our
algorithm sorts the order of the two types of literals based
on the complexity of them(method sort in step 2).
Whatever a val or type literal, if their methods can not find
a new value or component that are consistent with
SD,SRS′ and CONF′ ,we drop them from open_list.
Algorithm Reconfigure (DIAG,SD,SRS′,T)
{
1. Initialize: open_list= DIAG; i=0;j=0;
isRedesign=false;
2. Sort(open_list);
3. while (open_list ≠∅)
choose the first literal L from open_list, data=L;
 if data is a val literal, i=resetValue(data ;T);
 else Given R is the set off replaceable
components of data in
T,calli=replaceComps(data,R);
 case i is
 ● 0: CONF′=CONF′ ∪ {data};
isRedesign=true; return CONF′;
 ● 1: CONF′=CONF′∪{data}; delect L from
open_list goto 3;

● 2: delect L from open_list,goto 3;
 4. Insert the literals of the unextended
component into UnExtendComps, call
j=extend(CONF′,UnExtendComps);
5. If j =0 then isRedesign=true;
6. Return CONF′;
}

Fig. 3.1
 If we can not obtain a redesign after all literals
of DIAG having been altered, Our algorithm will
get all unextended components in the generic
product tree and extend them into CONF′
(method extend)in step 4. There may be many
unextended components in the generic tree.
Which ones we should first extend can find a
solution quickly and easily. We can make use of
some heuristics to guild solution search. One
way is extending the literals in SRS′¥SRS ,
which represent system′s new requirements that
the original design can not satisfy and should
have a prior to the others, so that configurator
could consider them preferentially. Another way
is to extend the literals respecting the extended
literals. There are many other ways to guild
extending components. We will discussed them
in detail in future.
It is possible that the system′s requirements is
unreasonable or beyond the SD. Therefore, when having
extended the whole generic tree, the algorithm can not find
a redesign all the same. It means that SD is inconsistent
with SRS′. Here we should change the system′s
requirements.
In addition, there may be many design diagnosis for a
redesign problem. Using our algorithm, we can have more
than one redesign, i.e. a redesign problem may have many
solutions. Among these solutions, which one is the best
should be decided by the use of valuation function, experts
or decision-maker.

4. Discussion and Related work

We have presented the definition of redesign aiming
at the existing product design and the solving algorithm
using the redesign diagnosis. In the face of requirement
changing quickly, designers must think out different kinds
of new products to adapt to this situation. In fact, in order
to improve the quality and efficiency of product design,
most new products are developed on the basis of some
existing similar products. Therefore, designing a product
often can be seen as redesign. In a certain extent, the ideal
product redesign is the key to success of enterprise.
Product redesign has became a problem faced by

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

102

enterprises. There are many experts having been done
research for this problem and presented some methods to
solving it.

From a common viewpoint of consistency-based
reasoning, diagnosis is similar to configuration. Stumptner
and Wotawa[2,3] have presented their method based on
model diagnosis to solving redesign. Compare to their
work, we both make use of solving conflict based on
consistency diagnosis, but the difference is the point of
view on the same problem and the capability of solving
algorithm. In one place, SD is different, they consider a
particular system(in this case the existing configuration)
and a description of its behavior as SD. They solve
diagnosis based on the existing configuration, which is a
set of resetting the modes of the components in the system.
i.e. the components, attributes and the description of
behavior of reconfiguration is not beyond the existing
configuration. Confronting with all kinds of user’s new
requirements, specially some new functions realized by the
components besides SD they defined, their method can not
solve this problem. This paper is not only to reconfigure
the components of the existing configuration that
inconsistent with new requirements, but also to extend new
components and attributes in the generic tree. Therefore,
the capability of our solving algorithm is more powerful
than theirs. Another difference is the mode of treating with
diagnosis. They consider a diagnosis component as a
parameter that has three modes, so that a diagnosis is set of
mode setting of related components that is consistent with
SD and OBS. If the diagnosis satisfies with a filter
condition, it is a reconfiguration. The diagnosis we defined
is a set of components of the existing configuration that is
inconsistent with new requirements, which may contain
components and attributes not in the existing configuration
but in the generic tree. Furthermore, our solving method is
to alter the literals of DIAG via resetting value and
replacing component to seek redesign solution.

5 Conclution
In this paper, we have described the application
to product design based on model-based
diagnosis and presented the concepts of redesign
diagnosis. In additional, we have developed a
problem solving algorithm for redesign based on
diagnosis. Acknowledgment

Our researches had been supported by the
National Natural Science Foundation of China.

References
[1] Bakker R.R, Eldonk S.J.M and Mars N.J.I. The use of

model-based dagnosis in redesign. In: Cohn edit, 11th

European Conference on Artificial Intelligence, John Wiley
&Sons Ltd,1994

[2] Stumptner M and Wotawa F. Model-based reconfiguration.
In: Proceedings of Artificial Intelligence in Design (AID-98) ,
Lisbon, Portugal, 1998.

[3] Stumptner M and Wotawa F. Reconfiguration using
Model-based Diagnosis.In: Proceedings of the International
Workshop on Diagnosis,1999

[4] Console L, Friedrich G eds. Model-Based Diagnosis.
Basel-Switzerland, Science Publishers,1994：

[5] JIANG Yunfei LI Zhanshan. On component
replacement and replacement tests for
model-based diagnosis. CHINESE J.
COMPUTERS,2001,24(6):666-672）

[6] Li Zhan-shan,Wang Tao and Sun Ji-gui. System Replacement
Repair and Reconfiguration by Using Model-Based
Diagnosis.Chinese J.of Jilin University(Science
Edition),2003,41(1): 45-48
[7] Stumptner M.,Anoverview of knowledge-based configuration.

AI Communications, 1997,10(2):1-15
[8] Reiter R. A theory of diagnosis from first principles.

Artificial Intelligence, 1987,32(1):57-96

Li Zhan-shan received Ph D., from
Jilin Univ. in 2000. After working as a
lecturer (from 1999) in the Dept. of
Computer Science and technology, he
has been an associate professor at Jilin
Univ. since 2001. His research interest
includes model-based diagnosis,
knowledge representation and problem

solving of configuration, and intelligent plan and decision
making.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

103

