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Summary 
Autoregressive (AR) models for spectral analysis of 
electroencephalogram (EEG) signals are advantageous over the 
classical Fourier transform methods due to their ability to deal 
with short segments of data, superior resolution and smoother 
spectra. But a problem or rather a parameter that needs to be 
optimised in this method is the model order of the AR equation. 
Currently, statistical methods like Akaike Information Criterion, 
Final Prediction Error, Residual Variance, Minimum Description 
Length, Criterion Autoregressive Transfer and Hannan-Quinn 
have been used for this purpose. These methods depend on the 
statistical properties of the data, which selects the lowest order 
that is optimal to represent the signal. In this paper, the use of 
genetic algorithm (GA) is proposed to select the order of the AR 
model during classifier training. This technique fuses GA with 
Fuzzy ARTMAP to select the appropriate AR model order for 
EEG signals during system training to optimise classification of 
test signals into their respective different mental tasks. The 
experimental results show that this method outperforms the other 
statistical methods and a fixed 6th order model although the 
simulations were carried out with a small number of genetic 
populations and generations to reduce the computational cost.  
Key words: 
Autoregressive, EEG, Genetic Algorithm, Mental tasks, Model 
order. 

1. Introduction 

Linear parametric techniques like autoregressive (AR) 
models have a broad spectrum of applications ranging 
from identification; prediction and control of dynamical 
systems and digital spectral analysis using these models 
have proven to be superior to classical Fourier transform 
techniques like Discrete Fourier Transform (DFT) or the 
computationally efficient Fast Fourier Transform (FFT). 
This is due to the ability of AR models to handle short 
segments of data while giving better frequency resolution 
and smoother power spectra than Fourier methods. 
Furthermore, AR methods need only one or more cycles of 
sinusoidal-type activity to be present in the segment to 
produce good spectral peaks and they also provide the 
ability to observe small shifts in peak frequencies, which 
are not easily observed with FFT derived spectra [16]. 

Specifically, AR models are even more popular than the 
other linear parametric models like moving average (MA) 
and autoregressive moving average (ARMA) due to their 
inherent computational efficiency [23]. The AR model 
coefficients can be easily estimated by solving a set of 
linear equations using the Yule-Walker method or solving 
recursively for higher orders using Levinson-Durbin [6] or 
Burg [7] methods. In addition, AR coefficients can be 
efficiently updated when new data becomes available 
through the use of Kalman filter equations [11]. But MA 
and ARMA require complicated procedures to estimate the 
model coefficients [23]. 
 Successful applications of AR models are abundant in 
literature. It has been used in radar applications by Alkin 
[3], geophysical application by Landers and Lacoss [22], 
medical signal processing like Electroencephalogram 
(EEG) [4, 5, 11, 14, 16, 23, 25, 28] and Electrocardiogram 
(ECG) [26], ultrasonic tissue backscatter coefficient 
estimation [32], speech processing [29] and music 
understanding [28]. In the realm of EEG analysis, Ning 
and Bronzino [23] have analysed EEG signals with AR 
and bispectral methods, Pfurtscheller et al [25] have used 
AR parameters to separate EEG signals recorded from 
right and left motor imagery as a means of brain computer 
interface, Keirn and Aunon [21] proposed a new mode of 
communication using EEG signals where one of the 
methods used was the AR technique. Saiwaki et al [28] 
have studied EEG signals with AR models for 
understanding music and brain signal flow. Anderson et al 
[4] have experimented on classification of different mental 
tasks using AR models and neural network. Aufrichtig and 
Pedersen [5] and Herrera et al [14] have analysed sleep 
using EEG spectral analysis.  
 Successful as they are, however, there is a problem or 
rather a parameter that must be selected in order to utilise 
an AR technique properly i.e. the model order. As one can 
surmise, the AR model can be any order as desired. 
However, it should be as accurate as possible in terms of 
signal representation. Intuitively, it is known that a model 
order, which is too small will not represent the properties 
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of the signal, whereas a model order which is too high will 
also represent noise and inaccuracies and thus, will not be 
a reliable representation of the true signal. Therefore, 
methods that will determine the appropriate model order 
must be used and this problem has found many published 
work [1-3, 5, 11, 13, 14, 19, 24, 26, 27, 30, 32]. There are 
many criteria in literatures for determining the AR order. 
Some of these are like Akaike Information Criterion (AIC) 
and Final Prediction Error (FPE) [1] pioneered by Akaike. 
Other commonly used criteria are like Minimum 
Description Length (MDL) suggested by Rissanen [27], 
Criterion Autoregressive Transfer (CAT) by Parzen [24] 
and Residual Variance (RV) [18, 32]. Hannan and Quinn 
(HQ) [13] criterion increases the penalty for large order 
models to counteract the overfitting tendency of AIC.  
 Aufrichtig and Pederson [5] have studied AIC and 
MDL methods for AR modelling of EEG sleep recordings. 
Alkin [3] has investigated AR model order selection 
methods using AIC, FPE, MDL and CAT for radar 
adaptive clutter suppression. Herrera et al [14] studied 
AIC and HQ for modelling multichannel EEG signals 
during sleep. Pinna et al [26] have studied the use of AIC 
in AR spectral analysis of cardiovascular variability 
signals and Wear et al [32] used AIC, FPE, MDL and RV 
as model order criteria in their paper. Simpson [30] 
studied AIC, FPE and CAT for selecting the AR order for 
EEG signals. Aksasse and Radourne [2] have analysed 
order selection criteria for 2-D models. These publications 
are not complete considering the vast amount of published 
work in this area but serves to suffice since it covers most 
of the popular techniques that are currently available for 
solving the problem of selecting the AR model order. 
 The goal of the work in this paper is to improve the 
method of selecting the AR order. A new method of using 
genetic algorithm (GA) to select to select the appropriate 
AR model order for representing EEG signals is proposed. 
Although EEG signals have been used in the experimental 
study in this paper, the proposed method is general and is 
applicable to other applications, which requires the 
selection of AR model order. The proposed method fuses 
GA with a Fuzzy ARTMAP (FA) network to select the 
appropriate model order during training phase. GA use FA 
classification as the fitness or objective function to select 
the appropriate AR model order. AR coefficients are 
obtained next and power spectral densities (PSD) for the 
EEG signals are extracted and the system classifies the 
EEG signals for different mental tasks. The experimental 
results demonstrate that this method outperforms other 
currently used statistical methods, namely: AIC, FPE, 
MDL, CAT, HQ, RV in addition to a fixed 6th order model. 
This is since GA selects the order, which maximises 
recognition performance while the performances of the 

other methods depend on the statistical properties of the 
data and the nature of the modelling process. 
 
2. Autoregressive systems and statistical 
model order selection methods 

2.1 Autoregressive systems 

A real valued, zero mean, stationary, non-deterministic, 
autoregressive process of order p is given by 

= )()(
1

)( neknx
p

k kanx +−∑
=

−= , (1)

where p is the model order, x(n) is the data of the signal at 
sampled point n, ak are the real valued AR coefficients and 
e(n) represents the error term independent of past samples. 
The term autoregressive implies that the process x(n) is 
seen to be regressed upon previous samples of itself. The 
error term is assumed to be a zero mean white noise with 
finite variance, 2

eσ . In applications, the values of ak and 
2
eσ  have to be estimated from finite samples of data x(1), 

x(2), x(3), ………., x(N). 
 Many different techniques have been proposed to 
estimate ak, each with its own merits and demerits. Some 
of these are like autocorrelation, covariance and lattice 
methods [11]. The most common method is to use the 
autocorrelation technique of solving the Yule-Walker 
equations [6, 18]. The Yule-Walker equations can be 
solved directly directly using conventional linear equation 
solutions like Gaussian elimination but a shortcoming of 
this approach lies in its huge computational time. Thus, 
recursive algorithms have been developed which are based 
on the concept of estimating the parameters of a model of 
order p from the parameters of a model of order p-1. Some 
of these methods are like Burg’s algorithm [7] and 
Levinson–Durbin algorithm [6]. Burg’s method is more 
accurate than Levinson-Durbin since it uses the data points 
directly unlike the latter method, which relies on the 
estimation of the autocorrelation function, which is 
generally erroneous for small data segments. The earlier 
method also uses more data points simultaneously by 
minimising not only a forward error (as in the Levinson-
Durbin case) but also a backward error. This algorithm 
will be discussed later. 

2.2 Statistical Model Order Selection Methods 

It was mentioned earlier that before an AR process could 
be used, there is a prerequisite of having to know the order 
of the model. Most order selection criteria are 
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transformations of the mean squared error1, 2
eσ  which is 

computed as a function of the order in model estimation. 
These techniques employ a multiplication of this error and 
a cost function, which increases monotonically with order 
p.  Methods pioneered by Akaike [1] are popular and two 
model order selection criteria developed by him i.e. AIC 
and FPE are based upon concepts in mathematical 
statistics. FPE method gives the model order, which 
minimises the function below 

pN
pNpepFPE

−
+

= )(2ˆ)( σ , (2)

where p is the model order, N is the number of data points, 
)(ˆ 2 peσ  is the estimated error variance for the model. An 

‘unbiased’ estimate of this error variance is given by 
Parzen [24] as  

pN
Npp ee −

= )(ˆ)(ˆ̂ 22 σσ . (3)

 An unbiased estimate attempts to estimate by assuming 
that the model order is correct and the parameters are 
known exactly, not estimated. If the mean value of the data 
has been subtracted, then the unbiased estimate of this 
error variance is given by Jones [19] as 

1
)(ˆ)(ˆ̂ 22

−−
=

pN
Npp ee σσ , 

(4)

and the FPE is now given by 

1
1)(2ˆ)(
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=
pN
pNpepFPE σ . (5)

 The fractional portion of FPE increases with p and as 
such represent the inaccuracies in estimating the AR 
parameters. The principle behind the FPE criterion is that 
the unbiased estimate of the error variance is multiplied by 
the factor  

Np /1+ , (6)
where p is the number of parameters to be estimated and N 
is the number of points observed. This factor allows for the 
increase in the error variance when the estimated 
coefficients are used to make predictions on new, 
independent data. Akaike [1] then extended this model 
selection criterion to any maximum likelihood situation. 
This other criterion is called AIC and is given by 

AIC(k)=-2ln(maximum likelihood) + 2k, (7)
where k is the number of parameters estimated. Using this 
method, the order of the model is selected which 
minimises the following function 

ppeNpAIC 2)(2ˆ̂ln)( += σ . (8)

 The term 2p represents the penalty for selecting higher 
orders. The two criteria are asymptotically equivalent and 
                                                           
1 In this paper, mean squared error is used interchangeably with 
error variance. This is since the error is assumed to be white 
noise where the mean value is zero. 

in the limit of large N, FPE and AIC will predict the same 
optimal order [20]. Residual Variance (RV) criterion is 
based on the fact that if an insufficient number of terms 
have been fitted in the AR model given by (1), the estimate 
of the error variance )(ˆ 2 peσ  will be inflated by those 
terms not yet included. Only when the correct number of 
terms has been included will a valid estimate of )(ˆ 2 peσ be 
obtained. Jenkin and Watts [18] suggest that if the RV 
estimate 

)(ˆ̂
12

)( 2 p
pN
pNpRV eσ
−−

−
= , (9)

is plotted versus p, the curve will flatten out or show a 
minimum at the point corresponding to the correct order of 
the AR process. In the paper by Wear et al [32], this term 
is incorrectly denoted as  

)(ˆ̂
12

1)( 2 p
pN

pRV eσ
−−

= . (10)

 The numerator of RV given on page 197 of reference 
[18] is actually the total sum of residuals and not the error 
variance as used in [32]. Since AIC has a tendency to 
overestimate the optimal order, Rissanen [27] has 
suggested MDL, which is given by  

p
N
NppMDL e

)ln())(ˆ̂ln()( 2 += σ . (11)

MDL increases the penalty factor for higher orders as 
compared to AIC and as such favours the selection of 
lower orders. Another criterion which counteract the 
overfitting tendency of AIC is given by Hannan and Quinn 
[13]. HQ criterion chooses the minimum of  

p
N

NppHQ e
)ln(ln2))(ˆ̂ln()( 2 += σ . (12)

CAT by Parzen [24] selects the order which minimize the 
criterion 
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 A point must be noted here. There are generally two 
different methods by which these criteria have been 
applied. The common method is to select the order, which 
gives the global minimum by using the specific criterion. 
The other method is to select the order, which gives the 
first minimum of the criterion. In this paper, the earlier 
method is used as it is more common and actually follows 
more closely to the original work behind these criteria. 

2.3 Burg’s method 

Burg’s method is common is AR literatures and as such, 
only a brief discussion of the algorithm is given. Proofs 
and further details of this algorithm can be found in [7,11]. 
The algorithm is as follows: 
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1. Calculate initial values 

• Error variance, ∑
−

=
1

0
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where x(n) is the nth data with mean value subtracted  
• Forward error, )()0( nxen =  

• Backward error, )1()0(1 −=− nxbn  
 
2. Calculate reflection coefficient and error variance 
• Reflection coefficient, 
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3. Update Error and AR coefficients 
• AR coefficients,  
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• Forward Error Update,  
)1()1()( 1 −+−= − mbmeme nmnn π  

• Backward Error Update,  
)1()1()( 1 −+−= − membmb nmnn π  

 
4. Repeat steps 2 and 3 (with m incremented by one) until 
the selected model order p is reached. 

2.4 Autoregressive Spectral Estimation 

After selecting the order of the model by the any one of the 
discussed criterion, we can proceed with the estimation of 
the AR coefficients using Burg’s algorithm. These 
coefficients are then used to obtain the power spectral 
density (PSD) values by using the equation 

∑
=

−
= p

k
fkTieka

feS
fS

0
2|2|

)(
)(

π
, 

(14)

where S(f) represents the power spectral density function,  
T is the sampling period and Se(f) represents the power 
spectrum of the error sequence. Since the term Se(f) 
applies to the errors or residuals which are in theory white, 
the resulting power spectrum should be flat and therefore 
Se(f) should be a constant independent of the frequency. 
Ideally, the value of this constant (noting that the mean of 
the residuals are zero) will be directly proportional to the 
variance of the residuals. Hence, the final expression for 
the conventional AR spectral estimate is obtained by 
replacing Se(f) with Tpe )(ˆ̂ 2σ  where )(ˆ̂ 2 peσ  is the 

unbiased estimated variance of the residuals and the term 
T is included so that the true power of the corresponding 
analog signal will be represented digitally. The final PSD 
equation is given by 

∑
=
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3. Fuzzy ARTMAP and Genetic Algorithm 
 
This section introduces FA and GA. FA was initially 
developed by Carpenter and Grossberg [8]. FA 
incorporates fuzzy set theory in its computation and as 
such it is able to learn stable responses to either analog or 
binary valued input patterns. It consists of two Fuzzy ART 
modules (Fuzzy ARTa and Fuzzy ARTb) that create stable 
recognition categories in response to sequence of input 
patterns. During supervised learning, Fuzzy ARTa receives 
a stream of input features representing the pattern and 
Fuzzy ARTb receives a stream of output features 
representing the target class of the pattern.  
 An Inter ART module links these two modules, which 
is actually an associative controller that creates a minimal 
linkage of recognition categories between the two Fuzzy 
ART modules to meet a certain accuracy criteria. This is 
accomplished by realizing a learning rule that minimizes 
predictive error and maximizes predictive generalization. 
It works by increasing the vigilance parameter ρa of Fuzzy 
ARTa by a minimal amount needed to correct a predictive 
error at Fuzzy ARTb.  
 Parameter ρa calibrates the minimum confidence that 
Fuzzy ARTa must have in a recognition category, or 
hypothesis that is activated by an input vector in order for 
Fuzzy ARTa to accept that category, rather than search for 
a better one through an automatically controlled process of 
hypothesis testing. Lower values of ρa enable larger 
categories to form and lead to a broader generalization and 
higher code compression. A predictive failure at Fuzzy 
ARTb increases the minimal confidence ρa by the least 
amount needed to trigger hypothesis testing at Fuzzy 
ARTa using a mechanism called match tracking. Match 
tracking sacrifices the minimum amount of generalization 
necessary to correct the predictive error. Match tracking 
leads to an increase in the confidence criterion just enough 
to trigger hypothesis testing which leads to a new selection 
of Fuzzy ARTa category. This new cluster is better able to 
predict the correct target class as compared to the cluster 
before match tracking. Fig. 1 shows the network structure 
of FA as used in this paper. Further details of this method 
can be found in [8,10]. 
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Fig. 1 Fuzzy ARTMAP network structure as used in this paper. 

 
 GAs are a family of computational models inspired by 
evolution and are based on genetic processes of biological 
organisms. The basic principles of GA were first laid 
down by Holland [15]. GA work with a population of 
individuals each representing a possible solution to a 
given problem. Each individual is assigned a fitness score 
according to how good a solution is to the problem. The 
highly fit individuals are given opportunities to reproduce, 
by cross breeding with other individuals in the population. 
This produces new individuals as offspring, which share 
some features taken from each parent. The least fit 
members of the population are less likely to get selected 
for reproduction and so die out. A whole new population 
of possible solutions is thus produced by selecting the best 
individuals from the current generation and mating them 
to produce a new set of individuals. This new generation 
contains a higher proportion of the characteristics 
possessed by the good members of the previous generation. 
In this way, over many generations, good characteristics 
are spread throughout the population, being mixed and 
exchanged with other good characteristics as they go. By 
favouring the mating of more fit individuals, the most 
promising areas of the search space are explored. If the 
GA has been designed well, the population will converge 
to an optimal solution to the problem. 
 Before GA can be run, two matters must be decided. 
First, a suitable coding or representation for the problem 
must be devised. Next, a fitness function is required to 
evaluate the goodness of each coded solution. GA operate 
on the coding of parameters rather than the parameter itself. 
These parameters or genes, which are known as 
chromosomes, are a string of values representing potential 
solutions to a problem. Although a binary string is 
normally used, there are other possibilities like using real 
numbers, which has the advantage of easier definition of 
meaningful and problem specific operators. But Goldberg 
[12] argues theoretically that the binary representation 
yields the maximum number of schemata for a string of 
given length, making it the optimal choice in this regard 

since it provides the highest degree of implicit parallelism.  
Hence, this approach is followed in this paper. 
 An initial population of strings is produced by simply 
making each string a random binary number - a sequence 
of 1’s and 0’s. The decimal equivalent is scaled to 
represent a real number in the required range. A fitness or 
evaluation function must be devised for each problem to 
be solved. This function which is also known as the 
objective function must provide a measure of performance 
or fitness of the individuals that the chromosome 
represents. The evaluation function must also be relatively 
fast. This is typically true for any optimisation method, but 
it may particularly pose an issue for GA. Since GA work 
with a population of potential solutions, they incur the cost 
of evaluating this population. Furthermore, the population 
might be replaced in part or all on a generational basis. 
The members of the population reproduce and their 
offspring must be evaluated. This is the reason why only 
FA is fused with GA in this paper and not other types of 
neural network like Multilayer Perceptron with 
backpropagation training (MLP-BP). To further illustrate 
this fact, assume that the MLP-BP takes 1 hour to do an 
evaluation, then it takes more than a month to complete 
1000 evaluations which could be just 50 generations of a 
population size of 20 strings! But the FA network takes 
only a second to complete an evaluation, so its fusion with 
GA can produce results within a quarter of an hour. 
 During the reproductive phase of GA, individuals are 
selected from the population and recombined, producing 
offspring that will comprise the next generation. It starts 
with an initial population and selection is applied 
randomly from the initial population using a scheme that 
favours the more fit individuals (evaluated using a fitness 
function) to create the intermediate population. Good 
individuals will probably be selected many times while the 
poor ones may not be selected at all. There are a number 
of ways of performing the selection process. The 
population is mapped onto a roulette wheel, where each 
individual is represented by a space that proportionally 
corresponds to its fitness. By repeatedly spinning the 
roulette wheel, individuals are chosen using “stochastic 
sampling with replacement” to fill the intermediate 
population. 
 Despite the effectiveness of reproduction in increasing 
the percentage of superior representatives, the procedure is 
essentially sterile; it cannot create new and better strings. 
This function is left over to crossover and to a lesser but 
critical extent, to mutation and inversion. Crossover 
process is intended to simulate the exchange of genetic 
material that occurs during biological reproduction. Here, 
pairs in the breeding population are mated randomly with 
a crossover probability. In this paper, a two-point 
crossover is used where chromosomes are regarded as 
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loops formed by joining the ends together rather than 
linear strings as in single point crossover. To exchange a 
segment from one loop with that from another loop 
requires the selection of two cut points. A chromosome 
considered as a loop can contain more building blocks – 
since they are able to wrap around at the end of the string 
and this is the reason why a two-point crossover is better 
than a single point crossover.  Mutation randomly 
perturbs the population’s characteristics, thereby 
preventing evolutionary dead ends. Most mutations are 
damaging rather than beneficial; mutation probability must 
be low to avoid the destruction of species. It works by 
randomly selecting a bit with a certain mutation 
probability in the string and reversing its value. Although 
inversion is not exactly a type of crossover but it is similar 
to crossover, only performed differently. Inversion 
operates by clipping out a section of a string, reversing it 
and putting it back. Inversion is the only way that the 
strings might be reordered but this operation must be 
applied carefully since its effects can be ruinous. 
 
4. Genetic Fuzzy ARTMAP for AR model 
order selection  
 
In this section, the proposed method of using GA and FA 
to select the model order during the training phase will be 
discussed. This method will be called as Genetic Fuzzy 
ARTMAP or GFA in short. The explanation here will 
concentrate on this technique while the experimental study 
and results will be discussed in the next section. In general, 
the proposed method can be divided into 2 different 
phases, which uses 3 different data sets namely training, 
validation and test. The first phase is the training and 
validation stage where GA is engaged with FA to generate 
AR model orders for training data, which optimises the 
classification performance for validation data. One of the 
statistical model order criterion mentioned in Section 3 
will be used to select the model order of the signals for the 
validation data. In the second phase of testing, GA is 
disengaged and only FA is used. Model orders for testing 
data are selected using one of the statistical model order 
criterion chosen earlier for validation data. In other words, 
GFA generates model orders to train the FA classifier only 
such that it optimises classification performance for 
validation data where the model orders are still selected 
using one of the statistical criterion. The same statistical 
model order criterion is also used for the test data.  
 Initially in the first stage, a set of populations is 
generated as random binary strings with a certain number 
of bits used to represent the model order. This number of 
bits is chosen such as to suffice representation of the 
highest model order i.e. enough values to represent all the 

model orders. Since the EEG signals are segmented before 
processing, a model order is needed for each segment. 
Therefore each population will represent many model 
orders for each of the segments. Fig. 2 illustrates this 
initial situation. Using these model orders, AR coefficients 
are obtained using Burg’s algorithm and PSD values are 
generated from 0 to 100 Hz. These values are then fed into 
a FA classifier to be trained. Since GA require FA 
classification performance as a measure of fitness of the 
population, the performance of this population needs to be 
validated. PSD values for validation data not used in the 
training phase are now generated. However, the model 
orders for this data set are obtained from one the statistical 
methods mentioned in Section 2. This process of training 
and validation is repeated for all the populations. GA uses 
the performance of this validation data set to generate the 
populations in the next generation. The entire cycle is then 
iterated for a fixed number of times or until certain fitness 
value is reached. 
 

1 0 1 1 0 1 1 0 0 1 0 .............1 0 0 0 1 1 1 0 0 1 1
1 1 0 1 1 0 0 0 0 1 1 .............1 0 0 1 1 0 1 0 1 0 1

.

.

.
1 1 0 0 1 1 0 0 1 0 1 .............0 0 1 0 1 1 0 1 0 1 1

12 11612

Model orders for
different segments

Different
populations in
a generation

Population 1
Population 2

Population n

 

Fig. 2 Initial GA populations. 

 The optimum model orders for each segment from the 
first phase are stored. These values are used in the second 
phase to generate AR coefficients and PSD values to train 
the FA classifier.  PSD values of EEG signals for test data 
i.e. data not used in training or validation are obtained 
with model orders selected by one of the statistical model 
order criterion used for validation data. The trained FA is 
then tested with these patterns. Fig. 4 illustrates this 
second GFA testing phase. 
 
5. Experimental Study 
 
In this paper, the performance of six different types of 
order selection criteria for AR models to represent EEG 
signals are studied and compare the performance with 
orders selected by using GFA. These criteria are AIC, FPE, 
RV, HQ, CAT and MDL. In addition, an experiment is 
also conducted with a fixed 6th order model since many 
authors like Anderson et al [4] and Keirn and Aunon [21] 
have used it in their experiments.  
 The subjects are seated in an Industrial Acoustics 
Company sound controlled booth with dim lighting and 
noiseless fans for ventilation. An Electro-Cap elastic 
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electrode cap was used to record EEG signals from 
positions C3, C4, P3, P4, O1 and O2, defined by the 10-20 
system of electrode placement [17]. The electrodes are 
connected through a bank of amplifiers and bandpass 
filtered from 0.1--100 Hz. The data was sampled at 250 
Hz with a 12-bit A/D converter mounted on a computer. 
For this paper, the data from three subjects performing two 
different mental tasks are analyzed. These tasks were 
chosen by Keirn and Aunon to invoke hemispheric 
brainwave asymmetry [21].  
 The tasks are: Math task, for which the subjects were 
given nontrivial multiplication problems, such as 72 times 
38, and were asked to solve them without vocalizing or 
making any other physical movements; Geometric figure 
rotation, for which the subjects were asked to visualize a 
particular three-dimensional block figure being rotated 
about an axis. Data was recorded for 10 seconds during 
each task and each task was repeated for two sessions. 
With a 250 Hz sampling rate, each 10 second trial 
produces 2,500 samples per channel. Overall, there are 16 
different EEG files.  Each EEG signal is segmented with a 
half-second window, i.e. for a length of 125 points giving 
20 patterns for each file with a total of 320 patterns. For 
all the experiments, 40% of available patterns are used for 
training, 30% for validation while the rest 30% are for 
testing. The patterns for each data set are chosen randomly 
at the beginning and are fixed for all the experiments. 
Three different experiments are run, each with different 
Fuzzy ARTa vigilance parameter, ρa values of 0.0, 0.5 
and 0.9 for all the cases. The maximum order was fixed at 
15 for all the experiments to avoid the occurrence of peaks 
caused by spurious signals in the PSD function when a 
very high model order is used.  
 First, the different model order selection criteria like 
AIC, FPE, RV, HQ, CAT and MDL are used to give the 
appropriate order of the model. Next, Burg algorithm is 
used (throughout the experiments) to derive the AR 
coefficients. After this, the PSD values in the range of 0-
100 Hz per channel are derived and using these spectral 
values (the PSD values for all the 6 channels are 
concanated into one vector), a FA network is trained to 
classify the tasks into their respective categories. The 
entire process is then repeated for the case with a fixed 6th 
order AR model. By following this procedure, the 
differences in the performance level of the different model 
order selection criteria for EEG signals are obtained. Note 
that only training and testing data is used, the validation 
data is not used for these experiments to ensure a fair 
comparison with GFA system. Figure 5 shows this 
procedure. 
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Fig. 3 First phase of GFA training and validation. 
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Fig. 4: Second phase of GFA testing. 
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Fig. 5 FA training and testing for statistical model order criteria. 
 
 Next, the performance using the GFA network is tested. 
Initially, GA generates randomly a total of 10 binary 
populations. Pairs of 4 binary numbers in each population 
are used to represent the model orders for each of the 
different patterns. Pairs of fours are chosen since they are 
sufficient to represent model orders up to 15. Using these 
generated model orders, Burg AR coefficients are 
obtained; from which the PSD values are derived and FA 
network is trained.  
 Next, PSD values are generated for the validation data 
set using Burg’s method with the AR model order selected 
by one the statistical criterion. The trained FA network 
uses these values to classify the different mental tasks. The 
performance of this validation data set serves as fitness 
function for GA to select the next generations’ populations 
using principles of reproduction, crossover, mutation and 
inversion.  The crossover probability is set at 0.3 while the 
mutation and inversion probabilities are set at a lower 
value of 0.03 to reduce excessive random perturbations. 
This entire cycle is then iterated for 25 generations. 
Although 25 generations are quite low for general GA 
systems, the results show that it is sufficient to improve 
the performance without putting too much load on the 
computational time. At the end of the 25th generation, the 
optimum model orders for the different segments 
(patterns) are denoted by the population, which gives the 
highest FA validation performance. The first phase of 
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GFA training and validation (as shown in Fig. 3) is now 
completed. In the second phase, the optimum model order 
is used for each segment generated by GFA in the first 
phase and the AR coefficients are derived and PSD 
computed using Burg’s algorithm for training data. These 
PSD values are used to train FA classifier.  Next, one of 
the statistical model order criterion is used to select the 
appropriate model order for test patterns i.e. data not used 
in training and validation. PSD for this data is generated 
and the trained FA is used to classify these signals into 
their respective mental tasks. This process is illustrated in 
Fig. 4. Both these phases are then repeated for all the 
statistical order selection criteria. 

6. Results 

Table 1 shows the results for subjects 1 and 2.  

Table 1: Results of experimental study for subjects 1 and 2 
Subject 1 Subject 2 

 
ρa 
 

Statistical 
criteria 

GA 
validation 

GA 
testing 

Statistical 
criteria 

GA 
validation

GA
testing

 0.0 79.17 91.67 87.50 70.83 87.50 83.33

AIC 0.5 75.00 100.00 100.00 70.83 95.83 79.17

 0.9 79.17 95.83 91.67 75.00 95.83 83.33

 0.0 79.17 95.83 87.50 75.00 91.67 79.17

FPE 0.5 91.67 95.83 91.67 75.00 91.67 79.17

 0.9 83.33 100.00 91.67 75.00 100.00 83.33

 0.0 79.17 95.83 87.50 75.00 91.67 83.33

RV 0.5 83.33 100.00 91.67 75.00 87.50 79.17

 0.9 83.33 100.00 91.67 75.00 95.83 79.17

 0.0 87.50 100.00 91.67 79.17 91.67 87.50

MDL 0.5 87.50 95.83 91.67 79.17 91.67 83.33

 0.9 83.33 95.83 91.67 79.17 95.83 87.50

 0.0 87.50 91.67 91.67 70.83 91.67 79.17

HQ 0.5 75.00 95.83 87.50 70.83 95.83 83.33

 0.9 83.33 100.00 87.50 75.00 100.00 83.33

 0.0 75.00 95.83 91.67 75.00 91.67 79.17

CAT 0.5 91.67 100.00 100.00 75.00 91.67 79.17

 0.9 75.00 100.00 91.67 66.67 95.83 83.33

 0.0 79.17 100.00 91.67 83.33 91.67 87.50

6th order 0.5 83.33 100.00 95.83 83.33 91.67 87.50

 0.9 100.00 100.00 100.00 

 

83.33 100.00 95.83
 
 Table 2 shows the classification performance for 
subjects 3 and all three subjects combined for the cases of 
statistical model order selection criterion used alone, GFA 
with validation data and GFA with test data. As mentioned 

earlier, these results are for classification of two different 
mental tasks i.e. computing arithmetic and geometric 
figure rotation for combined two sessions. Three different 
experiments with different Fuzzy ARTa vigilance 
parameter, ρa values of 0.0, 0.5 and 0.9 are conducted. In 
the discussions to follow, we’ll concentrate on the 
performance of GFA during testing i.e. with classification 
of test data since this resembles the actual testing 
performance. The performance values of GFA during 
validation, which are in general much higher than GFA 
during testing, are presented as a reference only to show 
that with additional genetic generations, the performance 
of GFA with test data will approach the performance of 
GFA validation data. 

Table 2: Results for subject 3 and all subjects combined 
Subject 3 All subjects combined 

 
ρa Statistical

criteria
GA 

validation
GA 

testing 
Statistical 

criteria 
GA 

validation
GA

testing

 0.0 95.83 100.00 100.00 54.17 77.78 76.39

AIC 0.5 95.83 100.00 100.00 54.17 79.17 70.83

 0.9 87.50 95.83 95.83 66.67 83.33 81.94

 0.0 91.67 95.83 95.83 56.94 80.56 75.00

FPE 0.5 91.67 100.00 95.83 56.94 79.17 76.39

 0.9 83.33 91.67 95.83 72.22 81.94 79.17

 0.0 95.83 100.00 95.83 61.11 81.94 69.44

RV 0.5 95.83 100.00 95.83 61.11 75.00 75.00

 0.9 95.83 100.00 95.83 68.06 84.72 79.17

 0.0 100.00 100.00 100.00 79.17 79.17 79.17

MDL 0.5 100.00 100.00 100.00 79.17 80.56 79.17

 0.9 91.67 100.00 95.83 68.06 80.56 75.00

 0.0 100.00 100.00 100.00 72.22 79.17 72.22

HQ 0.5 100.00 100.00 100.00 72.22 83.33 75.00

 0.9 87.50 100.00 91.67 68.06 79.17 72.22

 0.0 91.67 100.00 91.67 61.11 81.94 70.83

CAT 0.5 91.67 100.00 95.83 61.11 77.78 75.00

 0.9 87.50 100.00 91.67 73.61 84.72 77.78

 0.0 91.67 100.00 95.83 62.50 81.94 75.00

6th order 0.5 87.50 100.00 95.83 62.50 80.56 75.00

 0.9 91.67 100.00 91.67 

 

72.22 80.56 80.56
 
 From these two tables, it can be seen that for most 
cases, GFA gives much higher performance than any of 
the statistical model order criterion used alone. In the rest 
very few cases, it performs equally well. GFA with model 
order 6 gives best performance for experiments with 
subjects 1, 2 and all three subjects. For subject 3, the best 
performance is given by GFA with AIC and GA with 
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MDL. As far as the statistical model order criteria are 
concerned, it is difficult to conclude which criterion is best 
since the performance varies for different subjects. A 
similar conclusion can be arrived for the performance with 
different ρa values. However, it can be concluded that 
subject 3 performs better than the other two subjects in 
most of the cases. Table 3 shows the average of each 
experiment conducted with different ρa values. This table 
also shows the average percentage of improvement using 
GFA as compared to using the statistical criteria only. 
 It can be seen that except for a case that involves 
subject 3 with RV, the proposed method can improve the 
results as compared to any of statistical methods used 
alone. Another significant fact that can be derived from 
these tabulated values is that the performance of the GFA 
system does not drop as drastically as the drop in the 
statistical model order criteria for experiments involving 
all three subjects as compared to a single subject. For 
example, GFA used with AIC improves the classification 
of test data from 58.34% to 76.39% which is a 30.94% 
increase. This is an important result since a working model 
must be able to give good performance across many 
subjects. Finally, before the discussion is ended on the 
results, it must be pointed out that a higher GFA 
percentage can be obtained with more data for training, 
higher number of genetic generations and if the ocular 
artefacts like eye blinks are removed from the EEG data. 
 
7. Conclusions 
 
In this paper, an improved method combining GA with FA 
to the AR model order for use with EEG signals has been 
proposed. The results shows that the proposed GFA 
method used during training can improve the EEG signal 
classification performance for different mental tasks as 
compared to a fixed 6th order model and statistical 
techniques like AIC, FPE, RV, MDL, HQ and CAT. This 
is since GFA selects the appropriate model order during 
system training to improve classification results not only 
with a single subject but also across many subjects. The 
results also show that it is possible to recognise different 
mental tasks using EEG signals alone and this can be used, 
as a mode of communication for paralysed patients. 

Acknowledgement 

The author would like to thank Dr. Charles Anderson, 
Computer Science Dept., Colorado State University, USA 
for providing the raw EEG data. 
 
 

Table 3: Average of three experimental study with different ρa values of 
0, 0.5 and 0.9 for subjects 1, 2, 3 and all three subjects combined 

 
Model order

criteria 

Statistical 
Criteria 

only 
GA 

validation 
GA 

testing 

% 
Improvement

 AIC 77.78 95.83 93.06 19.65 

 FPE 84.72 97.22 90.28 6.56 

 RV 81.94 98.61 90.28 10.18 

Subject 1 MDL 86.11 97.22 91.67 6.46 

 HQ 81.94 95.83 88.89 8.48 

 CAT 80.56 98.61 94.45 17.24 

 6th order 87.5 100 95.83 9.52 
      

 AIC 72.22 93.05 81.94 13.46 

 FPE 75 94.45 80.56 7.41 

 RV 75 91.67 80.56 7.41 

Subject 2 MDL 79.17 93.06 86.11 8.77 

 HQ 72.22 95.83 81.94 13.46 

 CAT 72.22 93.06 80.56 11.55 

 6th order 83.33 94.45 90.28 8.34 
      

 AIC 93.05 98.61 98.61 5.98 

 FPE 88.89 95.83 95.83 7.81 

 RV 95.83 100 95.83 0.00 

Subject 3 MDL 97.22 100 98.61 1.43 

 HQ 95.83 100 97.22 1.45 

 CAT 90.28 100 93.06 3.08 

 6th order 90.28 100 94.44 4.61 
      

 AIC 58.34 80.09 76.39 30.94 

 FPE 62.03 80.56 76.85 23.89 

All 3  RV 63.43 80.55 74.54 17.52 

subjects MDL 75.47 80.1 77.78 3.06 

combined HQ 70.83 80.56 73.15 3.28 

 CAT 65.28 81.48 74.54 14.19 

 6th order 65.74 81.02 76.85 16.90 
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