
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

120

Manuscript revised January 28, 2006.

Description Logic Based Conflict Detection Methods for

RB-RBAC Model

Haibo Yu, Qi Xie and Haiyan Che

College of Computer Science and Technology, Jilin University, Changchun 130012, China

Summary
RB-RBAC (Rule-Based RBAC) provides the mechanism to
dynamically assign users to roles based on a finite set of
authorization rules defined by the enterprise's security policy.
The RB-RBAC family introduces negative authorization,
represented by negative roles, which may bring conflict, and
conflict detection and resolution become an import work in
RB-RBAC policy management. We proposed a formalization of
RB-RBAC model by description logic and developed conflict
detection methods based on description logic reasoning service.
Conflicts can be detected when all authorization rules have been
defined, and a revised detection method is also given to improve
the system efficiency when dynamically adding new
authorization rule to system. Conflicts among related rules and
among unrelated rules can be distinguished by these methods. We
also demonstrate a simple method to resolve conflict.
Key words:
RB-RBAC, Description Logic, Policy conflict, Conflict detection

1. Introduction

Role-Based Access Control (RBAC) has emerged as a
widely deployed alternative to traditional discretionary and
mandatory access controls [1],[2]. Usually, enterprise
security officer manually assign users to roles based on
criteria specified by the enterprise. But in many
environments, the number of users can be in the hundreds
of thousands or millions. This renders manual user-to-role
assignment a formidable task. Rule-Based RBAC
(RB-RBAC) [3],[4],[5] is introduced to automatically
assign users to roles based on a finite set of authorization
rules defined by enterprise. RB-RBAC is an excellent
authorization model especially for distribution
environments with a large number of users.

The RB-RBAC family introduces negative
authorization, represented by negative roles, to the RBAC
world [5]. Introducing negative authorization may lead to
conflict, and conflict detection and resolution become an
import work in RB-RBAC policy management. In [5] only
analysis about conflict and some resolution are discussed.
Some logic methods [6],[7],[8] were proposed, most of
them did not have efficient implementations. In [9],[10],
[11] policy based system was build. Most of these works

do not support complex attribute expression definition,
quasi-order relation definition among attribute values and
RB-RBAC seniority level reasoning.

We propose a description logic based approach to
deal with components in RB-RBAC. Description logic
(DLs) [12] is a family of languages used to describe and
classify concepts and their instances. Compared with
first-order logic, DLs achieve a better tradeoff between
computational complexity of reasoning and the
expressiveness of the language. In this approach, attribute
expression should be represent in a manner that makes
seniority level reasoning become a simple work.
Comparison between attribute expressions is less restricted
to allow insight on the relations of authorization rules even
they are not identical syntax structures. Most important,
the detecting methods are efficient enough for
implementation. We also demonstrate a simple method to
rewrite conflicted rules for eliminating conflict.

The paper is organized as follow. In section 2, we
give an overview of RB-RBAC model. In section 3, we
introduce description language ΑΛΧ [12]. In section 4, we
represent the RB-RBAC model in ΑΛΧ. In section 5, we
discuss our conflict detection methods. Section 6
concludes the paper.

2. RB-RBAC Model

The main components of the RB-RBAC model are users,
attribute expressions, roles and permissions. The
component users, roles and permissions are imported from
RBAC96 [1].

In RB-RBAC, the security policies of the enterprise
are expressed in form of a set of authorization rules. Each
rule takes as an input the attributes expression that is
satisfied by a user and produces one or more roles. Every
attribute expression actually defines a specific user set.
The following is an example of a rulei: i gae r⇒ , where
aei is attribute expression and rg is the produced role. If
user u satisfies aei, then u is authorized to the role(s) in the
right hand side of rulei. RB-RBAC family allow negative
authorization such as following k jae r⇒ ¬ . The rule above

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

121

states that once a user satisfies aek system that implements
RB-RBAC will prohibit that user from assuming rj.

To capture the seniority relations that might exist
among authorization rules, the dominance binary relation
on attribute expressions is introduced: aei is said to
dominate aej only if aei implicates aej logically. That
indicates each counterpart attribute value of attribute
expressions also exists seniority levels. Another way of
stating the above relation between aei and aej is to say that
rulei is senior to rulej (denoted by ≥):

()i j i jrule rule ae ae≥ ↔ → .
This implies that users who satisfy rulei also satisfy rulej
and, hence, are authorized to the roles produced by rulej.

Introducing “¬” to the right hand side may lead to
conflict in the state of a single user wrt a single role. The
conflict is due to simultaneous positive and negative
authorizations. Figure 1 describes a set of authorization
rules. Conflict among unrelated rules likes the one
between rule1 and rule2. If u satisfies rule1 and rule2
simultaneously then u should be authorized to activate r1
and denied r1 at the same time. Conflict among related
rules is as following. rule2 and rule4 are conflicting
because if u satisfies rule2 then he is denied r1, but at the
same time, authorized to assume r1 because 2 4rule rule≥ .

Fig.1. Example of conflict

3. The Description Logic for Modeling
RB-RBAC

We choose a DL language ΑΛΧ[12] to represent and
reason on RB-RBAC according to features of RB-RBAC.
In DLs, the vocabulary consists of concepts, which denote
sets of individuals, and roles, which denote binary
relationships between individuals.

Elementary descriptions are atomic concepts (denoted
by A) and atomic roles (denoted by R) and complex ones
can be built from them inductively with concept
constructors. ΑΛΧ concepts (denoted by C,D) are formed
inductively according to the following syntax rules:

, | | | | .C D A C C D R C→ ¬ ∃• ó .
• is defined as universal concept, and ⊥ is defined as
bottom concept, such that = ¬⊥• . We also can define the
constructors: ()C D C D= ¬ ¬ ¬膣 , . (.)R C R C∀ = ¬ ∃ ¬ ,

 () ()C xor D C D C D= ¬膣 ? , and so on.
In order to define a formal semantics of

ΑΛΧ-concepts, we consider interpretations (,)= Δ gI II ,
that consist of a domain of the interpretation Δ I and an
interpretation function gI , which assigns to every atomic
concept A a set A ⊆ ΔI I and to every atomic role R a
binary relation R ⊆ Δ × ΔI I I . The syntax and semantics of
ΑΛΧ is summarized in Table 1.

Table 1: The syntax and semantics of ΑΛΧ

Constructors Syntax Semantics
universal concept • Δ I
atomic concept A AI
concept negation C¬ \ CΔ I I
intersection C Dó C DII I
existential
restriction .R C∃ { | .(,) }a b a b R b C∈ Δ ∃ ∈ ∧ ∈I I I

A knowledge base (KB) comprises two components,

the TBox and the ABox.
TBox (denoted asT) is a finite set of terminological

axioms. Generally, they have two forms:
() ()C D R S or C D R S≡ ≡諦 ,

where C, D are concepts (and R, S are roles). Axioms of
the first kind are called inclusions, while axioms of the
second kind are called equalities. To simplify the
exposition, we deal in the following only with axioms
involving concepts. An interpretation Ι satisfies an
inclusion C Dô if C D⊆I I , and it satisfies an equality
C D≡ if C D=I I . If Ι satisfies an axiom (resp. a set of
axioms), then we say that it is a model of this axiom (resp.
set of axioms). Two axioms or two sets of axioms are
equivalent if they have the same models.

ABox (denoted as A) is a finite set of individual
assertions: C(a) or R(b,c), where C is a concept, R is a role,
a, b and c are individuals. By the first kind, called concept
assertions, one states that a belongs to (the interpretation
of) C, by the second kind, called role assertions, one states
that c is a filler of the role R for b.

Typical reasoning tasks for a terminology are
satisfiablity and subsumption. A concept C is satisfiable
with respect to Τ if there exists a model Ι of Τ such that
C I is nonempty. A concept C is subsumed by a concept
D with respect to Τ if C D⊆I I for every model Ι of Τ,
denoted as C DôT ٛ . In ΑΛΧ, subsumption can be
reduced to satisfiability as follow: C is subsumed by
D C D⇔ ¬ó is unsatisfiable.

4. Representing and Reasoning on RB-RBAC

rule2≥ rule4

rule3≥ rule4

rule1:ae1⇒r1

rule2:ae2⇒¬r1,r2

rule3:ae3⇒r2

rule4:ae4⇒r1,r3

rule1:
roles=r1

rule2:
roles=¬r1,r2

rule3:
roles=r2

rule4:
roles=r1,r3

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

122

Given a RB-RBAC system, we define a DL knowledge
base Κ and assume that users, roles, attributes and
permissions are finite.

The vocabulary of Κ includes the following atomic
concepts and atomic roles:
(i) The atomic concepts CUser, CRole and CPermission,

represent the users, roles and permissions,
(ii) For each role ri in system, one atomic concept Rolei,

(iii) For each permission pi in system, one atomic concept
Permissioni,

(iv) For each attribute expression, one atomic concept
AEi,

(v) For each attribute Ai, one atomic concept CAi, and for
each attribute value of attribute Ai, one atomic
concept j

iCAval ,
(vi) For each attribute Ai, one atomic role hasAi,

represents the user hold attribute value of attribute Ai,
(vii) The atomic role assignRole, indicate the user can be

assigned the role automatically,
(viii) The atomic role holdPermission, represent the user

can hold the permission.
The TBox of Κ includes five catalogs of axioms:
Attribute inclusion axioms state the seniority levels

among attribute values. For each seniority relation: j
iv is

senior to k
iv , we should setup axioms with the form

j k
i iCAval CAvalô . Moreover, each concept j

iCAval is a
subconcept of CAi, so axioms j

i iCAval CAô should be
included for each attribute value.

For example, in a department of a company, there are
two positions: department manger (dm) and project
manager (pm) and a dm also acts as a pm. First, we define
atomic concepts CPosition, DM and PM, and an atomic
role hasPosition. Then, we set up
axioms DM CPositionô , PM CPositionô and
DM PMô in TBox. Concept .hasPosition DM∃ is
interpreted as users whose position is department manager.

Role inclusion axioms declare the role hierarchies.
Axiom i jRole Roleô should be included for each role
hierarchy: role ri inherits permissions of rj. Each concept
Rolei is also a subconcept of CRole, we should set up
axioms iRole CRoleô for each role.

Attribute expression definition axioms define the
attribute expressions and specify the concrete attribute
values which users should hold. For each authorization
rule rulei, definition axioms have the general form:

1
1 1. . njj

i n nAE hasA CAval hasA CAval≡ ∃ ∃L寨 .
If some kinds of attributes do not exist in an attribute
expression, they should disappear in the definition axioms
and need not be donated as .ihasA∃ • . If an attribute
expression requires more then one values about some
kinds of attributes, they should be defined as such

form: 1.()k km
i i ihasA CAval CAval∃ L窒 . More complex

conditions can be defined using other constructors.
Role assignment axioms express roles are assigned

automatically to users who satisfy attribute expressions of
authorization rules. For each authorization rule rulei, role
assignment axioms have the general form:

1.()i k kmAE assignRole Role Role∃ L締 ٛ .
Where 1, ,k kmRole RoleL are roles produced by rulei.
These axioms indicate if a user satisfies the attribute
expression of an authorization rule then it will be assigned
roles produced by that rule. For example, in figure 1,
authorization rule rule2 can be represented as

2 1 2. .AE assignRole Role assignRole Role∀ ¬ ∃締 .
Of course, we can set up such axiom as

1 2.()iAE assignRole Role xor Role∃ô , which represents
users are prohibited to assume the corresponding role r1
and r2 at the same time.

Authorization axiom declares users can get
permissions by automatically assigned roles. For each
role-permission assignment (rolei, pk), authorization
axioms have the general form:

. .i kassignRole Role holdPermission P∃ ∃ô .
Concept . kholdPermission P∃ is interpreted as the set of
users that can be authorized the permission pk, and concept

. iassignRole Role∃ is interpreted as the set of users that are
automatically assigned to rolei. This axiom indicates that if
a user has been automatically assigned to the rolei then this
user can be authorized the permission pk.

The ABox of Κ includes five catalogs of assertions:
(i) User concept assertions have the form CUser(u)

and introduce the users.
(ii) Role concept assertions have the form Rolei(ri) and

declare that each role belongs to corresponding role
concept.

(iii) Attribute value concept assertions have the form
j

iCAval (j
iv) and declare that each attribute value

belongs to corresponding attribute value concept.
(iv) Permission concept assertions have the form

Permissioni(pi) and declare that each permission
belongs to corresponding permission concept.

(v) User attribute assertions have the form hasAi(u, v)
and indicate that user u holds attribute value v of
attribute Ai.
Now, we can use the reasoning services provided by

DL to achieve some reasoning tasks and make access
control decision. A so-called "Tell&Ask" interface
specifies operations that enable knowledge base
construction (Tell operations) and operations that allow
one to get information out of the knowledge base (Ask
operations).

We can query if a user u is automatically assigned to
role ri using such statement: ((.)())iassignRole Role u∃Ask ,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

123

which checks if u is an instance of . iassignRole Role∃ , or
whether u is automatically assigned role ri. We can ask
knowledge base to query whether a user u is authorized
permission pi by ((.)())iholdpermission P u∃Ask . The
statement (())iAE uAsk can test whether a user u satisfies
the corresponding attribute expression aei.

According to role assignment axioms and
authorization axioms, we can conclude that if a user u
satisfies an attribute expression which is automatically
assigned roles holding permission p, then user u is
authorized permission p.

In [3], authorization rules as well as attributes
expressions that have identical syntax structures can be
compared to determine seniority levels among them. That
is too restricted to prevent the insight about relationships
among rules. We remove this restriction for comparisons
and determine relations among rules only based on
comparison of user sets specified by attribute expressions
on the left hand sides of authorization rules.

Besides reasoning on access control decision, TBox
inference can help us to determine dominance relation
between attribute expressions. For arbitrary attribute
expression concepts AEi and AEj, if there
is i jAE AET ٛ ô , which indicates each user satisfies aei

also satisfies aej, then we can say aei dominates aej or rulei

≥ rulej. If i jAE AET ٛ ô and j iAE AET ٛ ô , then we
can conclude that there is no seniority relation between aei
and aej.

5. Conflict Detection

When we add each of attribute expression definition
axioms to TBox, we must check whether that atomic
concept is satisfiable by calling TBox coherence check.
That will preclude TBox from accepting incorrect attribute
expression definition. For example, in a department of a
company, there are two positions: department manger
(DM) and project manager (PM). A department manger
also acts as a project manager. Then we define an attribute
expression concept AEmis as form

.()AEmis hasPosition DM PM≡ ∃ ¬ó ,
which specifies a set of user who is a department manger
but not a project manager. Because each department
manager is also a project manager, the attribute inclusion
axiom DM PMô is included in TBox. Consequently, the
concept AEmis is unsatisfiable with respect to TBox.

In RB-RBAC, conflict among related rules and
conflict among unrelated rules are main conflict types.

Conflict among related rules arises from the
following situations: if there are seniority relations
between two authorization rules rulei and rulej, i.e. rulei ≥
rulej or aei dominating aej, and there is a role r which

appears in the two sets of roles produced by these rules
respectively with form r and form ¬r.

Conflict among unrelated rules arises from the
following situations: if there are same users who satisfy
both authorization rules rulei and rulej, and there a role r
which appears in the two sets of roles produced by these
rules respectively with form r and form ¬r.
In some sense, conflict among related rules are specifics of
conflict among unrelated rules, and users satisfying senior
rules is just the users satisfying both rules. So, we can give
a conflict detection method to detect all these conflict at
the same time. This conflict detection method can deal
with a set of authorization rules simultaneously and we
recommend that role assignment axioms should be kept in
a separate location with other axioms when implementing
this method. The method is as follows.

Firstly, all axioms except role assignment axioms are
loaded to Tbox and TBox should be still coherent. For
arbitrary attribute expression definition axioms AEi and
AEj in TBox, we check whether concept i jAE AEó is
satisfiable with respect to TBox. For each satisfiable
concept i jAE AEó , concept pair (,)i jAE AE is added to
the set OverlappedAEs.

Secondly, all role assignment axioms are added to
TBox after attribute expression definition axioms. For
each concept pair (,)i jAE AE OverlappedAEs∈ , we check
again whether concept i jAE AEó is satisfiable with
respect to current TBox. If concept i jAE AEó is
unsatisfiable, i.e. i jAE AEóT ٛ , then there must exist
some kind conflict between rulei and rulej.

Thirdly, if we want to distinguish the different
conflict types, we need remove all role assignment axioms
of conflicted authorization rules from TBox. For each
conflict between rulei and rulej detected in previous step, if
concept subsumption between AEi and AEj is satisfiable,
i.e. i jAE AEôT ٛ or j iAE AEôT ٛ , then the conflict
arises among related rules, else it arises among unrelated
rules.

Considering system efficiency, the above conflict
detection method will be not a good choice when adding a
new authorization rule to a system without any conflict.
Because it will calculate all attribute expression pairs of
that system even though they have been detected and
revised to eliminate any conflict. Hence, we tailor it to the
situations when adding a new authorization rule to a set of
authorization rules without any conflict.

Firstly, we add an attribute expression definition
axiom AEi to TBox and TBox should be still coherent. For
each attribute expression definition axiom AEj already
included in TBox, we check whether concept

i jAE AEó is satisfiable with respect to TBox. For each

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

124

satisfiable concept i jAE AEó , concept pair (,)i jAE AE is
added to the set OverlappedAEs.

Secondly, we add the role assignment axiom about
AEi to TBox. For each concept pair
(,)i jAE AE OverlappedAEs∈ , we check again whether
concept i jAE AEó is satisfiable with respect to current
TBox. If concept i jAE AEó is unsatisfiable, i.e.

i jAE AEóT ٛ , then there must exist some kind conflict
between rulei and rulej.

Thirdly, if we want to distinguish the different
conflict types, we need remove the role assignment axiom
about AEi from TBox. For each conflict between rulei and
rulej detected in previous step, if concept subsumption
between AEi and AEj such as i jAE AEôT ٛ or

j iAE AEôT ٛ is satisfiable, then the conflict arises
among related rules, else it arises among unrelated rules.

The security officers can choose appropriate method
according different detecting tasks.

Conflict detected can be resolved automatically by
rewriting algorithms or manually by security officers. We
just give a simple resolution method to demonstrate how
to rewrite axioms to resolve conflict among related rules
and unrelated rules respectively, although we can resolve
conflicts needlessly to knowing their types.

For conflict among related rules, we give a simple
conflict resolution method based on Denial Takes
Precedence (DTP) [5], and after rewriting new rules
should have same semantics with old ones. First, we
remove all conflict role assignment axioms. Second, for
each conflict between rulei and rulej, we define a new
attribute concept 'j j iAE AE AE≡ ¬ó for i jrule rule≥
(or ' ii jAE AE AE≡ ¬ó for j irule rule≥), which specifies
users satisfying rulej but not satisfying rulei. Last, for each
concept pair AEi and AEj’ defined above, we specify new
role assignment axioms respectively to AEi and AEj’: AEi
will be assigned the union of roles of these two rules
except all opposite role pairs and AEj’ will be assigned
roles of rulej. For the example in figure 1, we give
rewritten axioms in figure 2(a).

This resolution method is good choice for simple
situation, but it may not ensure to add the least number of
rules to TBox when more then one conflict exists at the
same time. For example, for such rules i krule rule≥ and

k jrule rule≥ , there are conflict between rulei and rulej,
and conflict also between rulei and rulek. We add rulei to
TBox after rulej and rulek have been added. Above
resolution method can eliminate conflict between rulei and
rulej, and conflict between rulek and rulej. That adds four
new rules which include two role assignment axioms both
about AEi. From security officer's opinion, these two role

assignment axioms should be merged to one and that will
not tamper the original semantics.

Conflict among unrelated rules also could be resolved
by rewriting authorization rules, and after rewriting new
rules should have same semantics with old ones. We give a
simple conflict resolution method also based on DTP. First,
we remove conflict role assignment axioms. Second, we
define new attribute concepts: 'i i jAE AE AE≡ ¬ó ,

'j i jAE AE AE≡ ¬ ó and ij i jAE AE AE≡ ó , respectively
represent users satisfying rulei but not satisfying rulej,,
users satisfying rulej but not satisfying rulei, and ones
satisfying rulei and rulej simultaneously. Finally, we
specify new role assignment axioms to 'iAE , 'jAE and

ijAE : 'iAE will be assigned roles of rulei, 'jAE will be
assigned roles of rulej and ijAE will be assigned the union
of roles of these two rules except all opposite role pairs.
For the example in figure 1, we give rewritten axioms in
figure 2(b). But this resolution method is suitable for only
one conflict detected in TBox. If more than one conflict is
detected, then this method can not get optimized resolution.
More complex algorithms can be given to resolve this
problem.

Fig. 2. Examples of rewriting

6. Conclusion

We have shown how to detect conflicts among
authorization rules in RB-RBAC. A description logic
based formalization also has been demonstrated to

Axioms before rewriting:
1 1.AE assignRole Role∃ô ,
2 1 2.()AE assignRole Role Role∃ ¬締

Axioms after rewriting:
1 1 2'AE AE AE≡ ¬ó
1 1' .AE assignRole Role∃ô
2 1 2'AE AE AE≡ ¬ ó
2 1 2' .()AE assignRole Role Role∃ ¬締
12 1 2AE AE AE≡ ó

12 2.AE assignRole Role∃ô
(a)

Axioms before rewriting:
1 1.AE assignRole Role∃ô
2 1 2.()AE assignRole Role Role∃ ¬締

Axioms after rewriting:
1 1 2'AE AE AE≡ ¬ó
1 1' .AE assignRole Role∃ô
2 1 2'AE AE AE≡ ¬ ó
2 1 2' .()AE assignRole Role Role∃ ¬締
12 1 2AE AE AE≡ ó
12 2.AE assignRole Role∃ô

(b)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

125

represent and reason on RB-RBAC model. Besides
performing make authorization decision and basic DL
reasoning task, we mainly proposed the approaches to
detect conflicts among authorization rules. Conflicts can
be detected when all authorization rules have been defined.
A revised detection method is also given to improve the
system efficiency in the process of dynamically adding
new authorization rule to system. We also demonstrate
simple methods to rewrite conflict rules for eliminating
conflict.

A complex rewriting algorithm should be developed
to optimize the resolution of more than one conflict. In
order to express such properties as age≥18, concrete
domain [12] should be considered to improve expressive
power of the language we use.

References
[1] R. Sandhu, E. Coyne, H. Feinstein and C. Youman,

"Role-Based Access Control Model", IEEE Computer,
vol.29, no.2, pp.38~47, Feb. 1996.

[2] D. Ferraiolo, R. Sandhu, S. Gavrila and R. Kuhn, "Proposed
NIST Standard for role-based access control: towards a
unified standard", ACM TISSEC, vol.4, no.3, pp. 224~274,
August 2001.

[3] M. Al-Kahtani and R. Sandhu, "A Model for
Attribute-Based User-Role Assignment", Proc. 18th Annu.
Computer Security Applications Conf., Las Vegas, Nevada,
USA, pp.353-362, December 2002.

[4] M. Al-Kahtani and R. Sandhu, "Induced Role Hierarchies
with Attribute-Based RBAC", Proc. ACM SACMAT’03,
Villa Gallia, Como, Italy, pp.142-148, June 2003.

[5] M A. Al-Kahtani, Ravi Sandhu, "Rule-Based RBAC with
Negative Authorization", Proc. 20th Annu. Computer
Security Applications Conf., Tucson, Arizona, USA,
pp.405~415, December 2004.

[6] S. Benferhat, R. E. Baida, and F. Cuppens, "A
Stratification-based Approach for Handling Conflicts in
Access Control", Proc. 8th ACM symposium on Access
control models and technologies, Como, Italy, pp. 189–195,
June 2003.

[7] J. D. Moffett and M. S. Sloman, "Policy Conflict Analysis
in Distributed System Management", Journal of
Organisational Computing, vol. 4, no. 1, pp.1-22, 1994.

[8] E. Lupu and M. Sloman, "Conflict Analysis for
Management Policies", 5th IFIP/IEEE International
Symposium on Integrated Network Management,
San-Diego,CA, pp.430-443, May 1997

[9] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M.
Breedy, L. Bunch, M. Johnson, S. Kulkarni, J. Lott, "KAoS
policy and domain services: Toward a description-logic
approach to policy representation, deconfliction, and
enforcement", Proc. IEEE 4th International Workshop on
Policy, Lake Como, Italy, pp.93-98, June 2003.

[10] N. Damianou, N. Dulay, E. Lupu, M. Sloman, "The Ponder
Policy Specification Language". Proc. Policy 2001:
Workshop on Policies for Distributed Systems and
Networks, Bristol, U.K., Springer-Verlag, LNCS 1995,
pp.18-39, January 2001.

[11] L. Kagal, T. Finin, A. Johshi, "A Policy Language for
Pervasive Computing Environment", Proc. IEEE 4th
International Workshop on Policy, Lake Como, Italy,
pp.63-76, June 2003.

[12] Franz Baader, Diego Calvanese et al., The Description
Logic Handbook: Theory, Implementation and Applications,
Cambridge University Press, 2003

Haibo Yu received the B.E. and
M.E. degrees, from Jilin Univ. in 1997
and 2000, respectively. After working
as a research assistant (from 2000), an
instructor (from 2002) in the College of
Computer Science and Tech., Jilin Univ..
His research interest includes network
security, software engineering.

