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Summary 
Method based on extension rule is a new method for theorem 
proving. It is, in a sense, potentially a complementary method to 
resolution based method. ER is the basic extension rule algorithm. 
In order to increase its efficiency, this paper improves it by some 
reduction rules. And then the soundness and completeness of the 
improved algorithm is proved. The experiment results show the 
improved algorithm not only increase the efficiency but also keep 
the characteristic of the extension rule method, namely it is still 
potentially complementary methods to resolution based methods. 
In order to enhance the reasoning speed by making the best of the 
respective characteristic of extension rule method and resolution 
method, this paper proposes a combined algorithm with reduction 
rules, which combines the extension rule and resolution. It is also 
sound and complete. 
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1. Introduction 

Automated theorem proving (ATP) has matured into one 
of the most advanced areas of computer science. Fields 
where ATP has been successfully used include logic, 
mathematics, computer science, engineering, and social 
science. There are potentially many more fields where ATP 
could be used, including biological sciences, medicine, 
commerce, etc [1]. Many significant problems have been, 
and continue to be, solved using ATP. The fields where the 
most notable successes have been achieved are 
mathematics, and software generation and verification [2], 
protocol verification, and hardware verification [3]. 

The usually used deduction methods in ATP include 
resolution based method, tableau based method, sequent 
calculus and nature deduction method, etc. The traditional 
idea used in TP is to try to deduce the empty clause to 
check the unsatisfiability. Resolution based TP is a 
paradigm of this idea. But extension rule based TP [4] 
proceeds inversely to resolution. Namely, extension rule 
based TP checks the unsatisfiability by deducing the set of 
clauses consisting of all the maximum terms. Therefore, it 
is a new theorem proving method. 

Extension rule (ER) method can be considered, in a 
sense, to be a method dual to resolution. Because ER is 

more efficient when set of clauses includes more 
complementary literals but low efficient when set of 
clauses includes less complementary literals. In order to 
improve the efficient, the method is modified, so that it 
can be used in ATP better. The experiment results in 
section 3 show improved methods achieve more efficiency 
in most cases.  

This paper is organized as follows. The ER method is 
introduced briefly and improved in section 2. Moreover, 
the soundness and completeness of improved ER is proved. 
Section 3 compares the relative works by detailed 
experiment results. In section 4, in order to propose a 
combined algorithm, a directional resolution with 
reduction rules is given at first. And then the combined 
algorithm DR−ER is proposed. Furthermore, the 
soundness and completeness of them are proved. A 
conclusion is drawn in the final part. 

2. Propositional Extension Rule and Its 
Improvement 

We run back over the central idea of the extension rule 
based TP at first. The details can be found in [4]. The 
extension rule method uses the inverse of resolution 
together with the inclusion-exclusion principle to solve TP 
problems. The set of all the maximum terms is 
unsatisfiable. Once a set of clauses deduces it, we can 
decide the clause set is unsatisfiable, the deduction method 
used here is called extension rule. While the resolution 
method goes this way: Since the empty clause is 
unsatisfiable, once a set of clauses deduces an empty 
clause, it can decide that the clause set is unsatisfiable, the 
deduction method used is resolution. The extension rule is 
defined as follows. 

Definition 1. Given a clause C and a set M: C′={C∨
a, C∨¬a | ″a″ is an atom, a∈M, ″¬a″ and ″a″ does not 
appear in C}. The operation proceeding from C to C′ is the 
extension rule on C. C′ is the result of the extension rule. 

So if we want to decide whether a set of clauses is 
satisfiable, we can proceed by finding an equivalent set of 
clauses such that all the clauses in it are maximum terms 
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by using the extension rule. Evidently, all of the maximum 
term set consist of n atoms must include 2n elements. The 
number of maximum term extended by a clause set can be 
calculated by using the inclusion-exclusion principle. 

Given a set of clauses Φ={C1, C2, …,Cn}, let M be 
the set of atoms which appear in Φ (|M|=m). Let Pi be the 
set of all the maximum terms gotten from Ci by using the 
extension rule, and let S be the number of distinct 
maximum terms gotten from Φ. By using the Extension 
rule, we will have: 
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Example 2. Check the satisfiability of the clause set 

Φ={¬A∨B∨¬C, A∨C, ¬A} by formula (1). 
The maximum term number extended by Φ: 

S=20+21+22-0-20-0+0=6 
Because 6<23, clause set Φ={¬A∨B∨¬C, A∨C, 

¬A} is satisfiable. 
The extension rule algorithm in proposition logic is 

given in [4]. Here we make some modifications to enhance 
the algorithm’s efficiency. There are some clauses in the 
set of clauses having nothing to do with the satisfiability, 
such as the clause containing pure literal, the clause 
including tautology and the clause implied by other clause, 
etc. Hence, these clauses can be deleted. Several rules in 
DP algorithm [5] are used to simplify the given clause set, 
namely, the literals or clauses unrelated to the satisfiability 
are deleted. Then the satisfiability is checked.  

Unit resolution is a very fast but incomplete method 
to decide the satisfiability, the single literal rule in DP is in 
fact the unit resolution. During the single literal rule is 
used to reduce the primitive clause set, it is actually 
running a more efficient but incomplete method to check 
the satisfaibility. If the clause set becomes empty then it is 
satisfiable. Else, if the clause set includes empty clause 
then it is unsatisfiable.  Otherwise, a reduced clause set is 
given.  

When the pure literal rule is used, if the clause set 
becomes empty then it is satisfiable else a reduced clause 
set is given. All of the reduced rules are listed below. 

Tautology rule: Deleting all the tautologies in the set 
of clauses Φ. Let the surplus clause set be Φ′. Then Φ is 
unsatisfiable if and only if Φ′ is unsatisfiable. 

Definition 3. Say the literal L in the clause set Φ is 
pure if and only if ¬L is not in Φ. 

Pure literal rule: If the literal L in the clause set Φ is 

pure then delete all the clauses including L. Let the surplus 
clause set be Φ′. (a) If Φ′ is empty then Φ is satisfiable; (b) 
otherwise Φ′ is unsatisfiable. 

Definition 4. C1 and C2 are any two clauses in set of 
clauses Φ, say C1 includes C2 if every literal in C1 is also 
in C2. 

Inclusion rule: Suppose C1 and C2 are two clauses in 
the clause set Φ, where C1includes C2. Deleting the clause 
C2 from Φ and let the surplus clause set be Φ′, then Φ is 
unsatisfiable if and only if Φ′ is unsatisfiable. 

Single literal rule: If there is a single literal L in set 
of clauses Φ, then delete all of the clauses including L. Let 
the surplus clause set be Φ′. (a) If Φ′ is empty then Φ is 
satisfiable; (b) Otherwise if Φ′ is not empty, then delete all 
of the literals ¬L from the clauses including it in Φ′ . Φ′ is 
unsatisfiable if and only if Φ″ is unsatisfiable (suppose 
there is a unit clause ¬L in Φ′, a empty clause � is 
achieved by deleting ¬L). 

Denote tautology rule by RT, pure literal rule by RP, 
inclusion rule by RI, and single literal rule by RS. Let RL 
={RT, RP, RI, RS}, the improved extension rule algorithm 
in propositional logic is given below. 

Algorithm ER1 
1. Let Φ={C1, C2, …,Cn}. 

While Φ satisfies any rule in RL    
Loop     
Φ1:= using RL to deal with Φ 
If Φ1 is empty then return satisfiable 
Φ:=Φ1 
Endloop 

2. i:=1, sum:=0 
3. while i<=n 

Loop 
For all sets S that contain i clauses 
Loop 
Union=the union of all the clauses in S 
If there are no complementary literals in Union  
then number:=2m-|Union| 

Else Number:=0 
If i mod 2=1 then sum:=sum+number 
Else Sum:=sum-number 
Endloop 

If i mod 2=0 and sum=2m then return unsatisfiable 
Else If i mod 2=1 and sum<2m  
         then return satisfiable 
i:=i+1 

Endloop 
4. If sum=2m then return unsatisfiable 

  Else return satisfiable 

Theorem 5. Algorithm ER1 is sound and complete 
for proposition logic theorem proving. 

Proof. It has been proved that tautology rule, pure 
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literal rule, inclusion rule and single literal rule can not 
change the unsatisfiability of the primary clause set [5]. 
Thus by the soundness and completeness of algorithm ER 
[4], the soundness and completeness of algorithm ER1 is 
straightforward. Q.E.D 

The efficiency of algorithm ER relies on the number 
of nonzero terms counted by formula (1). Clearly, the 
worst-case time complexity of Algorithm ER is 
exponential. However, there are cases in which Algorithm 
ER is tractable. For example, if each pair of clauses in a 
set contains complementary literal(s), then the complexity 
of Algorithm ER will be linear in the number of clauses 
because only the first n terms in Formula (1) are nonzero 
terms and need to be computed. Intuitively, in this case 
resolution based methods are likely to be inefficient since 
there are potentially many resolutions that need to be 
performed. By contrast, consider the case in which if there 
are no complementary literals at all. In this case it would 
have to compute all the 2m terms in order to decide its 
satisfiability using the extension rule. But its satisfiability 
can be decided immediately by using a resolution based 
method.  (Actually no resolution can be or needs to be 
performed). 

Consider the improved algorithm ER1, when there 
are no complementary literals at all, it can deduce the 
satisfiablility by using the pure literal rule. Thus it need 
not invoke the algorithm ER which is inefficient in this 
case. Moreover, by using the single literal rule to reduce 
the clause set, it is in fact to use the fast unit resolution to 
check the satisfiability. So it is naturally the behavior of 
algorithm ER1 is better than algorithm ER. The 
experiment results in section 3 show this. 

3. Experimental Results 

Some elementary experimental results are reported in this 
section to show how ER1 perform. Since first order 
theorem proving is reduced to a series of ground-level 
satisfiability problems, the behavior of ER1 will affect the 
efficiency of first order ER directly. So the comparison 
between improved algorithms and primal ones is very 
important.  

In order to explain the relationship between ER and 
the number of the pairs of clauses in a set contains 
complementary literal(s) intuitively, [4] gives the 
definition of complementary factor. 

Definition 6. Given a set of clauses Φ={C1, C2, 
…,Cn}, the complementary factor CF of the set is the ratio 
of the number of pairs that contain complementary 
literal(s) to the number of all the pairs in the set. That is 
S/[n(n−1)/2], where S stands for the number of pairs that 
contain complementary literal(s). 

Although it is difficult to calculate the time 
complexity precisely by using the CF, but the experiment 

results in [4] show the higher the CF of a problem is, the 
more efficient algorithm ER can be expected to be. Our 
experiment results show the efficient of improved 
algorithms still has such relation to CF, but not so close 
like algorithm ER. 

Three algorithms are compared in this section. They 
are ER1 proposed in this paper, ER given in [4] as well as 
DR proposed in [5]. There is an algorithm DR1 in table 1 
and table 2. We will discuss it in detail in the next section. 

The instances are obtained by a random generator. It 
takes as an input the number of variable n, the number of 
clauses m and the most length of each clause k, and 
obtains each clause randomly by choosing k variables 
from the set of variables which number less than or equal 
to n and by determining the polarity of each literal with 
probability p=0.5. 

(10,50,10) denotes a set of clauses, which has 10 
variables and 50 clauses and each clause length is not 
more than 10. There are two decimal fractions below each 
clause set in table 1, they are the CF of primal set of 
clauses and reduced set of clauses. There is just one 
decimal fraction below each clause set in table 2. It is the 
CF of primal set of clauses. The reason is the satisfiability 
can be deduced directly during reducing and need not to 
generate the reduced set. Non-0 terms denotes the nonzero 
terms generated by ER and ER1 during reasoning. 
Res-numbers denotes the resolution performed by DR 
during reasoning. Result denotes the returned result, i.e. 
the saisfiability or unsatisfiability. Time denotes the total 
time used by procedure, and the precision is 1 millisecond. 

All of the clause sets in table 1 will not be empty or 
contain empty clause after reduced. When CF of the 
primal set of clauses is larger, CF of the reduced clause set 
becomes smaller generally. But in most cases, ER1 still 
outperform ER. It is because CF becomes smaller, but the 
variable number and the clause number in the clause set 
become smaller corresponding. So that the number of the 
nonzero terms needed to extend is cut down and the speed 
becomes fast. Seldom, ER1 is inefficient than ER. We 
think it is because though the variable number and the 
clause number decrease the complementary literal(s) for 
any pair is cut down excessively so as to decrease the 
efficiency. Here, DR is inefficient than other two 
algorithms evidently. 

When CF of the primal clause set is smaller, CF of 
the reduced clause set becomes larger on the contrary. So 
the behavior of ER1 is much better than ER. Here, DR is 
efficient than ER1 and much more efficient than ER. All 
of above show ER1 enhance the efficiency largely and 
keep the characteristic of the extension rule method. All of 
the reduced clause sets in table 2 are empty or contain 
empty clause. The experimental results show the 
efficiency of ER1 has nothing with CF in this case. The 
behavior of ER1 is as good as DR and even better than DR 
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sometimes. Furthermore, the behavior of it is much better 
than ER. 
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Table1: Reduced clause set is neither empty nor contain empty clause
 
DR ER Examples 

DR DR1 ER ER1 
Non-0 terms —— —— 1979 477 
Res-numbers 2309 >50000 —— —— 

Result SAT SAT SAT SAT 

(10,50,10) 
0.654694 
0.536797 

Time 1.546 >500.00 0.062 0.016 
Non-0 terms —— —— 4990 1568 
Res-numbers 822 52 —— —— 

Result SAT SAT SAT SAT 

(10,50,10) 
0.641633 
0.456522 

Time 0.109 0.000 0.218 0.031 
Non-0 terms —— —— 7520 1991 
Res-numbers 3449 156 —— —— 

Result SAT SAT SAT SAT 

(10,50,10) 
0.604082 
0.423333 

Time 2.953 0.015 0.281 0.047 
Non-0 terms —— —— 3725 743 
Res-numbers 5557 >50000 —— —— 

Result SAT SAT SAT SAT 

(10,50,10) 
0.617959 
0.576667 

Time 9.390 >500.00 0.141 0.016 
Non-0 terms —— —— 7745 1610 
Res-numbers 1159 59 —— —— 

Result SAT SAT SAT SAT 

(10,50,10) 
0.571429 
0.400000 

Time 0.328 0.000 0.219 0.031 
Non-0 terms —— —— 144911 144911 
Res-numbers >50000 >50000 —— —— 

Result UNSAT UNSAT UNSAT UNSAT 

(10,50,10) 
0.670707 
0.670707 

Time >500.00 >500.00 23.343 24.781 
Non-0 terms —— —— 93821 4958 
Res-numbers 66 88 —— —— 

Result UNSAT UNSAT UNSAT UNSAT 

(10,50,10) 
0.352653 
0.429885 

Time 0.000 0.000 6.078 0.094 
Non-0 terms —— —— 116159 2047 
Res-numbers 78 61 —— —— 

Result UNSAT UNSAT UNSAT UNSAT 

(10,50,10) 
0.351020 
0.463054 

Time 0.000 0.000 8.594 0.031 
  
 

Table 2 Reduced clause set is empty or contain empty clause 
 
DR ER Examples 

DR DR1 ER ER1 
Non-0 terms —— —— 64348 —— 
Res-numbers 181 —— —— —— 

Result UNSAT UNSAT UNSAT UNSAT 
(10,50,10) 
0.438367 

Time 0.016 0.000 3.703 0.000 
Non-0 terms —— —— 67367 —— 
Res-numbers 32 —— —— —— 

Result UNSAT UNSAT UNSAT UNSAT 
(10,50,10) 
0.444898 

Time 0.000 0.000 2.531 0.000 
Non-0 terms —— —— 239678 —— 
Res-numbers 37 —— —— —— 

Result SAT SAT SAT SAT 
(10,50,10) 
0.415510 

Time 0.000 0.000 12.484 0.000 
Non-0 terms —— —— 38248 —— 
Res-numbers 112 —— —— —— 

(10,50,10) 
0.460408 

Result SAT SAT SAT SAT 
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Time 0.000 0.000 1.547 0.000 
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4. Algorithm DR1 and DR−ER 

We introduce the central idea of the directional resolution 
at first. The details can be found in [6]. DR is an 
ordering-based restricted resolution. Given an arbitrary 
ordering of the propositional variables, we assign to each 
clause the index of the highest ordered literal in that clause. 
Then we resolve only clauses having the same index, and 
only on their highest literal. The result of this restriction is 
a systematic elimination of literals from the set of clauses 
that are candidates for future resolution. 

Use the reduced rules above to improve the algorithm 
DR. Let RL={RT, RP, RI, RS}, the improved algorithm 
DR1 in propositional logic is given below. 

Algorithm DR1 
1. Let Φ={C1, C2, …,Cn}. 
    While Φ satisfies any rule in RL 
      Loop 
      Φ1:= using RL to deal with Φ 
      If Φ1 is empty then return satisfiable 

Φ:=Φ1 
    Endloop 

2. Let Φ={C1, C2, …,Cp}(p≤n), an ordering d=Q1, …, Qn 
of its variables. 
3. Generate an ordered partition of the clauses, bucket1, …, 
bucketn, where bucketi contains all the clauses whose 
highest literal is Qi. 
4. For i=n to 1 
    (a) Resolve each pair {(A∨Qi), (A∨¬Qi)}⊆ bucketi.  
    (b) If R=A∨B is empty then return satisfiable 
       Else determine the index of R and add it to the 
appropriate buchet. 
5. Ed(Φ):=∪i bucketi. 
6. If Ed(Φ) is equivalent to Φ then return satisfaible 
  Else return unsatisfiable. 

Theorem 7. Algorithm DR1 is sound and complete 
for proposition logic theorem proving. 

Proof. It has been proved that tautology rule, pure 
literal rule, inclusion rule and single literal rule can not 
change the unsatisfiability of the primary clause set [5]. 
Thus by the soundness and completeness of algorithm DR 
[6], the soundness and completeness of algorithm DR1 is 
straightforward. Q.E.D  

All of the clause sets in table 1 will not be empty or 
contain empty clause after reduced. When CF of the 
primal set of clauses is more than 0.5, but CF of the 
reduced clause set is less than 0.5, DR is inefficient than 
all algorithms based on extension rule. Yet DR1 is more 
efficient than them. When CF of the reduced clause set is 
more than 0.5, the two algorithms based on extension rule 
outperform than DR and DR1.  

All of the reduced clause sets in table 2 are empty or 
contain empty clause. Now the behaviors of ER1 and DR1 
are the same. The experiment results in table 2 show DR1 
is as good as DR and even better than DR sometimes. 

Extension rule method can be considered, in a sense, 
dual to resolution method. In order to make best use of the 
advantage of the two reasoning method, we believe it will 
get an efficient deduction method by combining them. The 
experimental results in section 4 also show it is feasible to 
combine the two methods and it is helpful to reduce the 
primary clause set by some reduction rules in advance. So 
the main idea of the combined algorithm is following. 
Firstly, the given clause set is reduced by some reduction 
rules. Then compute CF of the reduced clause set. If the 
CF is great than or equal to 0.5 then call algorithm ER to 
check the satisfiability else call algorithm DR to check the 
satisfaibility. The combined algorithm DR−ER in 
propositional logic is given below. 

Algorithm DR−ER 
1. Let Φ={C1, C2, …,Cn}. 
    While Φ satisfies any rule in RL 
      Loop 
      Φ1:= using RL to deal with Φ 
      If Φ1 is empty then return satisfiable 

Φ:=Φ1 
    Endloop 

2. Let Φ={C1, C2, …,Cp}(p≤n), compute its CF. 
3. If CF >=0.5 then invoke Algorithm ER 
  Else invoke Algorithm DR. 

Theorem 8. Algorithm DR−ER is sound and 
complete for proposition logic theorem proving. 

Proof. It has been proved that tautology rule, pure 
literal rule, inclusion rule and single literal rule can not 
change the unsatisfiability of the primary clause set [5]. 
Thus by the soundness and completeness of algorithm 
BDR [6] and IER [4], the soundness and completeness of 
algorithm DR−ER is straightforward. Q.E.D 

5. Conclusions 

The aim we improve the extension rule method is not only 
to increase the efficiency in propositional logic but also to 
accelerate the reasoning speed of first order extension rule. 
Since first order theorem proving is reduced to a series of 
ground-level satisfiability problems, the behavior of 
propositional extension rule will affect the behavior of first 
order extension rule directly. In a word, our improvement 
will increase the efficiency of first order extension rule 
method. 

Directional Resolution (DR) is the fastest resolution 
based theorem proving method in propositional logic. By 
analyzing the experimental results, we find it will generate 
a more efficient algorithm by combining DR and ER. 
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Namely, a given clause set is reduced by some reduction 
rules at first, and then deduce the saitsfiability by the 
combined algorithm of DR−ER. The algorithm DR−ER is 
just a primary idea. The bounded value 0.5 of CF is 
perhaps not the best one, so we will think over which 
bounded value is most suited in the future work. [4] has 
showed it is difficult to illuminate the number of pairs that 
contain complementary literal(s) precisely by using the 
complementary factor. So we believe there must be a 
better criterion to illuminate the number of pairs that 
contain complementary literal(s). The new criterion should 
be more accurate than CF to indicate when to invoke ER 
or DR. It is also one of our future works. 

After above future works are finished, we will realize 
the combined algorithm DR−ER and compare it with 
relative works. 

It is well known many resolution methods are widely 
used in first logic and many famous first order theorem 
provers [7][8] are based on them. The algorithm DR−ER 
proposed in this paper is just a base of the combined 
algorithm in the first order logic.  Thus we will realize 
the first order extension rule algorithm and give a 
combined reasoning algorithm in first logic in the future. 
Because it can make best of the advantage of resolution 
methods and extension rule methods, the combined 
algorithm in the first logic deserve us to expect. 
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