
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

190

Manuscript revised August 22, 2005.

Propositional Extension Rule with Reduction

Xia Wu†,††, Jigui Sun†,††, Shuai Lv†,†† and Minghao Yin†,††

†College of Computer Science and Technology, Jilin University, 130012 Changchun, China

†† Key Laboratory of Symbolic Computation and Knowledge Engineer of Ministry of Education, 130012 Changchun,
China

Summary
Method based on extension rule is a new method for theorem
proving. It is, in a sense, potentially a complementary method to
resolution based method. ER is the basic extension rule algorithm.
In order to increase its efficiency, this paper improves it by some
reduction rules. And then the soundness and completeness of the
improved algorithm is proved. The experiment results show the
improved algorithm not only increase the efficiency but also keep
the characteristic of the extension rule method, namely it is still
potentially complementary methods to resolution based methods.
In order to enhance the reasoning speed by making the best of the
respective characteristic of extension rule method and resolution
method, this paper proposes a combined algorithm with reduction
rules, which combines the extension rule and resolution. It is also
sound and complete.
Key words:
Extension rule, theorem proving, satisfiability, reduction

1. Introduction

Automated theorem proving (ATP) has matured into one
of the most advanced areas of computer science. Fields
where ATP has been successfully used include logic,
mathematics, computer science, engineering, and social
science. There are potentially many more fields where ATP
could be used, including biological sciences, medicine,
commerce, etc [1]. Many significant problems have been,
and continue to be, solved using ATP. The fields where the
most notable successes have been achieved are
mathematics, and software generation and verification [2],
protocol verification, and hardware verification [3].

The usually used deduction methods in ATP include
resolution based method, tableau based method, sequent
calculus and nature deduction method, etc. The traditional
idea used in TP is to try to deduce the empty clause to
check the unsatisfiability. Resolution based TP is a
paradigm of this idea. But extension rule based TP [4]
proceeds inversely to resolution. Namely, extension rule
based TP checks the unsatisfiability by deducing the set of
clauses consisting of all the maximum terms. Therefore, it
is a new theorem proving method.

Extension rule (ER) method can be considered, in a
sense, to be a method dual to resolution. Because ER is

more efficient when set of clauses includes more
complementary literals but low efficient when set of
clauses includes less complementary literals. In order to
improve the efficient, the method is modified, so that it
can be used in ATP better. The experiment results in
section 3 show improved methods achieve more efficiency
in most cases.

This paper is organized as follows. The ER method is
introduced briefly and improved in section 2. Moreover,
the soundness and completeness of improved ER is proved.
Section 3 compares the relative works by detailed
experiment results. In section 4, in order to propose a
combined algorithm, a directional resolution with
reduction rules is given at first. And then the combined
algorithm DR−ER is proposed. Furthermore, the
soundness and completeness of them are proved. A
conclusion is drawn in the final part.

2. Propositional Extension Rule and Its
Improvement

We run back over the central idea of the extension rule
based TP at first. The details can be found in [4]. The
extension rule method uses the inverse of resolution
together with the inclusion-exclusion principle to solve TP
problems. The set of all the maximum terms is
unsatisfiable. Once a set of clauses deduces it, we can
decide the clause set is unsatisfiable, the deduction method
used here is called extension rule. While the resolution
method goes this way: Since the empty clause is
unsatisfiable, once a set of clauses deduces an empty
clause, it can decide that the clause set is unsatisfiable, the
deduction method used is resolution. The extension rule is
defined as follows.

Definition 1. Given a clause C and a set M: C′={C∨
a, C∨¬a | ″a″ is an atom, a∈M, ″¬a″ and ″a″ does not
appear in C}. The operation proceeding from C to C′ is the
extension rule on C. C′ is the result of the extension rule.

So if we want to decide whether a set of clauses is
satisfiable, we can proceed by finding an equivalent set of
clauses such that all the clauses in it are maximum terms

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

191

by using the extension rule. Evidently, all of the maximum
term set consist of n atoms must include 2n elements. The
number of maximum term extended by a clause set can be
calculated by using the inclusion-exclusion principle.

Given a set of clauses Φ={C1, C2, …,Cn}, let M be
the set of atoms which appear in Φ (|M|=m). Let Pi be the
set of all the maximum terms gotten from Ci by using the
extension rule, and let S be the number of distinct
maximum terms gotten from Φ. By using the Extension
rule, we will have:

()
1 1 1

1
1 2

| | | | | |

 1

n

i i j i j l
i i j n i j l n

n
n

S P P P P P P

P P P

= ≤ < ≤ ≤ < < ≤

+

= − ∩ + ∩ ∩

− + − ∩ ∩ ∩

∑ ∑ ∑

K K

 . (1)

| |2 im C
iP −= . (2)

i j

i j

m-|C C |

0, There are complementary literals in C C ;

2 , Otherwise.
i jP P

∪

∪⎧⎪∩ = ⎨
⎪⎩

. (3)

Example 2. Check the satisfiability of the clause set

Φ={¬A∨B∨¬C, A∨C, ¬A} by formula (1).
The maximum term number extended by Φ:

S=20+21+22-0-20-0+0=6
Because 6<23, clause set Φ={¬A∨B∨¬C, A∨C,

¬A} is satisfiable.
The extension rule algorithm in proposition logic is

given in [4]. Here we make some modifications to enhance
the algorithm’s efficiency. There are some clauses in the
set of clauses having nothing to do with the satisfiability,
such as the clause containing pure literal, the clause
including tautology and the clause implied by other clause,
etc. Hence, these clauses can be deleted. Several rules in
DP algorithm [5] are used to simplify the given clause set,
namely, the literals or clauses unrelated to the satisfiability
are deleted. Then the satisfiability is checked.

Unit resolution is a very fast but incomplete method
to decide the satisfiability, the single literal rule in DP is in
fact the unit resolution. During the single literal rule is
used to reduce the primitive clause set, it is actually
running a more efficient but incomplete method to check
the satisfaibility. If the clause set becomes empty then it is
satisfiable. Else, if the clause set includes empty clause
then it is unsatisfiable. Otherwise, a reduced clause set is
given.

When the pure literal rule is used, if the clause set
becomes empty then it is satisfiable else a reduced clause
set is given. All of the reduced rules are listed below.

Tautology rule: Deleting all the tautologies in the set
of clauses Φ. Let the surplus clause set be Φ′. Then Φ is
unsatisfiable if and only if Φ′ is unsatisfiable.

Definition 3. Say the literal L in the clause set Φ is
pure if and only if ¬L is not in Φ.

Pure literal rule: If the literal L in the clause set Φ is

pure then delete all the clauses including L. Let the surplus
clause set be Φ′. (a) If Φ′ is empty then Φ is satisfiable; (b)
otherwise Φ′ is unsatisfiable.

Definition 4. C1 and C2 are any two clauses in set of
clauses Φ, say C1 includes C2 if every literal in C1 is also
in C2.

Inclusion rule: Suppose C1 and C2 are two clauses in
the clause set Φ, where C1includes C2. Deleting the clause
C2 from Φ and let the surplus clause set be Φ′, then Φ is
unsatisfiable if and only if Φ′ is unsatisfiable.

Single literal rule: If there is a single literal L in set
of clauses Φ, then delete all of the clauses including L. Let
the surplus clause set be Φ′. (a) If Φ′ is empty then Φ is
satisfiable; (b) Otherwise if Φ′ is not empty, then delete all
of the literals ¬L from the clauses including it in Φ′ . Φ′ is
unsatisfiable if and only if Φ″ is unsatisfiable (suppose
there is a unit clause ¬L in Φ′, a empty clause � is
achieved by deleting ¬L).

Denote tautology rule by RT, pure literal rule by RP,
inclusion rule by RI, and single literal rule by RS. Let RL
={RT, RP, RI, RS}, the improved extension rule algorithm
in propositional logic is given below.

Algorithm ER1
1. Let Φ={C1, C2, …,Cn}.

While Φ satisfies any rule in RL
Loop
Φ1:= using RL to deal with Φ
If Φ1 is empty then return satisfiable
Φ:=Φ1
Endloop

2. i:=1, sum:=0
3. while i<=n

Loop
For all sets S that contain i clauses
Loop
Union=the union of all the clauses in S
If there are no complementary literals in Union
then number:=2m-|Union|

Else Number:=0
If i mod 2=1 then sum:=sum+number
Else Sum:=sum-number
Endloop

If i mod 2=0 and sum=2m then return unsatisfiable
Else If i mod 2=1 and sum<2m
 then return satisfiable
i:=i+1

Endloop
4. If sum=2m then return unsatisfiable

 Else return satisfiable

Theorem 5. Algorithm ER1 is sound and complete
for proposition logic theorem proving.

Proof. It has been proved that tautology rule, pure

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

192

literal rule, inclusion rule and single literal rule can not
change the unsatisfiability of the primary clause set [5].
Thus by the soundness and completeness of algorithm ER
[4], the soundness and completeness of algorithm ER1 is
straightforward. Q.E.D

The efficiency of algorithm ER relies on the number
of nonzero terms counted by formula (1). Clearly, the
worst-case time complexity of Algorithm ER is
exponential. However, there are cases in which Algorithm
ER is tractable. For example, if each pair of clauses in a
set contains complementary literal(s), then the complexity
of Algorithm ER will be linear in the number of clauses
because only the first n terms in Formula (1) are nonzero
terms and need to be computed. Intuitively, in this case
resolution based methods are likely to be inefficient since
there are potentially many resolutions that need to be
performed. By contrast, consider the case in which if there
are no complementary literals at all. In this case it would
have to compute all the 2m terms in order to decide its
satisfiability using the extension rule. But its satisfiability
can be decided immediately by using a resolution based
method. (Actually no resolution can be or needs to be
performed).

Consider the improved algorithm ER1, when there
are no complementary literals at all, it can deduce the
satisfiablility by using the pure literal rule. Thus it need
not invoke the algorithm ER which is inefficient in this
case. Moreover, by using the single literal rule to reduce
the clause set, it is in fact to use the fast unit resolution to
check the satisfiability. So it is naturally the behavior of
algorithm ER1 is better than algorithm ER. The
experiment results in section 3 show this.

3. Experimental Results

Some elementary experimental results are reported in this
section to show how ER1 perform. Since first order
theorem proving is reduced to a series of ground-level
satisfiability problems, the behavior of ER1 will affect the
efficiency of first order ER directly. So the comparison
between improved algorithms and primal ones is very
important.

In order to explain the relationship between ER and
the number of the pairs of clauses in a set contains
complementary literal(s) intuitively, [4] gives the
definition of complementary factor.

Definition 6. Given a set of clauses Φ={C1, C2,
…,Cn}, the complementary factor CF of the set is the ratio
of the number of pairs that contain complementary
literal(s) to the number of all the pairs in the set. That is
S/[n(n−1)/2], where S stands for the number of pairs that
contain complementary literal(s).

Although it is difficult to calculate the time
complexity precisely by using the CF, but the experiment

results in [4] show the higher the CF of a problem is, the
more efficient algorithm ER can be expected to be. Our
experiment results show the efficient of improved
algorithms still has such relation to CF, but not so close
like algorithm ER.

Three algorithms are compared in this section. They
are ER1 proposed in this paper, ER given in [4] as well as
DR proposed in [5]. There is an algorithm DR1 in table 1
and table 2. We will discuss it in detail in the next section.

The instances are obtained by a random generator. It
takes as an input the number of variable n, the number of
clauses m and the most length of each clause k, and
obtains each clause randomly by choosing k variables
from the set of variables which number less than or equal
to n and by determining the polarity of each literal with
probability p=0.5.

(10,50,10) denotes a set of clauses, which has 10
variables and 50 clauses and each clause length is not
more than 10. There are two decimal fractions below each
clause set in table 1, they are the CF of primal set of
clauses and reduced set of clauses. There is just one
decimal fraction below each clause set in table 2. It is the
CF of primal set of clauses. The reason is the satisfiability
can be deduced directly during reducing and need not to
generate the reduced set. Non-0 terms denotes the nonzero
terms generated by ER and ER1 during reasoning.
Res-numbers denotes the resolution performed by DR
during reasoning. Result denotes the returned result, i.e.
the saisfiability or unsatisfiability. Time denotes the total
time used by procedure, and the precision is 1 millisecond.

All of the clause sets in table 1 will not be empty or
contain empty clause after reduced. When CF of the
primal set of clauses is larger, CF of the reduced clause set
becomes smaller generally. But in most cases, ER1 still
outperform ER. It is because CF becomes smaller, but the
variable number and the clause number in the clause set
become smaller corresponding. So that the number of the
nonzero terms needed to extend is cut down and the speed
becomes fast. Seldom, ER1 is inefficient than ER. We
think it is because though the variable number and the
clause number decrease the complementary literal(s) for
any pair is cut down excessively so as to decrease the
efficiency. Here, DR is inefficient than other two
algorithms evidently.

When CF of the primal clause set is smaller, CF of
the reduced clause set becomes larger on the contrary. So
the behavior of ER1 is much better than ER. Here, DR is
efficient than ER1 and much more efficient than ER. All
of above show ER1 enhance the efficiency largely and
keep the characteristic of the extension rule method. All of
the reduced clause sets in table 2 are empty or contain
empty clause. The experimental results show the
efficiency of ER1 has nothing with CF in this case. The
behavior of ER1 is as good as DR and even better than DR

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

193

sometimes. Furthermore, the behavior of it is much better
than ER.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

194

Table1: Reduced clause set is neither empty nor contain empty clause

DR ER Examples

DR DR1 ER ER1
Non-0 terms —— —— 1979 477
Res-numbers 2309 >50000 —— ——

Result SAT SAT SAT SAT

(10,50,10)
0.654694
0.536797

Time 1.546 >500.00 0.062 0.016
Non-0 terms —— —— 4990 1568
Res-numbers 822 52 —— ——

Result SAT SAT SAT SAT

(10,50,10)
0.641633
0.456522

Time 0.109 0.000 0.218 0.031
Non-0 terms —— —— 7520 1991
Res-numbers 3449 156 —— ——

Result SAT SAT SAT SAT

(10,50,10)
0.604082
0.423333

Time 2.953 0.015 0.281 0.047
Non-0 terms —— —— 3725 743
Res-numbers 5557 >50000 —— ——

Result SAT SAT SAT SAT

(10,50,10)
0.617959
0.576667

Time 9.390 >500.00 0.141 0.016
Non-0 terms —— —— 7745 1610
Res-numbers 1159 59 —— ——

Result SAT SAT SAT SAT

(10,50,10)
0.571429
0.400000

Time 0.328 0.000 0.219 0.031
Non-0 terms —— —— 144911 144911
Res-numbers >50000 >50000 —— ——

Result UNSAT UNSAT UNSAT UNSAT

(10,50,10)
0.670707
0.670707

Time >500.00 >500.00 23.343 24.781
Non-0 terms —— —— 93821 4958
Res-numbers 66 88 —— ——

Result UNSAT UNSAT UNSAT UNSAT

(10,50,10)
0.352653
0.429885

Time 0.000 0.000 6.078 0.094
Non-0 terms —— —— 116159 2047
Res-numbers 78 61 —— ——

Result UNSAT UNSAT UNSAT UNSAT

(10,50,10)
0.351020
0.463054

Time 0.000 0.000 8.594 0.031

Table 2 Reduced clause set is empty or contain empty clause

DR ER Examples

DR DR1 ER ER1
Non-0 terms —— —— 64348 ——
Res-numbers 181 —— —— ——

Result UNSAT UNSAT UNSAT UNSAT
(10,50,10)
0.438367

Time 0.016 0.000 3.703 0.000
Non-0 terms —— —— 67367 ——
Res-numbers 32 —— —— ——

Result UNSAT UNSAT UNSAT UNSAT
(10,50,10)
0.444898

Time 0.000 0.000 2.531 0.000
Non-0 terms —— —— 239678 ——
Res-numbers 37 —— —— ——

Result SAT SAT SAT SAT
(10,50,10)
0.415510

Time 0.000 0.000 12.484 0.000
Non-0 terms —— —— 38248 ——
Res-numbers 112 —— —— ——

(10,50,10)
0.460408

Result SAT SAT SAT SAT

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

195

Time 0.000 0.000 1.547 0.000

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, January 2006

196

4. Algorithm DR1 and DR−ER

We introduce the central idea of the directional resolution
at first. The details can be found in [6]. DR is an
ordering-based restricted resolution. Given an arbitrary
ordering of the propositional variables, we assign to each
clause the index of the highest ordered literal in that clause.
Then we resolve only clauses having the same index, and
only on their highest literal. The result of this restriction is
a systematic elimination of literals from the set of clauses
that are candidates for future resolution.

Use the reduced rules above to improve the algorithm
DR. Let RL={RT, RP, RI, RS}, the improved algorithm
DR1 in propositional logic is given below.

Algorithm DR1
1. Let Φ={C1, C2, …,Cn}.
 While Φ satisfies any rule in RL
 Loop
 Φ1:= using RL to deal with Φ
 If Φ1 is empty then return satisfiable

Φ:=Φ1
 Endloop

2. Let Φ={C1, C2, …,Cp}(p≤n), an ordering d=Q1, …, Qn
of its variables.
3. Generate an ordered partition of the clauses, bucket1, …,
bucketn, where bucketi contains all the clauses whose
highest literal is Qi.
4. For i=n to 1
 (a) Resolve each pair {(A∨Qi), (A∨¬Qi)}⊆ bucketi.
 (b) If R=A∨B is empty then return satisfiable
 Else determine the index of R and add it to the
appropriate buchet.
5. Ed(Φ):=∪i bucketi.
6. If Ed(Φ) is equivalent to Φ then return satisfaible
 Else return unsatisfiable.

Theorem 7. Algorithm DR1 is sound and complete
for proposition logic theorem proving.

Proof. It has been proved that tautology rule, pure
literal rule, inclusion rule and single literal rule can not
change the unsatisfiability of the primary clause set [5].
Thus by the soundness and completeness of algorithm DR
[6], the soundness and completeness of algorithm DR1 is
straightforward. Q.E.D

All of the clause sets in table 1 will not be empty or
contain empty clause after reduced. When CF of the
primal set of clauses is more than 0.5, but CF of the
reduced clause set is less than 0.5, DR is inefficient than
all algorithms based on extension rule. Yet DR1 is more
efficient than them. When CF of the reduced clause set is
more than 0.5, the two algorithms based on extension rule
outperform than DR and DR1.

All of the reduced clause sets in table 2 are empty or
contain empty clause. Now the behaviors of ER1 and DR1
are the same. The experiment results in table 2 show DR1
is as good as DR and even better than DR sometimes.

Extension rule method can be considered, in a sense,
dual to resolution method. In order to make best use of the
advantage of the two reasoning method, we believe it will
get an efficient deduction method by combining them. The
experimental results in section 4 also show it is feasible to
combine the two methods and it is helpful to reduce the
primary clause set by some reduction rules in advance. So
the main idea of the combined algorithm is following.
Firstly, the given clause set is reduced by some reduction
rules. Then compute CF of the reduced clause set. If the
CF is great than or equal to 0.5 then call algorithm ER to
check the satisfiability else call algorithm DR to check the
satisfaibility. The combined algorithm DR−ER in
propositional logic is given below.

Algorithm DR−ER
1. Let Φ={C1, C2, …,Cn}.
 While Φ satisfies any rule in RL
 Loop
 Φ1:= using RL to deal with Φ
 If Φ1 is empty then return satisfiable

Φ:=Φ1
 Endloop

2. Let Φ={C1, C2, …,Cp}(p≤n), compute its CF.
3. If CF >=0.5 then invoke Algorithm ER
 Else invoke Algorithm DR.

Theorem 8. Algorithm DR−ER is sound and
complete for proposition logic theorem proving.

Proof. It has been proved that tautology rule, pure
literal rule, inclusion rule and single literal rule can not
change the unsatisfiability of the primary clause set [5].
Thus by the soundness and completeness of algorithm
BDR [6] and IER [4], the soundness and completeness of
algorithm DR−ER is straightforward. Q.E.D

5. Conclusions

The aim we improve the extension rule method is not only
to increase the efficiency in propositional logic but also to
accelerate the reasoning speed of first order extension rule.
Since first order theorem proving is reduced to a series of
ground-level satisfiability problems, the behavior of
propositional extension rule will affect the behavior of first
order extension rule directly. In a word, our improvement
will increase the efficiency of first order extension rule
method.

Directional Resolution (DR) is the fastest resolution
based theorem proving method in propositional logic. By
analyzing the experimental results, we find it will generate
a more efficient algorithm by combining DR and ER.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1A, November 2006

197

Namely, a given clause set is reduced by some reduction
rules at first, and then deduce the saitsfiability by the
combined algorithm of DR−ER. The algorithm DR−ER is
just a primary idea. The bounded value 0.5 of CF is
perhaps not the best one, so we will think over which
bounded value is most suited in the future work. [4] has
showed it is difficult to illuminate the number of pairs that
contain complementary literal(s) precisely by using the
complementary factor. So we believe there must be a
better criterion to illuminate the number of pairs that
contain complementary literal(s). The new criterion should
be more accurate than CF to indicate when to invoke ER
or DR. It is also one of our future works.

After above future works are finished, we will realize
the combined algorithm DR−ER and compare it with
relative works.

It is well known many resolution methods are widely
used in first logic and many famous first order theorem
provers [7][8] are based on them. The algorithm DR−ER
proposed in this paper is just a base of the combined
algorithm in the first order logic. Thus we will realize
the first order extension rule algorithm and give a
combined reasoning algorithm in first logic in the future.
Because it can make best of the advantage of resolution
methods and extension rule methods, the combined
algorithm in the first logic deserve us to expect.

Acknowledgments

This paper was supported by National Natural Science
Foundation of China (Grant No.60273080, 60473003), the
Science and Technology Development Program of Jilin
Province of China (Grant No.20040526) and the
Outstanding Youth Foundation of Jilin Province of china
(Grant No.20030107).

References
[1] J.A. Robinson, et al. eds., Handbook of Automated
Reasoning, Elsevier Science Publishers, 2000.
[2] P. Fenkam, M. Jazayeri and G. Reif, “On methodogies for
constructing correct event-based applications”, Proc. 3th
International Workshop on Distributed Event-Based Systems,
Edinburgh, UK, 38-43, 2004.
[3] J. Kubica, E. G. Rieffel, “Collaborating with a genetic
programming system to generate modular robotic code”, Proc.
Genetic and Evolutionary Computation Conference, New York,
USA, 804-811, 2002.
[4] H. Lin, J. G. Sun and Y. M. Zhang, “Theorem proving based
on extension rule. Journal of Automated Reasoning.” Vol.31,
11-21, 2003.
[5] X. H. Liu, The theorem proof based on resolution (in
Chinese), Science Press, Beijing, 1994.
[6] R. Dechter, I. Rish, “Directional resolution: The
Davis-Putnam procedure, revisited”, Proc. 4th International

Conference on Principles of KR&R, Bonn, Germany, 134—145,
1994.
[7] C. Dixon, “Using Otter for Temporal Resolution”, Advances
in Temporal Logic, vol.16, 149-166, 2000.
[8] Gail W. Pieper ed., Automated reasoning and the discovery of
missing and elegant proofs, Rinton Press, 2003.

Xia Wu received the B.E. and M.S
degrees in Computer Science from
Northeast Normal University of China in
1999 and 2002, respectively. She is a
Doctor student of Prof. Sun in software
theory from Jilin University of China till
now . Her research interest includes
automated reasoning in classical logic and
non-classical logic.

Jigui Sun received the Dr. degree in
Computer Science from Computer Science
Department of Jilin University of China in
1993, and was promoted professor in July
1997. He is currently head of Ministry of
Education Key Laboratory of Symbolic
Computation and Knowledge Engineering
and associate dean of College of Computer
Science and Technology, Jilin University.
He is director of China Computer

Association and committee member of the sub-division of
computer science and technology for guiding higher education of
the Ministry of Education. He is the Ministry of Education's
Distinguished Talent for the New Century. Sun's research work
focuses on intelligent information processing.

