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Summary 
We propose a protocol and software to use within a slow control 
system where slow in this context means that values are read 
from a variety of sensors at most once every second. We 
demonstrate how to use the Building Automation and Control 
network protocol (BACnet) to monitor network aware 
end-devices and set alarms on their sensor values. 
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1. Introduction 

Ours is the matter of standardizing the technologies for 
implementing a highly specialized computer network. The 
devices sitting at the ends of the network are computers 
and heterogeneous sensors that read continuous data from 
the environment at a relatively slow rate (about once a 
second).  

1.1. Sudbury Neutrino Observatory 

The (SNO) is a research laboratory that contains a unique 
neutrino telescope, the size of a ten story building, two 
kilometers underground in INCO's Creighton Mine in 
Lively Ontario. It is operated by a one hundred member 
team of scientists from Canada, the United States, and the 
United Kingdom [12]. Neutrinos make up one quarter of 
all known fundamental particles in the Universe. By 
contributing to our understanding of neutrinos, the 
researchers at SNO are learning about the core of the sun, 
hoping to recognize characteristics that would unveil the 
secrets of our origins.  
 Acquiring information on the properties of neutrinos 
requires a large flow of information to be handled on a 
continuous basis. SNO monitors approximately four 
hundred data points, from temperature and humidity 
probes to oxygen meters and pressure transducers. These 
data points are gathered using what is called a Slow 
Controls System (SCS) that monitors, controls and sets 
alarms on various end-devices sitting on the network. A 
system is considered to be slow if it reads cycles in the one 
to ten second range, not at the millisecond or multiple 
minute range. The components used in a SCS can be 
classified as being either proprietary or generic. By 
proprietary, we mean that the system can only be used 

with other systems from the same manufacturer. When 
dealing with many different end-devices from many 
different manufacturers, having proprietary hardware or 
software is not beneficial from an interoperability point of 
view.  
   The problem with the current proprietary hardware and 
software combination at the Neutrino Observatory (SNO) 
is that it lacks extensibility. SNO will be expanding its 
facilities to extend their research area. The number of data 
points being monitored will multiply by a factor of three. It 
is, therefore, essential to embrace the new generation of 
relatively inexpensive sensors that communicate via a 
local area network using a variety of protocols, some of 
which will be examined in this research.  

1.2. Focus of Research 

The scope of this project is the monitoring on slow control 
signals. Signals consist of 1.) Digital inputs (on/off, 
open/closed, alarm/no Alarm) 2.) Raw or calibrated analog 
signals (calibrated temperatures, uncalibrated voltages that 
need to have the calibrations applied by the monitoring 
programs) 3.) Packets of digital data from complex devices 
such as a computer that receives a request for data and 
returns a variable length packet. 
 In this research, we evaluated some of the existing 
standard protocols for network communication among 
devices transmitting and receiving sensor data. We 
examined the Simple Network Management Protocol 
(SNMP), Programmable Logic Controllers (PLCs) and the 
Building Automation and Control network protocol 
(BACnet). BACnet [1], [2], [3], [4], [15] was selected as a 
protocol that can be used as a common language for 
communicating among devices. We demonstrate how to 
use BACnet to set up a network architecture to monitor 
network aware end-devices on their sensor values. 
 The criteria that were used for choosing an appropriate 
protocol and software are discussed in the next section. 

1.3. Methodology 

We provide guidelines divided into two sections: Protocol 
Guidelines and Software Guidelines. The Protocol 
Guidelines will be used to evaluate the alternative 
protocols in order to choose the one that is the most 
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suitable. Once we have proposed a protocol, we will use 
the Software Guidelines to evaluate the software needed to 
handle the protocol within our slow control system. 
Following are the requirements for finding an appropriate 
network communication standard and its software: 

1.3.1. Protocol Guidelines 
Upon reviewing a protocol, some of the key aspects to 
examine are: What are its strengths and limitations? How 
widely used is this protocol? What vendors support this 
protocol? 

1.3.2. Software Guidelines 
The functionality required is as follows: 
• The software can read data from arbitrary network 

devices or, if only from proprietary devices, 
interfacing software can be written to connect an 
arbitrary device to this system. 

• The system should read analog and digital signals as 
well as arbitrary data packets. 

• Software analysis can be done on the signals once the 
data is read (e.g. calibration constants may be applied 
to the data). Mathematical operations can be 
performed on the data such as calculating the square 
or the log of a value). 

• The system should log data and make it accessible by 
client programs.  

• Alarms generated by the system should be appropriate 
for the device being monitored. For example, if we are 
monitoring the temperature in a computer room, it 
would be crucial to have a loud audio alarm go off 
when the temperature rises to a certain threshold. 
Simply sending out an email would not suffice since 
we need to deal with the problem immediately 
(increasing the air conditioning so the hardware does 
not catch on fire). 

• The software/hardware combination should scale up 
with respect to how many signals it can handle. That 
is, it should not get unduly slower as the number of 
sensors increase. 

• It should be possible to set up several standalone 
systems and have them interact with each other. For 
example, a subsystem that monitors air quality should 
be able to pass on alarms and selected information to a 
supervisory system. 

• The status of the sensors can be viewed from an 
arbitrary number of locations. There are two ways this 
could be done: Each viewing location connects to all 
the desired sensors. Each viewing location is a client 

that connects to a server which in turn connects to the 
sensors. The latter is more desirable since it ensures 
that there is no extra burden on the sensors. 

• The system should be platform independent.  

This list has served as a guideline for proposing an 
appropriate solution. We concentrate on data acquisition 
rather than data presentation. High level alarming and 
fancy graphical user interfaces are not of interest to SNO. 

1.4. Evaluating the Alternatives 

The first protocol we evaluated was the Simple Network 
Management Protocol (SNMP) [5]. The functionality of 
SNMP is also explained in [14] where we have written an 
online application demonstrating its simplicity. We saw a 
problem of lack of compatibility among SNMP’s various 
versions and we observed that the intended market was for 
an industry other than our own. Although the general idea 
behind SNMP was for it to be as simple as possible, the 
enhancements that were added have eventually made it 
complicated. For these reasons, we have dismissed SNMP 
as a possible network monitoring standard for SNO. 
 In order to branch out into a more relevant field, we 
have evaluated Programmable Logic Controllers (PLCs) 
[8] as our second protocol, since they are considered the 
industry standard for industrial instrumentation. We have 
discussed many of their advantages, such as reliability, 
versatility, and modularity [14]. However, despite these 
strengths, PLCs are very proprietary and expensive. Since 
cost is an important aspect when implementing a new 
standard within a network, we have disregarded PLCs as 
an economical option for network monitoring within the 
facilities at SNO. 
 The third and final protocol that we have evaluated was 
the Building Automation and Control Network protocol 
(BACnet). A detailed explanation is given in [14] 
explaining the protocol’s specification and many of its 
advantages. We have seen that BACnet is interoperable, 
cost-effective, and flexible. We have shown that it has 
real-world application knowledge as its foundation, and 
contains many rich services not found in many of its 
competitors. We have also illustrated its scalability by 
giving a few real-world examples of large scale BACnet 
implementations using thousands of devices. In addition, 
we have explored two possible limitations of BACnet, but 
have concluded that they were not enough of a concern for 
us to disregard it as an option. Because of the high number 
of strengths found within this protocol, BACnet was 
chosen as our network monitoring standard of choice. 
 We wanted to illustrate how to use the chosen protocol 
in a practical environment, so we have explored a few 
possibilities for setting up a BACnet network architecture. 
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We have demonstrated [14] these various hardware and 
software combinations which we have simplified into an 
affordable schema feasible for SNO’s purposes.  
 The above summary will be expanded in the next 
section by describing the features of BACnet in more 
detail and by evaluating this protocol on the guidelines 
given in Section 1.3. 
 
2. BACnet 

2.1. Introduction 

In the mid 1980s, there was a high demand for a 
cost-effective system that could centralize the monitoring, 
operation and control of various devices in buildings. 
Rigorous effort by AHSRAE, the American Society of 
Heating, Refrigerating and Air-Conditioning Engineers, 
resulted in the Building Automation and Control networks 
protocol, also known as BACnet. The protocol became 
part of the American National Standards Institute (ANSI) 
in December of 1995 and part of the International 
Organization for Standards (ISO) in January 2003. In the 
remainder of this paper, we will show that the BACnet 
protocol is an appropriate choice for sensor networks. 

2.2. BACnet Specification as Defined by ASHRAE 
The BACnet standard is divided into three major parts. 
The first part describes a method for representing any kind 
of building automations equipment in a standard way. The 
second part defines messages that can be sent across a 
computer network to monitor and control such equipment. 
A set of acceptable Local Area Networks that can be used 
to convey BACnet communications is described in part 
three.  

2.2.1. Representing Devices Using Objects and 
Properties 
Representing the functions of any device in a standard way 
is done by assigning a series of predefined objects to the 
device. These objects define such things as analog and 
binary inputs and outputs, schedules, control loops, and 
alarms. Each object has a set of properties that further 
characterizes the object. The object is a collection of 
related information accessible via different properties. For 
example, an analog input could be represented by a 
BACnet object called “Analog Input Object” which has a 
set of standard properties such as Present_Value, 
Description and Device_Type. 
 The objects that are present in a given BACnet device 
depend on its function and capabilities [13]. For example, 
a device that controls a VAV box (i.e. Variable Air 
Volume – a device that provides constant or variable air 

depending on the temperature demands of the space) will 
probably have several Analog Input and Analog Output 
objects, but a workstation that does not have sensor inputs 
or control outputs will not. 
 123 different properties of objects are defined in the 
BACnet standard each of which must contain at least the 
three properties Object_Identifier, Object_Name and 
Object_Type. Each property has a specific behavior 
defined by the BACnet specification. Once devices have a 
common appearance on the network, we can define 
messages for communicating among them.  

2.2.2. BACnet Services – Monitoring and Controlling 
Equipment 
A client is any device that requests a service (e.g. a piece 
of equipment or a computer) while the server is any device 
that performs a service. When an operator workstation is 
set up, the software can display a list of sensor inputs. The 
operator can then issue service requests to the objects of 
those devices and get all of the sensor’s current values. 
The device’s application program responds to the request 
and sends the data that have been requested.  
Currently, the BACnet specification defines forty two 
services divided into five categories called classes. For 
example, one class contains messages for accessing and 
manipulating the properties of the BACnet objects. A 
common service in this class is "ReadProperty" which 
makes a request to the device’s application program to 
return the value of a particular property in a particular 
object. Other classes of services deal with alarms and 
events, file uploading and downloading, managing the 
operation of remote devices, and virtual terminal 
functions.  

2.2.3. BACnet Network Technologies 
The BACnet architecture is made up of several layers. 
They consist of an application layer, a network layer, a 
data link layer, and a physical layer. BACnet controllers 
from different vendors can share a common LAN that was 
pre-selected by a system designer. The sensors or actuators 
sitting at the ends of the network can have the BACnet 
logic build into their hardware, in which case they are 
called native speaking BACnet devices, or there may be an 
intermediate BACnet controller that carries the logic. 
Either way, the BACnet standard is implemented before 
the devices reach the network so that they may 
communicate with other devices.  

2.3. Evaluation According to the Protocol Guidelines 
The BACnet protocol was built specifically to read values 
at a low resolution (such as once every second or slower) 
making it capable of reading in slow control signals. For 
example, to monitor a fire alarm system which outputs a 
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binary signal indicating whether or not the alarm went off 
(e.g. alarm/no_alarm), the BACnet client would read its 
Present_Value property in the Binary Input Object using 
the ReadProperty service request. To read in a temperature 
sensor’s current analog value, we would use the 
Present_Value property in the Analog Input Object using 
the ReadProperty service request.  
   BACnet was designed to be interoperable. Being able 
to mix and match products from a variety of vendors 
optimizes the cost of our network solutions. 
   The BACnet object and service model were designed 
to be easily extended. The model was created in such a 
way that if a vendor has an idea for new functionality, new 
properties can be added to existing objects or new objects 
can be created entirely.  

3. SCADA Engine Client Development 

The BACnet Rapid Development Kit is software developed 
by SCADA Engine (SCADA stands for Supervisory 
Control and Data Acquisition) which allows developers to 
create their own BACnet applications. 

3.1. Device Simulator Component 
This component allows us to simulate a BACnet device 
without actually having one physically on the network. 
The RDK Device Simulator is very simple. As shown in 
Fig. 1, it contains four analog and four digital values that 
are read by the BACnet server as if it were a real device. 
These values can be read from or written to by a client 
application connecting to the server (since the server 
already knows the current values, it is the server who 
returns the information to the client and not the device 
simulator itself).  
 
The Device Simulator also allows one to change its analog 
or binary values manually so that the functionality of a 
device’s value varying according to the current 
environment may be simulated. For example, changing 
this value manually would be like a temperature sensor 
reading a temperature change in the current room. We can 
change one of the device’s values by clicking on the “..” 
button next to the internal point one wishes to manually 
change (see Fig. 1). The popup that allows the setting of 
this value is shown in Fig. 2. The Trace Messages window 
within the Device Simulator GUI of Fig. 1 displays all of 
the messages that are sent or received to or from the server. 
This can be quite useful when trying to debug a client 
application using the Device Simulator because all of the 
communication to the server is outputted to that window. 
Once the Device Simulator values are stored in the 
BACnet server, they can be read by any device sitting on 
the network, real or simulated. 
 

 

Fig. 1 The BACnet Device Simulator component 

 

 

Fig. 2 Window within the Device Simulator GUI which allows manual 
modification of a value 

3.2. Client Applications 
In this section we will show how to read analog and binary 
values to a device. This application will be written in 
Visual Basic using the SCADA Engine BACnet Rapid 
Development Kit software. Since we do not have actual 
physical devices to read or write to, the Device Simulator 
component exemplifies an architecture with an actual 
BACnet device sitting on the network. 

3.2.1. Reading Analog and Binary Values 
In order to read an analog or binary value from a device, 
we need to use the ReadProperty service request as defined 
in the BACnet specification. The SCADA Engine software 
allows us to use all of BACnet’s services or data types 
using the BACnetX DLL component within a Visual Basic 
application. The first thing that we need to do is include 
this component as a reference within our Visual Basic 
application. This can be done within Microsoft Visual 
Basic 6 by selecting ‘Project’ < ‘References’ and ticking 
both the ‘SCADA Engine BACnetX components’ as well 
as the ‘BACnetxml 1.0 Type Library' option (both of these 
will appear in the list when the SCADA Engine RDK is 
installed). Once these are checked, the BACnetX 
component will be referenced within our application and 
will take care of our client connecting to the server. 
Everything is done automatically behind the scenes; all we 
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have to do is write a few ‘magic’ lines that tell our 
application to use the BACnetX component. We illustrate 
this in Fig. 3.  
 

 

Fig. 3 Code which allows us to use the BACnetX component in our 
Visual Basic program 

Note that Form_Load() in a Visual Basic application is 
comparable to the main method in Java or C++. The 
sequence of instructions and function calls that we place 
within this function are what get executed when we run the 
program. 
 
Let us now illustrate how to use the ReadProperty service 
request to retrieve a device’s analog value. The function 
which does this is depicted in Fig. 4. 
 

 

Fig. 4 Function that creates a ReadProperty service request and reads the 
device’s analog value 

The first thing that we do is create a ReadProperty object 
of type Service (these objects are available within the 
BACnetX component which we have now referenced 
within MS Visual Basic 6). On line 9, we set the 
asynchronization variable to False which means that the 
execute command will not return until a response, or 
timeout (set to 18 seconds by default) occurs. If we would 
set async to True, the execute command would return 
immediately whereas we could make a call to the 
ReadyState Property to find out when the service has 
completed. Now we need to tell the service which device 
we wish to poll, and we do this by assigning that particular 
device’s ID to DeviceID on line 10. Every device on the 
BACnet network has its own ID, including the BACnet 
server component (it is treated as a special kind of device). 
The Device Simulator component has an ID value of 200. 

In order to read a value from any another device on the 
network, we would have to assign its ID to the DeviceID 
variable on line 10.  
   Next, we need to give the service some information 
about the request. On line 11, we initialize the instance of 
objectIdentifier to 1, meaning that we want to poll the first 
analog value of the device. The Device Simulator has four 
analog values, so we could have set this variable to a 
number between 1 and 4, depending on which instance of 
the analog value we wish to poll. Each BACnet device on 
the network can have either number of analog or binary 
values, depending on what its behavior is. For example, 
we can have a device which would have two analog values, 
one to measure the oxygen, and the other to measure the 
pressure, as well as one binary value to turn the device ON 
or OFF. Next within the objectIdentifier object we specify 
the type. On line 12, we set ObjectType to 
BACnetObjectTypeAnalogValue indicating that we are 
interested in polling the first instance of the analog value 
within the device. We then set the propertyIdentifier 
variable to Property_presentValue since in order to get the 
analog value, we need to request it from the Present_Value 
property within this object. Finally, on line 14 we execute 
the service by issuing Service.Execute. When this method 
is executed, BACnetX will first try and locate the Device 
by sending a whoIs request (whoIs is a standard BACnet 
service used to synchronize the Time Clocks across the 
BACnet network). If an Iam response is returned by the 
required BACnet device (Iam is another standard BACnet 
service used to respond to the whoIs service), then 
BACnetX will issue a ReadProperty service to the required 
device. If the service successfully returns, then the Ack 
object will contain the response from the device. If an 
error or timeout occurs, then the Error object will contain 
the error codes associated with the service. The next If 
Else statement makes sure that the device has not returned 
any BACnet errors before displaying the value sitting in 
Service.Ack.propertyValue.Real, which we output in the 
debug window of MS Visual 6. In the case where an error 
has been returned, the Else block displays the class and 
code of the error in the debug window.  
Let us now illustrate how to read a binary value from the 
device. The code that does this, shown in Fig. 5, is very 
similar to the code of Fig. 4. There are only a few 
differences. The first obvious difference is on line 12, 
when we assign the ObjectType variable within 
objectIdentifier to BACnetObjectTypeBinaryValue. After 
executing the service, the server will return a either a 1 or 
a 0 indicating whether or not that instance (in our case, the 
first instance) of the binary object is ON or OFF. Line 18 
checks if Service.Ack.propertyValue.Enumerated is equal 
to BACnetBinaryPVActive (representing 1) indicating that 
our requested binary value is ON. In this case, we simply 
output “Value = On” in the debug window of MS Visual 
Basic 6, otherwise the server has returned 0 and stored it in 
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the Enumerated variable within propertyValue of the ack 
object, and so we display “Value = Off” in the debug 
window. 
 

 

Fig. 5 Function that creates a ReadProperty service request and reads the 
device’s binary value 

In this section we have shown the basic necessities for 
polling a device’s analog or binary value using Visual 
Basic. Once we have obtained our value, we have simply 
displayed it in a debug window but we could have easily, 
for example, displayed it in a webpage or applied some 
mathematical function to it. This idea is very powerful 
because it allows a client application to carry out any task 
that is needed for monitoring various end devices. The 
SCADA Engine RDK software gives us this flexibility. 

3.3. Evaluation according to the Software Guidelines 
In this section, we will evaluate the SCADA Engine Rapid 
Development Kit software according to the software 
guidelines presented in Section 1.3. The software 
guidelines include ten aspects which we will evaluate 
individually.  

3.3.1. Reading from Arbitrary Network Devices 
Can the software read data from arbitrary network devices 
or can it only read from proprietary devices? If it is the 
latter, what interfacing software must be written to connect 
an arbitrary device to this system? 
 
In order for any device to be understood by the SCADA 
Engine software, there has to exist some form of BACnet 
logic between the software level, and the device level. 
Since most monitoring devices that SNO will be dealing 
with will not be native BACnet devices (i.e. have the 
BACnet logic built into its hardware), there must be an 
intermediate BACnet controller. This will allow the 
SCADA Engine software to understand any device, either 
arbitrary or proprietary since the BACnetX ActiveX 

component can read from any Object on any device on the 
network.  

3.3.2. Reading Arbitrary Data Packets 
Does the system read only analog/digital signals or can it 
read arbitrary data packets? 
 
The BACnet specification allows manufacturers to 
implement their own proprietary properties, objects, or 
services within BACnet if they wish to include 
functionality that is not part of the standard specification. 
Because of this, a more complex device has the ability to 
return an arbitrary length string containing virtually any 
kind of information. Since the BACnetX component 
within the SCADA Engine RDK software can read from 
any object on any device on the network, it can also read 
proprietary objects. All objects and properties within 
BACnet are identified by a number, where proprietary 
objects will have a number above 500. In order to read 
these proprietary objects within a Visual Basic client 
application, one needs to know the number of the object 
and the property that they wish to reference. Once a read 
property service request has been sent, the object may 
return an arbitrary length packet, depending on how the 
manufacturer decided to implement the object. Once the 
data is returned, it is up to the client application to handle 
that data properly. 

3.3.3. Software Analysis on the Signal’s Data 
Can software analysis be done on the signals once the data 
is read into the system? i.e. can calibration constants be 
applied to the data? Can mathematical operations be 
performed on the data (such as calculating the square or 
the log of a number)? 
 
Since we have the flexibility to accomplish whatever is 
required within our own client applications, it is certainly 
possible to apply any kind of software analysis on the 
signals we are monitoring, such as applying calibration 
constants or mathematical functions. For example, once 
we have polled a particular device’s analog value, we can 
easily apply any Visual Basic math function on the 
returned value before we display it for the user. The idea 
behind the SCADA Engine RDK software in allowing us 
to create our own client applications was to give us the 
utmost flexibility to manipulate our data how we see fit. 

3.3.4. Logging Data 
How does the system log data? How is the logged data 
accessible by client programs? i.e. if the data is logged to 
a database, how does one access the database? 
 
Once again, since we have the freedom to do as we wish 
within our client applications, we can easily output our 
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data to a file or a database. When settings alarms on the 
values, the BACnet Server component stores its alarm 
notifications into an MS access database, so we do not 
have to create one ourselves. There are a variety of ways 
that one could store this information within Visual Basic. 
For example, we can just as easily send an alarm 
notification to any number of email accounts as a way of 
keeping a record of which alarms have been issued. Our 
data can be logged an endless number of different ways as 
long as it is feasible by writing code. 

3.3.5. Generating Alarms 
How does the system generate alarms? Are there audio 
alarms (special hardware devices or does it rely on a 
computer’s audio system)? How are the alarm values set? 
 
The SCADA Engine RDK software has a built-in alarm 
mechanism called BACnAla.exe. Unfortunately, the most 
this program can do to notify someone that an alarm has 
been issued is to pop up on the screen of the machine 
running the client application. Because this might not be 
enough of a notification, we can also trigger a sound to go 
off on the client machine using DirectX or winsock control, 
since we have this flexibility within our Visual Basic 
applications. If these methods are not enough to alarm 
someone in the area, one other possibility might be to 
purchase a device similar to a fire alarm system, attach it 
to our BACnet network, and invoke a WriteBinaryValue() 
function to turn on the audio alarm when a particular 
device’s values are out of range. This example 
demonstrates how powerful using the SCADA Engine 
software can be. Concerning how the alarm values are set, 
these can be hardcoded within our application, or can even 
be dynamically set. For example, we could code our client 
application to read its alarm values from a file sitting on a 
webserver. This way, one could modify the alarm values 
within this file from anywhere in the world at any time and 
each copy of the client application would have the same 
updated alarm values. 

3.3.6. Scalability 
What is the scalability of the software/hardware 
combination? i.e. how many signals can it handle? Does it 
get slower as the number of sensors increase? 
 
Scalability is an aspect that is difficult to measure because 
there are many factors which can influence it within a 
network, such as the combination of hardware and 
software. The SCADA Engine BACnetX component can 
be used in a couple of different modes of operation. In one 
of the modes, the BACnetX component is self contained in 
a client application. This allows only one client application 
per machine to run at a time, but as an advantage, the 
client application does not need its own copy of the server 

component. Each client machine then connects to a server 
machine that processes each request. In this mode, there 
may be more of a network lag with a large number of 
clients because each request must be handled by the same 
server component. Another mode of operation consists of 
BACnetX connecting to the server via DCOM. This mode 
of operation allows multiple client applications to run on 
the same computer, but the only drawback is that a copy of 
the server must reside on the client machine. A plus side is 
that since every client machine connects to its own copy of 
the server, the work load is now distributed among 
multiple servers. Because of this, running a large number 
of clients in this mode of operation would probably cause 
less network lag as in the previous mode. These various 
modes of operation might have been implemented by 
SCADA Engine to accommodate small vs larger BACnet 
networks. 

3.3.7. Modularity 
What is the modularity of the software? i.e. can several 
standalone systems be set up? Can standalone systems 
interact with each other? For example, could a subsystem 
that monitors air quality pass on alarms and selected 
information to a “supervisory system”? 
 
Because BACnet was designed to work well with 
interoperability, various client applications can easily 
interact with any device on the BACnet network. The 
degree of modularity within our network is not dependent 
on the SCADA Engine RDK software but rather on the 
client applications that we write. For example, we have the 
flexibility to write a client program that monitors the air 
quality in a laboratory, and send an alarm notification to 
another “supervisory system” application running on 
another computer. When setting up alarms, we can define a 
list of recipients to receive notifications of alarms. 
Therefore, the degree of modularity is dependent on the 
functionality of our client applications. 

3.3.8. Viewing Location 
Can the status of the sensors be viewed from an arbitrary 
number of locations? There are two ways this could be 
done: (i) Each viewing location connects to all the desired 
sensors; or (ii) Each viewing location is a client that 
connects to a server which in turn connects to the sensors. 
The latter is more desirable since it ensures that there is 
no extra burden on the sensors. 
 
In a BACnet architecture using the SCADA Engine 
software, each client, or “viewing location” does not 
connect to all of the desired sensors (or devices) directly, 
but rather connects to the server component which 
connects to the desired sensors. The client applications can 
run on any computer with access to the BACnet network, 
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and therefore can be viewed from any of these locations. 

3.3.9. Supported Operating Systems 
Is the system platform independent? i.e. what operating 
systems does the software run under? SNO uses 
Unix/Linux, Windows, Mac OS9, Mac OSX and even in 
one case, DOS. 
 
The SCADA Engine RDK software was initially created 
for a Windows environment, but has recently released a 
Linux version of its server. This means that any Linux box 
can be set up to be the BACnet server. Client applications 
can also be created under a Linux environment with the 
help of Visual Basic for Linux tools. Unfortunately, as of 
this time, there are no Macintosh supported components, 
or even a DOS based version of the RDK. However, the 
majority of the operating systems used at SNO are under 
the Windows or Linux environment, so the lack of 
Macintosh or DOS based versions of the software should 
not be too much of a concern. Since most other BACnet 
operator workstation software will only run under 
Windows, having a Linux based version of a server is 
definitely favorable. Additionally, the BACnet Server 
contains a built-in XML gateway which allows an 
application to communicate to other BACnet devices on 
the network by issuing simple text messages. This 
communication uses TCP/IP and the body of the text 
messages is formatted in XML, making the gateway 
platform independent.  
Based on this analysis, it is obvious that SCADA Engine’s 
Rapid Development Kit package meets all of SNO’s needs, 
as defined by their guidelines. We recommend this toolkit 
as an effective and flexible solution for implementing 
BACnet. 

4. Related Work 

Commonly used protocols of Fieldbus Technology (FT) 
[7] are being advocated as a standard for real-time 
distributed control in automation networks. A device 
description language is provided by a subsystem of FT 
called HART. Likewise, for distributed control of slow 
processors the devices must be described using a common 
language in order to communicate. The objects and 
properties of BACnet are being proposed here as the basis 
for such a language.  
   Foundation Fieldbus (FF) is being proposed as a 
standard for implementing the real-time aspect of 
automation problems.  We could do the same for 
BACnet. 
To advocate your technology as a standard for a 
specialized class of problems, the concern with proprietary 
protocols which lack interoperability must be resounded as 
it is here and also in [7]. The relationship between the 

proposed standard and the OSI reference model must be 
outlined as it is here and also in [7]. 
   Let us assume that to achieve compatibility, 
interoperability, and interchangeability, it is sufficient for 
peer processes to use the same technology as long as they 
interface properly with the n-1 and n+1levels. The scenario 
then becomes one in which technologies from different 
vendors can be used as long as they are used at different 
levels in the reference model. Therefore, a network 
technology can become the standard for a specialized class 
of applications for some but not all of the levels in its 
architectural model. The proponents of Fieldbus concede 
that European machine control suppliers lead the way for 
web-based control in automation applications. 
   To become the standard it is important to show upward 
compatibility. Fieldbus technology supports single, open 
and interoperable networks where single is a special case 
of open and open is a special case of interoperable. Other 
contemporary protocols such as PROFInet [11] vying to 
become the standard must be seen as special cases. 
   For distributed control in real-time network 
applications and complex applications in general, the 
problem is best conceptualized in terms of components. 
Component based distributed control [6] abides by the 
principle of assigning one control algorithm to one 
component. The function of a component is local 
computation. 
   Component based distributed control also abides by 
the principle of component reuse. This is similar to the use 
of objects and properties supplied by BACnet for 
representing devices. 
   In this paper, we have demonstrated that BACnet is a 
promising technology for slow control sensor networks. It 
remains to be seen whether PROFInet and Fieldbus which 
like BACnet are intended for automation, show similar 
promise.  

5. Conclusion 

The objective of this research was to investigate computer 
network protocols in order to propose the one that is the 
most suitable for the Sudbury Neutrino Observatory.  
The Building Automation and Control Network protocol 
(BACnet) was found to be most suitable for SNO. We 
have given a brief explanation on the protocol’s 
specification and shown many of its advantages. BACnet 
is a protocol that is interoperable, cost-effective, and 
flexible. It has real-world application knowledge as its 
foundation, and contains many rich services not found in 
many of its competitors. In addition, BACnet’s scalability 
is shown throughout the many real-world examples of 
large scale BACnet implementations using thousands of 
devices.  
We have used the SCADA Engine Rapid Development Kit 
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software package to create a client application using a 
device simulator. Our practical applications have shown 
how one could use BACnet to monitor various devices on 
the network. This is a contribution because there is little 
documentation in the literature showing how to get started 
using BACnet.  
This dynamic area of research is one that is continuously 
changing due to the current exponential technology 
improvements. Indeed, the realm of network 
communication protocols available is broad enough to 
expand this research to include other communication 
standards such as Modbus, N2, LonTalk, DeviceNet, 
CANopen, or CAB. Our methodology for the evaluation of 
protocols provides insight for future research into sensor 
networks. 
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