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Summary 
Genetic algorithms (GA) are stochastic search techniques based 
on the mechanics of natural selection and natural genetics. In this 
paper, the adaptive genetic algorithms are applied to solve the 
portfolio selection problem in which there exist both probability 
constraint on the lowest return rate of portfolio and lower and 
upper bounds constraints on the investment rates to assets. First, 
the stochastic model of portfolio selection and it's the reliability 
decision are presented. Second, the adaptive genetic algorithm to 
solve the reliability decision is given. Finally, a numerical 
example of portfolio selection problem is given to illustrate our 
proposed effective means. 
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1. Introduction 

John Holland is the founder of the field of genetic 
algorithms (GAs) ([1]). With the publication of Adaptation 
in Natural and Artificial Systems in 1975, Holland 
discussed the ability of simple bit-string representation to 
encode complicated structures and the power of simple 
transformations to improve such structures. Genetic 
algorithms are stochastic adaptive algorithms that the 
result is a directed random search procedure. The process 
begins by constructing a random population of possible 
solutions. This population is used to create a new 
generation of possible solutions, which is then used to 
create anther generation of solutions, and so on. The best 
elements of the current generation are used to create the 
next generation. It is hoped that the new generation will 
contain "better" solutions than the previous generation. In 
this respect, a wide but diverse range of applications ([2], 
[3]) bear testimony to the fact that genetic algorithms are 
very useful in solving complicated problems by mimicking 
some facets of natural evolution. Recently, many 
applications of genetic algorithm have been applied to the 
portfolio selection problems ([4], [5]), in which the main 
research works are related to Markowitz's mean-variance 
model [7]. Yet, there are some limits and shortcomings in 
Markowitz's model [7]. In this paper, we propose the 

stochastic model of portfolio and it's the α -reliability 
decision, which is different from Markowitz's model and 
the nation of efficient portfolio. We study the problem of 
calculating this new model by adaptive genetic algorithm. 
In addition, a numerical example of a portfolio selection 
problem is given to illustrate our proposed effective 
means.  
  
2. Stochastic Model and Reliability Decision 
of Portfolio Selection  
 
In Markowitz's mean-variance model, portfolio selection 
problem with )2( ≥nn  risky assets is usually described 

as follows. The return rate ir for asset i is a random 

variable with expected return .,,2,1),( nirEr ii Κ==  

Let ix  be the investment rate to asset i . In order to 
describe conveniently, we introduce the following 
notations:  

T
NxxxX ),,,( 21 Λ= , T

nrrrR ),,,( 21 Λ= , 
T

nrrrR ),,,( 21 Λ= , TF )1,,1,1( Λ= , nnijD ×= )(σ . 

R  and D  are the expect return vector and covariance 
matrix of returns, respectively. Then the return associated 
with the portfolio T

NxxxX ),,,( 21 Λ=  is RXr T= . 
   The expected return and variance of r  are, 
respectively, given by 
   ,)( RXrE T=  DXX T=2σ . 
   Markowitz's mean-variance model of portfolio 
selection problem may be described by the following 
quadratic programming: 
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where 0R  is the lowest expected return of investor. 
In practical investment problem, we need to 

estimate R  and D . It is well-known fact that the returns 
of risky assets vary from time to time, and the future states 
of returns and risks of risky assets cannot be predicted 
accurately. Moreover, most investor may request the lower 
and upper bounds constraints on the investment rates to 
assets. Based on this fact, we propose the stochastic model 
of portfolio as follows: 
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the upper and lower bounds constraints on X , 
respectively. 
    Due to the constraint 0RRX T ≥  in (2) is a random 
event. Hence, the feasible solution to (2) may be feasible 
or not. Both of them exist the degree of the probability, the 
same to the result of the portfolio decision. Hence, we 
bring into the measure named reliability and set up a 
probability-restricted model. The new model can be 
specified as follows: 
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the upper and lower bounds constraints on X , 
respectively. 

(3) is called the α -reliability decision model of (2), 
and the feasible solution to (3) is called the α -reliability 
feasible solution of (2).  So the optimal solution to (3) is 
a α -reliability decision for the portfolio. The 
α -reliability decision has more significance because it 
shows that the portfolio selection is stochastic decision, its' 
result has two sides: reliability and unreliability. Because 
of avoiding regarding it as a determinate decision it is 
better to reflect the uncertain economic environment. 
Hence, the α -reliability decision is very practical and 
effective in real investment management. 

The model (3) can be transformed into the 
determinate decision model. If constant M is given by 
the following formula: 

α=≥
− )( M

DXX
RXRXP

T

TT

, 

then the probability constraint condition 
α≥≥ )( 0RRXP T  is equivalent to the determinate 

constraint condition 0RDXXMRX TT ≥+ . 
The proof of this conclusion is following:  
If α≥≥ )( 0RRXP T , 

then α−≤≤ 1)( 0RRXP T . 

Since α=+≥ )( DXXMRXRXP TTT , 

α−=+≤ 1)( DXXMRXRXP TTT . 
According to the monotonic increasing of the distribution 
function, we obtain 

0RDXXMRX TT ≥+ . 

Contrarily, if 0RDXXMRX TT ≥+ , then 

α=+≥≥≥ )()( 0 DXXMRXRXPRRXP TTTT

So, (3) is equivalent to the following determinate 
constraint model: 
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the upper and lower bounds constraints on X , 
respectively. 

In  (4), M  depends on the probability distribution 
of RX T . If the return rate of every risky asset i follows 
normal distribution ),,2,1(),,( 2 nirN ii Λ=σ , then 

RX T  follows normal distribution ),( DXXRXN TT . 
Thus, M  is determined the following formula: 
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From the normal distribution chart α−=∅ 1)(M , we 
can obtain M . 
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If 0=M , TW )1,,1( Κ=  and TU )0,,0( Κ= , 
then (4) is equivalent to Markowitz's mean-variance model 
(1). It is obvious that the α -reliability decision model (3), 
i.e., (4) is extensions of previous models for portfolio 
selection problem, such as Markowitz's mean-variance 
model.  Furthermore, previous researches have shown 
that finding the analytic form solution to (4) is very 
difficult. In next section we will give the adaptive genetic 
algorithm for finding the α -reliability decision. 
    
 
3. The Adaptive Genetic Algorithm  
 
If the multimode function wants to keep the global search 
ability it must have balanced search ability. Crossover 
probability cp  and mutation probability mp  are the 
main factors in affecting balanced search ability (global 
search ability and local search ability). While we 
strengthen one ability by increasing or decreasing 

cp , mp , we may weaken other abilities. Both cp  and 

mp  in the simple genetic algorithm (SGA) are invariant, 
so for the complex optimal problem the GA's efficiency is 
not high. In addition, immature convergence maybe caused. 
Therefore, the goals with adaptive probabilities of 
crossover and mutation are to maintain the genetic 
diversity in the population and prevent the genetic 
algorithms to converge prematurely to local minima. 
Strinvivas([6]) put forward the adaptive genetic algorithm, 
and its basic idea is to adjust cp  and mp  according to 
the individual fitness. This algorithm can better solve the 
problem of adjusting cp  and mp  dynamically and also 
fits to all kinds of optimal problem. Based on these facts, 
we adopt the adaptive genetic algorithm to obtain the 
optimal solution to (4) as follows: 
 
3.1. Initialization 
 
Define integer H  is the initial random population of 
chromosomes, and we adopt real code. Every chromosome 
include n gene bit (represent n  assets), the gene value 
is the proportion to this asset in the portfolio. Obviously, 
the feasible set of (4) includes the following set: 

},,),,{( 1111 nnnn wxuwxuxx ≤≤≤≤=Ω ΛΛ  

   It produces random number from Ω  and tests its 
feasibility. If it is feasible then it is a member of the initial 
population, otherwise, we go on produce random number 
from Ω  until obtain feasible solution. After finite sample 
there are H  initial feasible chromosomes HVV ,,1 Λ . 
 
3.2. Evaluation function  

 
Through evaluation function )(Veval  we set 
probability for every chromosome V , so the selection 
probability is proportion to their fitness. That is, by 
roulette wheel selection, chromosomes with a high fitness 
value have a great chance of being selected to generate 
children for the next generation.，then the chromosome is 
reallocated by the sequence number instead of target value, 
and chromosome is arrayed from good to bad. That is say, 
a chromosome is better sequence number is lower.  So we 
set )1,0(∈α  and define evaluating function based on 
the sequence number 

1)1()( −−= j
jVeval αα , Hj ,,2,1 Λ= . 

 
3.3. Selection operator 
 
3.3.1. According to the rule that the selection operator 
chooses individuals with a probability that corresponds to 
the relative fitness. Chromosomes with a high fitness value 
have a great chance of being selected to generate children 
for the next generation.，two chosen individuals, called the 
parents. We define reproduction probability for )(kv j : 
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 1=j  means chromosome is the best one, Hj =  
means chromosome is the worst one. 
3.3.2. For )(kv j , Hj ,,2,1 Λ=  calculate cumulative 

probability jq : 
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3.3.3. Produce random number r  in ),0( Hq . If 

jj qrq <<−1 , then we select the chromosome )(kv j ，
Hj ,,2,1 Λ= . 

3.3.4. Repeating 3.3.2 and 3.3.3 H times, we can obtain 
H copied chromosomes, defined by 

))(',),('),('()(' 21 kvkvkvkv HΛ= . 
 
3.4. Crossover operator  
 
3.4.1. Instead of using fixed cp , we adjust it adaptively 
based on the following formula: 
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where maxf  is the highest fitness value in the population; 

avgf  is the average fitness value in every population; 'f  
is higher fitness value between two individuals; in 
addition; 
   We set 6.0,9.0 21 == cc pp . 

3.4.2. )(' kv j  is the parent of assured crossover operator, 

repeat the following step from 1=j   to kj =  : 

produce random number r  in ]1,0[ . If cpr < , then 

we select )(' kv j  as parent. 

3.4.3. )(,),(),( ''''
2
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If the new chromosomes don't satisfy restraint conditions 
we refuse it as offspring, then repeat 3.4.4 until we obtain 
the new chromosomes that are feasible. 
3.4.5. Using the same way as above, we conduct crossover 
operator for other groups. 
 
3.5. Mutation operator  
 
3.5.1. Instead of using fixed mp , we adjust it adaptively 
based on the following formula: 
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where maxf  is the highest fitness value in the population; 

avgf  is the average fitness value in every population; f  
is the mutation individual fitness; and we set 

001.0,1.0 21 == mm pp  
3.5.2. Crossover takes two selected parents (chromosomes), 
conduct the following mutation operator repeatedly from 

1=i  to L : produce random number r  in ]1,0[ . If 

mpr < , then we select )(kX i  as parent of the 
mutation.  
3.5.3. Produce random integer i  in ]1,0[ , j  in ]1,0[ , 

and random numbers 1r  and 2r  in ]1,0[  and then 
creates offspring by the following method: for the 
chromosome ia  its i  gene bit iia  is replaced by 1r , 

at the same time, for the chromosome ia  its j  gene bit 

ija  is replaced by 2r . If the new chromosomes don't 
satisfy restraint conditions we refuse it as offspring, then 
repeat 3.5.3 until we obtain the new chromosome is 
feasible. After finite sample we can produce number new 
mutation individual.  
3.5.4. From mutation operator 3.5.3 calculate s  new 
individuals' fitness values; calculate sL −  new 
individuals' fitness values, that new individuals can 
conduct crossover operator in 3.4 and cannot conduct 
mutation operator in 3.5; At last, from these new 
individuals together with LH −  unselected individuals 
in 3.3 we generate new population: 

)}1(,),1(),1({)1( 21 +++=+ kvkvkvkv HΛ  
 
3.6. Convergence conditions 
 
Stopping test is judged by calculating ε<− +1ii FF  

where iF  and 1+iF  are continuous generation's fitness 
values, ε  is fixed arbitrary decimal fraction. If the 
results satisfy ε<− +1ii FF  the genetic operator will 
be stopped. 
 
4. Experimental Result  
 
In this section we provide experimental results to 
demonstrate the effectiveness of the adaptive genetic 
algorithm to the stochastic portfolio model. Considering 
portfolio selection with 9 risky assets, the return rate and 
covariance chart of returns are shown in Table 1. We make 
the following assumption in this experiment: 
The expected portfolio return rate %100 =R ; 

,)05.0,13.0,10.0,05.0,18.0,13.0,10.0,05.0,05.0( TU =
TW )15.0,25.0,25.0,15.0,30.0,25.0,20.0,15.0,15.0(=

70.0=α , 53.0−=M , population size 30=H ，
001.0=ε .  

At last, we can conclude the investment vector of the 
optimal portfolio with 70%-reliability: 
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T

X
)059.0,159.0,111.0

,052.0,235.0,156.0,112.0,059.0,057.0(* =
. 

It holds that 10.0*** ≥+ DXXMRX TT , that is, 

70.0
)()1.0( *****

=
+≥≥≥ DXXMRXRXPRXP TTTT

Table 1 

ir % ijσ % 
7.1 2.0 1.6 1.9 3.3 1.0 2.7 1.8 2.8 2.1
10.1 1.6 3.1 1.7 1.9 0.8 0.7 0.9 2.1 1.5
19.6 1.9 1.7 6.9 6.3 4.5 0.7 0.4 7.8 3.1
20.6 3.3 1.9 6.3 8.0 4.5 2.1 0.9 7.9 2.0
23.4 1.0 0.8 4.5 4.5 8.7 0.6 1.1 8.6 2.9
15.3 2.7 0.7 0.7 2.1 0.6 4.2 1.0 2.0 1.1
13.6 1.8 0.9 0.4 0.9 1.1 1.0 3.6 1.8 0.8
21.6 2.8 2.1 7.8 7.9 8.6 2.0 1.8 8.3 3.5
14.4 2.1 1.5 3.1 2.0 2.9 1.1 0.8 3.5 4.0
 
5. Conclusion 
 
In this paper, we have discussed the portfolio selection in 
which there exist both probability constraint on the lowest 
return rate of portfolio and lower and upper bounds 
constraints on the investment rates to assets. We have 
proposed the stochastic portfolio model and it's the 
reliability decision of portfolio selection, them are 
extensions of Markowitz's mean-variance model and the 
efficient portfolio. Particularly, the adaptive genetic 
algorithm has been applied to obtain the reliability 
decision of portfolio selection. The numerical result has 
showed that its application in portfolio selection is reliable 
and useful. 
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