
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

15

Manuscript received January 25, 2006.
Manuscript revised January 30 , 2006.

Monitoring Network Aware Sensors Using BACnet

Paul Vaillancourt and Julia Johnson

Dept. of Math & Computer Science, Laurentian University, Sudbury, Ontario, Canada, P3E 2C6

Summary
We propose a protocol and software to use within a slow control
system where slow in this context means that values are read
from a variety of sensors at most once every second. We
demonstrate how to use the Building Automation and Control
network protocol (BACnet) to monitor network aware
end-devices and set alarms on their sensor values.
Key words:
Sensor network, Network protocol, Monitoring network sensors,
BACnet

1. Introduction

Ours is the matter of standardizing the technologies for
implementing a highly specialized computer network. The
devices sitting at the ends of the network are computers
and heterogeneous sensors that read continuous data from
the environment at a relatively slow rate (about once a
second).

1.1. Sudbury Neutrino Observatory

The (SNO) is a research laboratory that contains a unique
neutrino telescope, the size of a ten story building, two
kilometers underground in INCO's Creighton Mine in
Lively Ontario. It is operated by a one hundred member
team of scientists from Canada, the United States, and the
United Kingdom [12]. Neutrinos make up one quarter of
all known fundamental particles in the Universe. By
contributing to our understanding of neutrinos, the
researchers at SNO are learning about the core of the sun,
hoping to recognize characteristics that would unveil the
secrets of our origins.
 Acquiring information on the properties of neutrinos
requires a large flow of information to be handled on a
continuous basis. SNO monitors approximately four
hundred data points, from temperature and humidity
probes to oxygen meters and pressure transducers. These
data points are gathered using what is called a Slow
Controls System (SCS) that monitors, controls and sets
alarms on various end-devices sitting on the network. A
system is considered to be slow if it reads cycles in the one
to ten second range, not at the millisecond or multiple
minute range. The components used in a SCS can be
classified as being either proprietary or generic. By
proprietary, we mean that the system can only be used

with other systems from the same manufacturer. When
dealing with many different end-devices from many
different manufacturers, having proprietary hardware or
software is not beneficial from an interoperability point of
view.
 The problem with the current proprietary hardware and
software combination at the Neutrino Observatory (SNO)
is that it lacks extensibility. SNO will be expanding its
facilities to extend their research area. The number of data
points being monitored will multiply by a factor of three. It
is, therefore, essential to embrace the new generation of
relatively inexpensive sensors that communicate via a
local area network using a variety of protocols, some of
which will be examined in this research.

1.2. Focus of Research

The scope of this project is the monitoring on slow control
signals. Signals consist of 1.) Digital inputs (on/off,
open/closed, alarm/no Alarm) 2.) Raw or calibrated analog
signals (calibrated temperatures, uncalibrated voltages that
need to have the calibrations applied by the monitoring
programs) 3.) Packets of digital data from complex devices
such as a computer that receives a request for data and
returns a variable length packet.
 In this research, we evaluated some of the existing
standard protocols for network communication among
devices transmitting and receiving sensor data. We
examined the Simple Network Management Protocol
(SNMP), Programmable Logic Controllers (PLCs) and the
Building Automation and Control network protocol
(BACnet). BACnet [1], [2], [3], [4], [15] was selected as a
protocol that can be used as a common language for
communicating among devices. We demonstrate how to
use BACnet to set up a network architecture to monitor
network aware end-devices on their sensor values.
 The criteria that were used for choosing an appropriate
protocol and software are discussed in the next section.

1.3. Methodology

We provide guidelines divided into two sections: Protocol
Guidelines and Software Guidelines. The Protocol
Guidelines will be used to evaluate the alternative
protocols in order to choose the one that is the most

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

16

suitable. Once we have proposed a protocol, we will use
the Software Guidelines to evaluate the software needed to
handle the protocol within our slow control system.
Following are the requirements for finding an appropriate
network communication standard and its software:

1.3.1. Protocol Guidelines
Upon reviewing a protocol, some of the key aspects to
examine are: What are its strengths and limitations? How
widely used is this protocol? What vendors support this
protocol?

1.3.2. Software Guidelines
The functionality required is as follows:
• The software can read data from arbitrary network

devices or, if only from proprietary devices,
interfacing software can be written to connect an
arbitrary device to this system.

• The system should read analog and digital signals as
well as arbitrary data packets.

• Software analysis can be done on the signals once the
data is read (e.g. calibration constants may be applied
to the data). Mathematical operations can be
performed on the data such as calculating the square
or the log of a value).

• The system should log data and make it accessible by
client programs.

• Alarms generated by the system should be appropriate
for the device being monitored. For example, if we are
monitoring the temperature in a computer room, it
would be crucial to have a loud audio alarm go off
when the temperature rises to a certain threshold.
Simply sending out an email would not suffice since
we need to deal with the problem immediately
(increasing the air conditioning so the hardware does
not catch on fire).

• The software/hardware combination should scale up
with respect to how many signals it can handle. That
is, it should not get unduly slower as the number of
sensors increase.

• It should be possible to set up several standalone
systems and have them interact with each other. For
example, a subsystem that monitors air quality should
be able to pass on alarms and selected information to a
supervisory system.

• The status of the sensors can be viewed from an
arbitrary number of locations. There are two ways this
could be done: Each viewing location connects to all
the desired sensors. Each viewing location is a client

that connects to a server which in turn connects to the
sensors. The latter is more desirable since it ensures
that there is no extra burden on the sensors.

• The system should be platform independent.

This list has served as a guideline for proposing an
appropriate solution. We concentrate on data acquisition
rather than data presentation. High level alarming and
fancy graphical user interfaces are not of interest to SNO.

1.4. Evaluating the Alternatives

The first protocol we evaluated was the Simple Network
Management Protocol (SNMP) [5]. The functionality of
SNMP is also explained in [14] where we have written an
online application demonstrating its simplicity. We saw a
problem of lack of compatibility among SNMP’s various
versions and we observed that the intended market was for
an industry other than our own. Although the general idea
behind SNMP was for it to be as simple as possible, the
enhancements that were added have eventually made it
complicated. For these reasons, we have dismissed SNMP
as a possible network monitoring standard for SNO.
 In order to branch out into a more relevant field, we
have evaluated Programmable Logic Controllers (PLCs)
[8] as our second protocol, since they are considered the
industry standard for industrial instrumentation. We have
discussed many of their advantages, such as reliability,
versatility, and modularity [14]. However, despite these
strengths, PLCs are very proprietary and expensive. Since
cost is an important aspect when implementing a new
standard within a network, we have disregarded PLCs as
an economical option for network monitoring within the
facilities at SNO.
 The third and final protocol that we have evaluated was
the Building Automation and Control Network protocol
(BACnet). A detailed explanation is given in [14]
explaining the protocol’s specification and many of its
advantages. We have seen that BACnet is interoperable,
cost-effective, and flexible. We have shown that it has
real-world application knowledge as its foundation, and
contains many rich services not found in many of its
competitors. We have also illustrated its scalability by
giving a few real-world examples of large scale BACnet
implementations using thousands of devices. In addition,
we have explored two possible limitations of BACnet, but
have concluded that they were not enough of a concern for
us to disregard it as an option. Because of the high number
of strengths found within this protocol, BACnet was
chosen as our network monitoring standard of choice.
 We wanted to illustrate how to use the chosen protocol
in a practical environment, so we have explored a few
possibilities for setting up a BACnet network architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

17

We have demonstrated [14] these various hardware and
software combinations which we have simplified into an
affordable schema feasible for SNO’s purposes.
 The above summary will be expanded in the next
section by describing the features of BACnet in more
detail and by evaluating this protocol on the guidelines
given in Section 1.3.

2. BACnet

2.1. Introduction

In the mid 1980s, there was a high demand for a
cost-effective system that could centralize the monitoring,
operation and control of various devices in buildings.
Rigorous effort by AHSRAE, the American Society of
Heating, Refrigerating and Air-Conditioning Engineers,
resulted in the Building Automation and Control networks
protocol, also known as BACnet. The protocol became
part of the American National Standards Institute (ANSI)
in December of 1995 and part of the International
Organization for Standards (ISO) in January 2003. In the
remainder of this paper, we will show that the BACnet
protocol is an appropriate choice for sensor networks.

2.2. BACnet Specification as Defined by ASHRAE
The BACnet standard is divided into three major parts.
The first part describes a method for representing any kind
of building automations equipment in a standard way. The
second part defines messages that can be sent across a
computer network to monitor and control such equipment.
A set of acceptable Local Area Networks that can be used
to convey BACnet communications is described in part
three.

2.2.1. Representing Devices Using Objects and
Properties
Representing the functions of any device in a standard way
is done by assigning a series of predefined objects to the
device. These objects define such things as analog and
binary inputs and outputs, schedules, control loops, and
alarms. Each object has a set of properties that further
characterizes the object. The object is a collection of
related information accessible via different properties. For
example, an analog input could be represented by a
BACnet object called “Analog Input Object” which has a
set of standard properties such as Present_Value,
Description and Device_Type.
 The objects that are present in a given BACnet device
depend on its function and capabilities [13]. For example,
a device that controls a VAV box (i.e. Variable Air
Volume – a device that provides constant or variable air

depending on the temperature demands of the space) will
probably have several Analog Input and Analog Output
objects, but a workstation that does not have sensor inputs
or control outputs will not.
 123 different properties of objects are defined in the
BACnet standard each of which must contain at least the
three properties Object_Identifier, Object_Name and
Object_Type. Each property has a specific behavior
defined by the BACnet specification. Once devices have a
common appearance on the network, we can define
messages for communicating among them.

2.2.2. BACnet Services – Monitoring and Controlling
Equipment
A client is any device that requests a service (e.g. a piece
of equipment or a computer) while the server is any device
that performs a service. When an operator workstation is
set up, the software can display a list of sensor inputs. The
operator can then issue service requests to the objects of
those devices and get all of the sensor’s current values.
The device’s application program responds to the request
and sends the data that have been requested.
Currently, the BACnet specification defines forty two
services divided into five categories called classes. For
example, one class contains messages for accessing and
manipulating the properties of the BACnet objects. A
common service in this class is "ReadProperty" which
makes a request to the device’s application program to
return the value of a particular property in a particular
object. Other classes of services deal with alarms and
events, file uploading and downloading, managing the
operation of remote devices, and virtual terminal
functions.

2.2.3. BACnet Network Technologies
The BACnet architecture is made up of several layers.
They consist of an application layer, a network layer, a
data link layer, and a physical layer. BACnet controllers
from different vendors can share a common LAN that was
pre-selected by a system designer. The sensors or actuators
sitting at the ends of the network can have the BACnet
logic build into their hardware, in which case they are
called native speaking BACnet devices, or there may be an
intermediate BACnet controller that carries the logic.
Either way, the BACnet standard is implemented before
the devices reach the network so that they may
communicate with other devices.

2.3. Evaluation According to the Protocol Guidelines
The BACnet protocol was built specifically to read values
at a low resolution (such as once every second or slower)
making it capable of reading in slow control signals. For
example, to monitor a fire alarm system which outputs a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

18

binary signal indicating whether or not the alarm went off
(e.g. alarm/no_alarm), the BACnet client would read its
Present_Value property in the Binary Input Object using
the ReadProperty service request. To read in a temperature
sensor’s current analog value, we would use the
Present_Value property in the Analog Input Object using
the ReadProperty service request.
 BACnet was designed to be interoperable. Being able
to mix and match products from a variety of vendors
optimizes the cost of our network solutions.
 The BACnet object and service model were designed
to be easily extended. The model was created in such a
way that if a vendor has an idea for new functionality, new
properties can be added to existing objects or new objects
can be created entirely.

3. SCADA Engine Client Development

The BACnet Rapid Development Kit is software developed
by SCADA Engine (SCADA stands for Supervisory
Control and Data Acquisition) which allows developers to
create their own BACnet applications.

3.1. Device Simulator Component
This component allows us to simulate a BACnet device
without actually having one physically on the network.
The RDK Device Simulator is very simple. As shown in
Fig. 1, it contains four analog and four digital values that
are read by the BACnet server as if it were a real device.
These values can be read from or written to by a client
application connecting to the server (since the server
already knows the current values, it is the server who
returns the information to the client and not the device
simulator itself).

The Device Simulator also allows one to change its analog
or binary values manually so that the functionality of a
device’s value varying according to the current
environment may be simulated. For example, changing
this value manually would be like a temperature sensor
reading a temperature change in the current room. We can
change one of the device’s values by clicking on the “..”
button next to the internal point one wishes to manually
change (see Fig. 1). The popup that allows the setting of
this value is shown in Fig. 2. The Trace Messages window
within the Device Simulator GUI of Fig. 1 displays all of
the messages that are sent or received to or from the server.
This can be quite useful when trying to debug a client
application using the Device Simulator because all of the
communication to the server is outputted to that window.
Once the Device Simulator values are stored in the
BACnet server, they can be read by any device sitting on
the network, real or simulated.

Fig. 1 The BACnet Device Simulator component

Fig. 2 Window within the Device Simulator GUI which allows manual
modification of a value

3.2. Client Applications
In this section we will show how to read analog and binary
values to a device. This application will be written in
Visual Basic using the SCADA Engine BACnet Rapid
Development Kit software. Since we do not have actual
physical devices to read or write to, the Device Simulator
component exemplifies an architecture with an actual
BACnet device sitting on the network.

3.2.1. Reading Analog and Binary Values
In order to read an analog or binary value from a device,
we need to use the ReadProperty service request as defined
in the BACnet specification. The SCADA Engine software
allows us to use all of BACnet’s services or data types
using the BACnetX DLL component within a Visual Basic
application. The first thing that we need to do is include
this component as a reference within our Visual Basic
application. This can be done within Microsoft Visual
Basic 6 by selecting ‘Project’ < ‘References’ and ticking
both the ‘SCADA Engine BACnetX components’ as well
as the ‘BACnetxml 1.0 Type Library' option (both of these
will appear in the list when the SCADA Engine RDK is
installed). Once these are checked, the BACnetX
component will be referenced within our application and
will take care of our client connecting to the server.
Everything is done automatically behind the scenes; all we

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

19

have to do is write a few ‘magic’ lines that tell our
application to use the BACnetX component. We illustrate
this in Fig. 3.

Fig. 3 Code which allows us to use the BACnetX component in our
Visual Basic program

Note that Form_Load() in a Visual Basic application is
comparable to the main method in Java or C++. The
sequence of instructions and function calls that we place
within this function are what get executed when we run the
program.

Let us now illustrate how to use the ReadProperty service
request to retrieve a device’s analog value. The function
which does this is depicted in Fig. 4.

Fig. 4 Function that creates a ReadProperty service request and reads the
device’s analog value

The first thing that we do is create a ReadProperty object
of type Service (these objects are available within the
BACnetX component which we have now referenced
within MS Visual Basic 6). On line 9, we set the
asynchronization variable to False which means that the
execute command will not return until a response, or
timeout (set to 18 seconds by default) occurs. If we would
set async to True, the execute command would return
immediately whereas we could make a call to the
ReadyState Property to find out when the service has
completed. Now we need to tell the service which device
we wish to poll, and we do this by assigning that particular
device’s ID to DeviceID on line 10. Every device on the
BACnet network has its own ID, including the BACnet
server component (it is treated as a special kind of device).
The Device Simulator component has an ID value of 200.

In order to read a value from any another device on the
network, we would have to assign its ID to the DeviceID
variable on line 10.
 Next, we need to give the service some information
about the request. On line 11, we initialize the instance of
objectIdentifier to 1, meaning that we want to poll the first
analog value of the device. The Device Simulator has four
analog values, so we could have set this variable to a
number between 1 and 4, depending on which instance of
the analog value we wish to poll. Each BACnet device on
the network can have either number of analog or binary
values, depending on what its behavior is. For example,
we can have a device which would have two analog values,
one to measure the oxygen, and the other to measure the
pressure, as well as one binary value to turn the device ON
or OFF. Next within the objectIdentifier object we specify
the type. On line 12, we set ObjectType to
BACnetObjectTypeAnalogValue indicating that we are
interested in polling the first instance of the analog value
within the device. We then set the propertyIdentifier
variable to Property_presentValue since in order to get the
analog value, we need to request it from the Present_Value
property within this object. Finally, on line 14 we execute
the service by issuing Service.Execute. When this method
is executed, BACnetX will first try and locate the Device
by sending a whoIs request (whoIs is a standard BACnet
service used to synchronize the Time Clocks across the
BACnet network). If an Iam response is returned by the
required BACnet device (Iam is another standard BACnet
service used to respond to the whoIs service), then
BACnetX will issue a ReadProperty service to the required
device. If the service successfully returns, then the Ack
object will contain the response from the device. If an
error or timeout occurs, then the Error object will contain
the error codes associated with the service. The next If
Else statement makes sure that the device has not returned
any BACnet errors before displaying the value sitting in
Service.Ack.propertyValue.Real, which we output in the
debug window of MS Visual 6. In the case where an error
has been returned, the Else block displays the class and
code of the error in the debug window.
Let us now illustrate how to read a binary value from the
device. The code that does this, shown in Fig. 5, is very
similar to the code of Fig. 4. There are only a few
differences. The first obvious difference is on line 12,
when we assign the ObjectType variable within
objectIdentifier to BACnetObjectTypeBinaryValue. After
executing the service, the server will return a either a 1 or
a 0 indicating whether or not that instance (in our case, the
first instance) of the binary object is ON or OFF. Line 18
checks if Service.Ack.propertyValue.Enumerated is equal
to BACnetBinaryPVActive (representing 1) indicating that
our requested binary value is ON. In this case, we simply
output “Value = On” in the debug window of MS Visual
Basic 6, otherwise the server has returned 0 and stored it in

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

20

the Enumerated variable within propertyValue of the ack
object, and so we display “Value = Off” in the debug
window.

Fig. 5 Function that creates a ReadProperty service request and reads the
device’s binary value

In this section we have shown the basic necessities for
polling a device’s analog or binary value using Visual
Basic. Once we have obtained our value, we have simply
displayed it in a debug window but we could have easily,
for example, displayed it in a webpage or applied some
mathematical function to it. This idea is very powerful
because it allows a client application to carry out any task
that is needed for monitoring various end devices. The
SCADA Engine RDK software gives us this flexibility.

3.3. Evaluation according to the Software Guidelines
In this section, we will evaluate the SCADA Engine Rapid
Development Kit software according to the software
guidelines presented in Section 1.3. The software
guidelines include ten aspects which we will evaluate
individually.

3.3.1. Reading from Arbitrary Network Devices
Can the software read data from arbitrary network devices
or can it only read from proprietary devices? If it is the
latter, what interfacing software must be written to connect
an arbitrary device to this system?

In order for any device to be understood by the SCADA
Engine software, there has to exist some form of BACnet
logic between the software level, and the device level.
Since most monitoring devices that SNO will be dealing
with will not be native BACnet devices (i.e. have the
BACnet logic built into its hardware), there must be an
intermediate BACnet controller. This will allow the
SCADA Engine software to understand any device, either
arbitrary or proprietary since the BACnetX ActiveX

component can read from any Object on any device on the
network.

3.3.2. Reading Arbitrary Data Packets
Does the system read only analog/digital signals or can it
read arbitrary data packets?

The BACnet specification allows manufacturers to
implement their own proprietary properties, objects, or
services within BACnet if they wish to include
functionality that is not part of the standard specification.
Because of this, a more complex device has the ability to
return an arbitrary length string containing virtually any
kind of information. Since the BACnetX component
within the SCADA Engine RDK software can read from
any object on any device on the network, it can also read
proprietary objects. All objects and properties within
BACnet are identified by a number, where proprietary
objects will have a number above 500. In order to read
these proprietary objects within a Visual Basic client
application, one needs to know the number of the object
and the property that they wish to reference. Once a read
property service request has been sent, the object may
return an arbitrary length packet, depending on how the
manufacturer decided to implement the object. Once the
data is returned, it is up to the client application to handle
that data properly.

3.3.3. Software Analysis on the Signal’s Data
Can software analysis be done on the signals once the data
is read into the system? i.e. can calibration constants be
applied to the data? Can mathematical operations be
performed on the data (such as calculating the square or
the log of a number)?

Since we have the flexibility to accomplish whatever is
required within our own client applications, it is certainly
possible to apply any kind of software analysis on the
signals we are monitoring, such as applying calibration
constants or mathematical functions. For example, once
we have polled a particular device’s analog value, we can
easily apply any Visual Basic math function on the
returned value before we display it for the user. The idea
behind the SCADA Engine RDK software in allowing us
to create our own client applications was to give us the
utmost flexibility to manipulate our data how we see fit.

3.3.4. Logging Data
How does the system log data? How is the logged data
accessible by client programs? i.e. if the data is logged to
a database, how does one access the database?

Once again, since we have the freedom to do as we wish
within our client applications, we can easily output our

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

21

data to a file or a database. When settings alarms on the
values, the BACnet Server component stores its alarm
notifications into an MS access database, so we do not
have to create one ourselves. There are a variety of ways
that one could store this information within Visual Basic.
For example, we can just as easily send an alarm
notification to any number of email accounts as a way of
keeping a record of which alarms have been issued. Our
data can be logged an endless number of different ways as
long as it is feasible by writing code.

3.3.5. Generating Alarms
How does the system generate alarms? Are there audio
alarms (special hardware devices or does it rely on a
computer’s audio system)? How are the alarm values set?

The SCADA Engine RDK software has a built-in alarm
mechanism called BACnAla.exe. Unfortunately, the most
this program can do to notify someone that an alarm has
been issued is to pop up on the screen of the machine
running the client application. Because this might not be
enough of a notification, we can also trigger a sound to go
off on the client machine using DirectX or winsock control,
since we have this flexibility within our Visual Basic
applications. If these methods are not enough to alarm
someone in the area, one other possibility might be to
purchase a device similar to a fire alarm system, attach it
to our BACnet network, and invoke a WriteBinaryValue()
function to turn on the audio alarm when a particular
device’s values are out of range. This example
demonstrates how powerful using the SCADA Engine
software can be. Concerning how the alarm values are set,
these can be hardcoded within our application, or can even
be dynamically set. For example, we could code our client
application to read its alarm values from a file sitting on a
webserver. This way, one could modify the alarm values
within this file from anywhere in the world at any time and
each copy of the client application would have the same
updated alarm values.

3.3.6. Scalability
What is the scalability of the software/hardware
combination? i.e. how many signals can it handle? Does it
get slower as the number of sensors increase?

Scalability is an aspect that is difficult to measure because
there are many factors which can influence it within a
network, such as the combination of hardware and
software. The SCADA Engine BACnetX component can
be used in a couple of different modes of operation. In one
of the modes, the BACnetX component is self contained in
a client application. This allows only one client application
per machine to run at a time, but as an advantage, the
client application does not need its own copy of the server

component. Each client machine then connects to a server
machine that processes each request. In this mode, there
may be more of a network lag with a large number of
clients because each request must be handled by the same
server component. Another mode of operation consists of
BACnetX connecting to the server via DCOM. This mode
of operation allows multiple client applications to run on
the same computer, but the only drawback is that a copy of
the server must reside on the client machine. A plus side is
that since every client machine connects to its own copy of
the server, the work load is now distributed among
multiple servers. Because of this, running a large number
of clients in this mode of operation would probably cause
less network lag as in the previous mode. These various
modes of operation might have been implemented by
SCADA Engine to accommodate small vs larger BACnet
networks.

3.3.7. Modularity
What is the modularity of the software? i.e. can several
standalone systems be set up? Can standalone systems
interact with each other? For example, could a subsystem
that monitors air quality pass on alarms and selected
information to a “supervisory system”?

Because BACnet was designed to work well with
interoperability, various client applications can easily
interact with any device on the BACnet network. The
degree of modularity within our network is not dependent
on the SCADA Engine RDK software but rather on the
client applications that we write. For example, we have the
flexibility to write a client program that monitors the air
quality in a laboratory, and send an alarm notification to
another “supervisory system” application running on
another computer. When setting up alarms, we can define a
list of recipients to receive notifications of alarms.
Therefore, the degree of modularity is dependent on the
functionality of our client applications.

3.3.8. Viewing Location
Can the status of the sensors be viewed from an arbitrary
number of locations? There are two ways this could be
done: (i) Each viewing location connects to all the desired
sensors; or (ii) Each viewing location is a client that
connects to a server which in turn connects to the sensors.
The latter is more desirable since it ensures that there is
no extra burden on the sensors.

In a BACnet architecture using the SCADA Engine
software, each client, or “viewing location” does not
connect to all of the desired sensors (or devices) directly,
but rather connects to the server component which
connects to the desired sensors. The client applications can
run on any computer with access to the BACnet network,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

22

and therefore can be viewed from any of these locations.

3.3.9. Supported Operating Systems
Is the system platform independent? i.e. what operating
systems does the software run under? SNO uses
Unix/Linux, Windows, Mac OS9, Mac OSX and even in
one case, DOS.

The SCADA Engine RDK software was initially created
for a Windows environment, but has recently released a
Linux version of its server. This means that any Linux box
can be set up to be the BACnet server. Client applications
can also be created under a Linux environment with the
help of Visual Basic for Linux tools. Unfortunately, as of
this time, there are no Macintosh supported components,
or even a DOS based version of the RDK. However, the
majority of the operating systems used at SNO are under
the Windows or Linux environment, so the lack of
Macintosh or DOS based versions of the software should
not be too much of a concern. Since most other BACnet
operator workstation software will only run under
Windows, having a Linux based version of a server is
definitely favorable. Additionally, the BACnet Server
contains a built-in XML gateway which allows an
application to communicate to other BACnet devices on
the network by issuing simple text messages. This
communication uses TCP/IP and the body of the text
messages is formatted in XML, making the gateway
platform independent.
Based on this analysis, it is obvious that SCADA Engine’s
Rapid Development Kit package meets all of SNO’s needs,
as defined by their guidelines. We recommend this toolkit
as an effective and flexible solution for implementing
BACnet.

4. Related Work

Commonly used protocols of Fieldbus Technology (FT)
[7] are being advocated as a standard for real-time
distributed control in automation networks. A device
description language is provided by a subsystem of FT
called HART. Likewise, for distributed control of slow
processors the devices must be described using a common
language in order to communicate. The objects and
properties of BACnet are being proposed here as the basis
for such a language.
 Foundation Fieldbus (FF) is being proposed as a
standard for implementing the real-time aspect of
automation problems. We could do the same for
BACnet.
To advocate your technology as a standard for a
specialized class of problems, the concern with proprietary
protocols which lack interoperability must be resounded as
it is here and also in [7]. The relationship between the

proposed standard and the OSI reference model must be
outlined as it is here and also in [7].
 Let us assume that to achieve compatibility,
interoperability, and interchangeability, it is sufficient for
peer processes to use the same technology as long as they
interface properly with the n-1 and n+1levels. The scenario
then becomes one in which technologies from different
vendors can be used as long as they are used at different
levels in the reference model. Therefore, a network
technology can become the standard for a specialized class
of applications for some but not all of the levels in its
architectural model. The proponents of Fieldbus concede
that European machine control suppliers lead the way for
web-based control in automation applications.
 To become the standard it is important to show upward
compatibility. Fieldbus technology supports single, open
and interoperable networks where single is a special case
of open and open is a special case of interoperable. Other
contemporary protocols such as PROFInet [11] vying to
become the standard must be seen as special cases.
 For distributed control in real-time network
applications and complex applications in general, the
problem is best conceptualized in terms of components.
Component based distributed control [6] abides by the
principle of assigning one control algorithm to one
component. The function of a component is local
computation.
 Component based distributed control also abides by
the principle of component reuse. This is similar to the use
of objects and properties supplied by BACnet for
representing devices.
 In this paper, we have demonstrated that BACnet is a
promising technology for slow control sensor networks. It
remains to be seen whether PROFInet and Fieldbus which
like BACnet are intended for automation, show similar
promise.

5. Conclusion

The objective of this research was to investigate computer
network protocols in order to propose the one that is the
most suitable for the Sudbury Neutrino Observatory.
The Building Automation and Control Network protocol
(BACnet) was found to be most suitable for SNO. We
have given a brief explanation on the protocol’s
specification and shown many of its advantages. BACnet
is a protocol that is interoperable, cost-effective, and
flexible. It has real-world application knowledge as its
foundation, and contains many rich services not found in
many of its competitors. In addition, BACnet’s scalability
is shown throughout the many real-world examples of
large scale BACnet implementations using thousands of
devices.
We have used the SCADA Engine Rapid Development Kit

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

23

software package to create a client application using a
device simulator. Our practical applications have shown
how one could use BACnet to monitor various devices on
the network. This is a contribution because there is little
documentation in the literature showing how to get started
using BACnet.
This dynamic area of research is one that is continuously
changing due to the current exponential technology
improvements. Indeed, the realm of network
communication protocols available is broad enough to
expand this research to include other communication
standards such as Modbus, N2, LonTalk, DeviceNet,
CANopen, or CAB. Our methodology for the evaluation of
protocols provides insight for future research into sensor
networks.

Acknowledgments

We would like to acknowledge the contribution of
Clarence Virtue (SNO, Laurentian University) and
Fraser Duncan (SNO, Queen's University) in preparing
the guidelines for selecting a protocol. This work was
supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERCC).

References

[1] BACnet Europe Journal Vol. 2, 2/05. Successful protocol

analysis in BACnet/IP networks.

[2] BACnet STANDARD: ANSI/ASHRAE Standard
135-2001, ASHRAE, 2001. ISSN 1041-2336

[3] Butler, J., Cimetrics, “BACnet: An Object-Oriented
Network Protocol for Distributed Control and Monitoring”
(2002), http://cimetrics.com/main/About/articles.php?id=3

[4] Butler, J., “BACnet and Ethernet: Partners for Building
Automation”
<http://ethernet.industrial-networking.com/building/
i12bacnet.asp >

[5] Cisco Systems, “Configuring Simple Network Management
Protocol (SNMP)” (2004), URL:
<www.cisco.com/en/US/products/hw/contnetw/ps792/produ
cts_administration_guide_chapter09186a00801eea34.html >

[6] Kopetz, H. The temporal specification of interfaces in
distributed real time systems. In: T.A. Henzinger, C.M.
Kirsch (Eds) 2001. Embedded Software (First International
Workshop MSOFT 2001 Proceedings), 237-253.

[7] Mahalik, N.P. Fieldbus Technology – Industrial Network
Standards for Real-Time Distributed Control. Springer,
2003, 595 pages.

[8] Melore, P., 2004. What is a PLC? URL:
http://www.plcs.net/chapters/whatis1.htm

[9] Neilson, C., Delta Controls, Private Communication,
September 1st 2004

[10] Newman, H.M., September 1997. "BACnet - The New
Standard Protocol" Electrical Contractor. pp. 119-122.

[11] Pigan, R. 2006 Automating With Profinet: Industrial
Communication Based on Industrial Ethernet, John Wiley.

[12] Sudbury Neutrino Observatory, “First Results from SNO -
Explain the Missing Solar Neutrinos and Reveal New
Neutrino Properties” (June 2001), URL:
<http://www.sno.phy.queensu.ca/sno/first_results>

[13] Swan, W., July 1996. "The Language of BACnet – Objects,
Properties, and Services" Engineered Systems. Vol. 13, No.
7, pp. 24-32.

[14] Vaillancourt, P. 2005 Network Based Alarms and
Monitoring for the Sudbury Neutrino Observatory (SNO),
Honours Bachelor of Computer Science Thesis, Laurentian
University

[15] Wong, S.S., Hong, S.H., Bushby, S.T., 2003. NISTIR 7038,
A Simulation Analysis of BACnet Local Area Networks,
National Institute of Standards and Technology.

Paul Vaillancourt received his
Honours Bachelor of Computer
Science degree at Laurentian
University in 2005. He has
collaborated with the Sudbury
Neutrino Observatory throughout
his education as well as while
working on his thesis entitled

"Network Based Alarms and Monitoring for SNO". Paul
is currently residing in Canada's national capital Ottawa
working as a software developer.

Julia Johnson received her M.Sc.
and Ph.D degrees in Computer
Science from the University of
British Columbia. She is an Associate
Professor in the Department of Math
and Computer Science at Laurentian
University. Her interests include
uncertain reasoning based on rough
sets for network applications.

