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Core-based Routing with QoS Support for Distributed 
Interactive Multimedia Applications 

 

Summary 
Distributed interactive multimedia applications such as 
video conferencing and virtual collaboration applications 
typically involve frequent interactions among multiple 
distributed parties. These applications require an efficient 
networking support such as core-based routing with 
Quality of Service (QoS) support. Typical core-based 
routing selects one router as a core for a multicast group 
and builds a single multicast tree rooted at the core to 
deliver data to the entire multicast group. Routing with a 
single core, however, may not satisfy QoS requirements of 
many distributed group members. Hence, we introduce in 
this paper new QoS core-based routing called Core Set 
Routing that utilizes the smallest set of cores that can 
satisfy QoS requirements of as many group members as 
possible. As part of this paradigm, we present our new 
distributed core selection protocol and multicast tree 
construction protocol that ensures loop-free routing and 
offers several desirable properties. We discuss a novel 
QoS constrained path search protocol and a protocol for 
handling member and sender dynamics.  Last, we present 
the performance of our core selection and multicast tree 
construction protocols. The simulation results demonstrate 
that our core set routing can satisfy significantly more 
group members compared with a recent QoS based routing 
using a single core. Besides, our tree construction protocol 
does not impose much overhead on the networks. 
Key words: 
Quality of Service, Multicast, Core-based Routing, Core 
Selection, Multicast Tree Construction. 
 
1. Introduction 
 
In recent years, a great deal of efforts has been made to 
support distributed interactive multimedia applications 
involving multiple senders and receivers. These 
applications include video conferencing, virtual 
collaboration, multiparty online role playing games, just to 
name a few. These applications have a wide range of 
numbers of users (e.g., from several to over 100,000 users 
as recently reported in some online playing game). 
Efficient network support for these applications is 
necessary. Research in Quality of Service (QoS) and core-
based routing fulfill different but complementary needs of 
these applications. QoS addresses requirements of 

multimedia applications by enforcing end users’ 
specifications of their desired service quality such as 
throughput, end-to-end delays, and delay jitters. Core-
based routing offers scalability since a number of senders 
share the same multicast tree rooted at a single router 
chosen as the core. The tree spans all group members of a 
multicast group. The senders unicast the data for the 
multicast group towards the core. The core, then, forwards 
the data to all the group members via the multicast tree. 
 
Routing with a single core, however, may not satisfy QoS 
requirements of many distributed group members. As a 
result, the service can be seriously affected. In this paper, 
we introduce Core Set Routing, a new QoS core-based 
routing approach that aims to achieve all of the following 
design goals. 
 
(i) Ease of QoS specification: Ability to enable group 

members to specify their QoS requirements easily as 
well as to accommodate QoS requirements for 
different types of distributed interactive multimedia 
applications. 

(ii) Efficiency and scalability: Ability to route   
multicast data with low routing overhead and scale 
well for large networks and large group sizes. 

(iii) Robustness: Ability to handle core failures. 
(iv) Loop-freedom: Ability to always construct loop-free 

multicast trees. 
(v) Operability: Ability to operate on top of any 

existing unicast routing algorithm. 
 
To achieve our first goal, we introduce an application 
level service class framework. In this framework, a 
multicast group is associated with a set of pre-defined 
service classes. Each of the classes specifies a different 
bound for the same end-to-end QoS metric such as delays 
or transmission bandwidth. A group member (user) selects 
one of these service classes to indicate the desired service 
quality. The number of service classes and the bound for 
each class depend on the types of applications. Table 1 
shows possible end-to-end delay classes for virtual 
collaboration applications. Except for the best effort class, 
the bounds specified in the rest of the service classes are 
acceptable to users of virtual collaboration applications 
[30]. Unlike network-level service classes in 
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Differentiated Services [4] and the reduced service-set 
architecture [24] that are transparent from users, in our 
framework, users are aware of the set of service classes 
offered by the application level. 

Table 1: Example set of service classes for virtual collaboration 
applications 

Service Class Upper-bound Delay(ms)

very_short_delay 66 
short_delay 83 

medium_delay 100 
best_effort ∞ 

 
To achieve efficiency and scalability, we 

formulate a new QoS core selection problem to select the 
smallest set of cores for a multicast group such that the 
end-to-end QoS requirements of as many group members 
can be satisfied. We propose a core selection algorithm to 
address the problem. Our work is different from existing 
core selection algorithms that choose only a single core 
per group [14, 8, 28, 23, 20] and those that use multiple 
pre-determined cores per group without QoS support [5, 
17, 31].  
 
This paper is a summary of our new core set routing 
paradigm, which includes the application level service 
class framework, the formulation of the core selection 
problem, the core selection algorithm [26], the distributed 
core selection protocol, the multicast tree construction 
algorithm [27]. In particular, we review the above work 
and discuss the following extensions. We improve the 
distributed core selection protocol to reduce protocol 
overhead. We discuss a multicast tree maintenance 
protocol. We introduce a protocol for finding a QoS 
constrained path between a pair of source and destination 
nodes. We discuss a mechanism for handling dynamics of 
senders and members of the group. Finally, we perform 
over 5000 simulation runs to evaluate our core set routing 
paradigm. 
 
The remainder of the paper is organized as follows. In 
Section 2, we provide background on core-based routing. 
In Sections 3 and 4, we present our core set routing 
paradigm in detail and its performance. Finally, we offer 
concluding remarks and discuss future work in Section 5. 
 
 
 
 
2. Background 
 
IP Multicast and many aspects of QoS research such as 
unicast routing with QoS support, INTSERV, and 

DIFFSERV have been intensively studied in the late 1990s. 
Application Layer Multicast (ALM) [13, 21, 2, 22, 32] has 
gained significant interests in the subsequent years due to 
slow deployment of IP Multicast routers and other issues. 
In ALM, hosts implement multicast functions instead of 
routers. ALM is not as effective in utilizing networking 
resources as IP Multicast does, but ALM is a solution that 
can be deployed currently. It is not clear which of the two 
multicast approaches would be a sustainable solution in 
the future. Hence, both IP Multicast and ALM warrant 
further studies. We focus on IP Multicast in this paper. 
 
Given a broad range of research in IP Multicast and QoS, 
we focus our background discussion on existing works in 
core-based routing and QoS support for core-based 
routing since they are most relevant to our work. Readers 
interested in other aspects of IP Multicast and QoS are 
referred to [11, 10]. 
 
Four main research issues in core-based routing in IP 
multicast are core selection [8, 28, 23, 20, 14, 17, 5], 
multicast tree construction [17, 5, 1, 16], membership 
handling [9, 19, 12], and tree/core migration [18]. 
Protocols in the core selection category locate a single 
core or multiple cores for a multicast group since the 
location of a core significantly determines routing 
overhead. The location of any core of the group is crucial 
since it affects the performance of a multicast tree rooted 
at the core. After the selection of the core(s), protocols in 
the tree construction category construct one loop-free 
multicast tree rooted at every core of the group. Each 
multicast tree spans all the group members. The tree is 
used by all the senders to multicast data to the group. As 
new members joining or existing members leaving the 
group, protocols in the membership handling category 
modify the multicast tree of the group when necessary. 
Because of membership changes and network dynamics, 
the core selected initially for the group may no longer be 
at the optimal location. Protocols in the tree/core 
migration category select a new core when necessary and 
migrate nodes in the existing multicast tree to the new tree 
rooted at the new core in an optimal manner. Since we 
focus on core selection and multicast tree construction in 
this paper, we discuss the most recent work in these two 
topics in more details. 

2.1 Core Selection 

The works in [8, 28, 23, 20] select only a single core per 
group, aiming to optimize the desired metric of interest 
such as a tree diameter. These schemes do not take group 
members’ QoS requirement into account. Distributed Core 
Multicast (DCM) [5] utilizes multiple cores per group to 
avoid the problem of determining the optimal location of 
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the single core. DCM employs a hash function to select 
the set of cores from pre-defined candidate cores. Using 
multiple cores per group to reduce delays between senders 
and group members, avoid a single point of failure, and 
alleviate traffic concentration in the network has been 
evaluated [31]. DCM and the schemes in [31] do not 
consider specific QoS requirements of group members. 
 
QoS Core Selection Algorithm (QCSA) [14] is a 
distributed core selection algorithm that considers group 
members’ QoS requirement. Each candidate core (the 
router closest to a group member) attempts to construct a 
path that satisfies the QoS constraints from itself to each 
of the other candidate cores and uses the maximum 
number of hops of such paths as its cost. These candidate 
cores advertise their cost among themselves. The 
candidate with the smallest cost elects itself as the core of 
the multicast group. QCSA has the following drawbacks. 
It only satisfies core-to-end QoS requirements although an 
end-to-end QoS requirement is more preferable for 
multimedia applications. Most importantly, QCSA may 
not satisfy QoS requirements of many distributed group 
members since only a single core per group is selected. 

2.2. Multicast Tree Construction  

To construct a multicast tree, two approaches can be 
considered. One approach builds a multicast tree from the 
core towards the group members using path information 
obtained during core selection [14]. The other approach 
incrementally constructs a multicast tree by attaching 
group members to the tree one by one using a protocol for 
handling new members. In this case, core migration is 
typically employed. Protocols for handling new members 
can be classified into three categories: single-path search 
(SP), multiple-path search (MP), and hybrid. A protocol in 
the SP category searches only one path at a time to find a 
QoS constrained path† to an on-tree node of the existing 
multicast tree. Once the path is found, the new member is 
made a child of the on-tree node. Examples of protocols in 
this category are CBT [1] and PIM [16]. These protocols 
do not consider users’ QoS requirements. A protocol in 
the MP category concurrently searches multiple candidate 
paths towards the core to select the best path to attach the 
new member to the tree. Examples include Spanning-Joins 
[9], QoSMIC [19], and [29]. QMRP [12] is the protocol in 
the hybrid category that considers the tradeoff between the 
search overhead and the latency of finding the path to the 
on-tree node. In QMRP, the search process starts with the 
single-path search and switches to the multiple path search 
when the single-path search fails.  
 
                                                           
† A QoS constrained path is a path between a pair of source and 
destination nodes that satisfy a desired QoS requirement. 

A multicast tree construction protocol in either approach 
must guarantee loop-free routing. Furthermore, a good 
protocol should build a tree with desirable properties, for 
example, a shortest delay tree if delays are the QoS metric 
of interest. To the best of our knowledge, there is no 
evidence that clearly indicates the superiority of one 
approach over another. 
 
3. New Core Set Routing in IP Multicast 
 
We first review our service class framework and the 
general concept of our core set routing. Then, we discuss a 
new QoS core selection problem under the service class 
framework and our distributed core selection protocol. We 
present our multicast tree construction protocol, and 
protocols for finding QoS constrained path and handling 
group dynamics. 

3.1 Core Set Routing under Service Class Framework 

The service class framework aims to (1) accommodate 
users by requesting for a desired service quality from a set 
of pre-determined service classes and (2) support various 
types of interactive applications. Each class specifies the 
bound of the service quality that can be assured to users 
subscribing to the class.  
 
In our Core Set Routing, we use the closest multicast-
capable router of a group member or a sender to represent 
the corresponding group member or sender. This 
assumption was used in other previous work as well. 
Under this assumption, QoS requirements between a 
member/sender and its designated router can easily be 
assured because they are typically in the same local 
network. Therefore, we can focus on a harder problem — 
guaranteeing end-to-end QoS requirements along the paths 
between routers representing the senders and group 
members. Specifically, we use the term member router 
and sender router for the router representing a group 
member and a sender, respectively. In a local network that 
has both group members and senders in the same multicast 
group, the closest router of the network acts as both 
member router and sender router. Fig. 1 highlights the 
major difference between routing with a single core and 
our approach. 
 
Fig. 1(a) depicts a scenario that shows three unsatisfied 
member routers when a single core at the optimal location 
is used. In this example, these unsatisfied member routers 
receive multicast data through the bottleneck network. 
Since this single core is at the optimal location, choosing a 
different core or different routes from the core will result 
in more unsatisfied member routers. In contrast, our new 
technique chooses two cores (Core1 and Core2) for the same 
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Fig. 1 Routing with a single-core vs. Core Set Routing. 

scenario (see Fig. 1(b)) to satisfy every member router. 
Each core is assigned a disjoint set of member routers. A 
multicast tree is rooted at each core and spanned all the 
member routers assigned to the core. Each sender router 
unicasts data towards every core of the group. Each core, 
in turn, forwards the data to the assigned member routers 
via the corresponding multicast tree. In general, we choose 
the smallest non-empty set of cores to satisfy the QoS 
requirements of as many group members as possible. If it 
is possible that one core can satisfy QoS requirements of 
all the group members, our scheme will attempt to select 
one core as well. 

 
 

 
Our scheme has the following advantages. First, it 
increases the number of group members with satisfied 
QoS requirements. Second, the cores can be backups for 
each other should some cores fail. Last, when many new 
member routers simultaneously join the group, they can be 
directed to different existing cores to prevent any core 
from becoming a hot spot. Nevertheless, these advantages 
do not come for free. The sender-to-core traffic increases 
proportionally to the number of cores since each sender 
router has one unicast stream to each core. To minimize 
the overhead, our scheme selects the smallest non-empty 
set of cores. In this paper, we focus on one QoS metric 
(any of end-to-end delays, bandwidth, or loss rates) as 
typically assumed in several previous works in core-based 
routing. 

3.2 Distributed Core Selection Protocol 

We formulated a QoS Core Selection problem and 
proposed distributed core selection protocol to solve the 
problem in our previous work. In this section, we briefly 
review the two concepts and state the improvement we 
have made to the protocol to reduce the protocol overhead. 
Due to limited space, readers interested in the problem 
formulation, the proof, and the protocol in details are 
referred to Reference [25, 27]. 

 
We say that a member router j covers a member router i 
subscribing to the service class c if the member router i is 
able to receive multicast data from all the sender routers 
through the router j within the end-to-end bound of the 
service class c. In other words, the router j is capable of 
being a core for the router i for this service class. We 
define the class c covering set of j (coverc(j)) as the set of 
member routers (subscribing to the service class c) that 
can be covered by the member router j. 
 
It is important to understand that if a group member 
requests for a requirement that is too stringent for the 
current network condition between the sender routers and 
its designated member router, the group member cannot be 
satisfied regardless of which core selection algorithm is 
used. We call such a group member and its designated 
member router an insatiable group member and an 
insatiable member router, respectively. 
 
Let SC be a set of pre-determined service classes offered 
to a multicast group. Let R be a set of all member routers 
of the multicast group. All the member routers of the 
group are the only eligible candidate cores for the group. 
We state our core selection problem as follows. 
Problem Statement: Given SC and the covering set 
information for each candidate core in R, select the 
smallest non-empty set C ⊆ R such that every satiable 
group member has its end-to-end QoS requirement 
satisfied if it receives data through one of the selected core 
in C. 
 
Our distributed core selection protocol solves the problem 
in a distributed manner. Every member router and sender 
router first registers with a bootstrap router. This is to let 
member and sender routers learn about each other. At the 
end of this registration step, every member router knows 
about the IP addresses of all other member and sender 
routers and the membership information‡ of all member 
routers. Sender routers learn about IP addresses of all 
member routers. For each service class sc (starting from 
the class with the most stringent QoS requirements), each 
member router m (1) finds the set of candidate cores that 
can cover itself§, (2) exchanges this information within the 
multicast group, (3) applies our greedy algorithm based on 
cover heuristic** to select the smallest set of cores for the 
                                                           
‡ The membership information of a member router tells which 
service classes the designating members of this router subscribe 
to. 
§ To be more specific, m finds out whether a QoS constrained 
path from every sender router to m via a candidate core exists. 
This can be done using our QoS constrained path search 
protocol discussed in Section 3.4. 
** The cover heuristic selects the candidate core with the largest 
covering set in each round. This is repeated until all satiable 
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class sc, and (4) releases resources reserved along QoS 
constrained paths via non-selected candidate cores. Repeat 
these steps for the next less stringent class until all service 
classes are considered. Each member router combines the 
core set for every service class using our deterministic 
core merging algorithm [25, 27]. Our core merging 
algorithm yields the following. First, every member router 
selects the same smallest set of cores for an entire group. 
Second, each member router is assigned to only one 
chosen core. 
 
The previous version of this protocol [27] performs step 
(1) for all the service classes before performing core 
selection (i.e., steps (2) and (3)). As a result, too many 
networking resources are unnecessarily reserved before 
core selection takes place. Our improvement here is to 
perform all the three steps one service class at a time. 
 
At the end of the core selection, each core maintains the 
information of end-to-end QoS assured paths from every 
sender router to each of its assigned member routers via 
the core itself. This information has been obtained since 
step (1) and will be used in the new multicast tree 
construction protocol discussed next. Our multicast tree 
construction protocol constructs one multicast tree rooted 
at each core. 

3.3 Multicast Routing with Core Set 

We discuss our protocol for constructing a multicast tree, 
routing multicast data through the constructed tree(s), and 
maintaining the multicast tree(s). 

3.3.1. Multicast Tree Construction Protocol 

Since QoS constrained path information has been obtained 
during the core selection, it is natural to use the path 
information to construct a multicast tree rooted at each 
core and spanned all the member routers assigned to the 
core. To ensure that routing within a multicast group is 
loop-free, a router being a part of different multicast trees 
for the same group maintains one routing entry for each of 
these trees. For ease of exposition, we use end-to-end 
delays to explain our tree construction protocol. The 
protocol is also applicable when a different end-to-end 
QoS metric is used.  The routing entry format is <gid, cid, 
in, s2c_delay, c2e_delay, out> where gid is the multicast 
group ID; cid is the IP address of the core of the group; in 
is the incoming interface receiving multicast data from the 
core cid of the group; sc2_delay is the longest guaranteed 
delay among the delays from all the sender routers to the 
core cid; c2e_delay is the cumulative guaranteed delay 

                                                                                               
member routers with designating members subscribing to 
this class have been covered. 

from the core to this router via the current multicast tree; 
and out is the list of interfaces to forward the multicast 
data. Each routing entry is uniquely identified by gid and 
cid to indicate the tree to which this router involves.   
Step 1: Each core determines the best path from itself to 
each of its assigned member routers using the path 
information maintained at the end of core selection. For 
the QoS delay metric, the best path from the core to its 
assigned member router is the shortest core-to-end delay 
path. For other QoS metrics, the best path must be 
determined accordingly. 
Step 2: Each core independently sends a BUILD message 
onto the associated best path to each of its assigned 
member routers. The core fills the source routing option 
field in the IP header of the BUILD message with the list 
of the IP addresses of the routers along the corresponding 
best path. The message is, then, forwarded to the routers in 
the path in the order specified in the list. 
 
Upon receiving a BUILD message, router r takes actions 
based on the interface the message came from and the 
cumulative delay specified in the message. If the BUILD 
message with a shorter cumulative delay came from a 
different interface, the path along the multicast tree from 
the core to the router is switched to the one with the 
shorter delay. The router, then, propagates the updated 
cumulative delay to every downstream router along the 
current multicast tree using the UPDATE messages. 
However, if the BUILD message does not indicate a 
shorter cumulative delay, the router sends a PRUNE 
message upstream (onto the interface where the BUILD 
message came) to eliminate the longer delay path from the 
core to the router.  

3.3.2. Multicast Data Routing 

When receiving multicast data packets for the group, each 
core of the group adds its own identity to the packets. The 
on-tree router forwards the packet onto the out-going 
network interfaces indicated in the routing entry 
corresponding to the group and the core identified in the 
data packet. This routing method is loop-free and does not 
incur any duplicate multicast data to arrive at the group 
members. Furthermore, for the end-to-end delay QoS 
metric, the path from the core to each of designating 
member routers assigned to the core is the shortest delay 
path. Readers, interested in the proof and the detailed 
multicast tree construction protocol, are referred to 
Reference [25]. 

3.3.3. Multicast Tree Maintenance 

Tree maintenance takes place after the multicast tree 
rooted at each of the selected cores has been successfully 
constructed. Existing multicast tree maintenance protocols 
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such as the Hello protocol can be used. That is, an on-tree 
node periodically sends a HELLO message to its parent 
node. If no response is received from the parent node 
within a time period, the sending node assumes that its 
parent node or the link between itself and the parent node 
is down. The sending node informs every node in the 
subtree rooted at itself about the failure. Any member 
router in the subtree re-joins the multicast group as a new 
receiver. It is known that the overhead of the HELLO 
protocol depends on how frequent HELLO messages are 
sent. A number of improvements can be made to the 
protocol. For instance, Hello messages can be aggregated 
across multicast trees of the same group. Each on-tree 
router determines the set of active neighbors (the parent 
nodes of this on-tree router in any multicast tree of the 
group). The router sends HELLO messages to these active 
neighbors. By properly determining the frequency for 
sending HELLO messages and determining the set of 
active neighbors, the tree maintenance overhead can be 
minimized. 

3.4. Protocol for Finding a QoS Constrained Path 

The goal of the protocol is to find a path from a sender 
router to a member router via a candidate core such that 
the QoS metric along the path satisfies the required bound. 
Each participating router searches for the QoS constrained 
path in rounds. In each round, the router simultaneously 
searches a set of out-going links that have not been 
searched in the previous rounds. The number of links 
searched in each round follows that in Fibonacci series 
(i.e., 1, 1, 2, 3, 5, 8, . . ., x) such that the total number of 
searched links equals N where N is the total number of 
out-going links at this router. The router enters the ith 
round if all the searches in the (i − 1)th round fail. To 
prevent searching in a loop, a router that has already 
started the search for this reservation does not consider 
subsequent searches for the same reservation. 
Suppose a member router r wants to search for a QoS 
assured path that satisfies the end-to-end delay of 
req_delay seconds from a sender router s to the router r 
via a candidate core cc. The router r sends a reservation 
message RESV (r, cc, s, req_delay, acc_delay, f) onto each 
of the out-going links selected to be searched in the 
current round. The first three fields specify the router 
initiating the message, the candidate core and the 
intermediate destination, and the final destination. The 
fourth field indicates the required end-to-end delay. The 
acc_delay is the cumulative delay along the path from the 
router receiving the message back to the router r as 
multicast data flow from a core towards a member router. 
The flag f is initialized to zero by the initiating member 
router r to indicate that the message should be forwarded 
towards the intermediate destination (candidate core cc) 

specified in the message. When receiving this message, 
the candidate core sets the flag f to one to indicate that the 
message should be forwarded towards the final destination 
of the message from now on. 
 
This search strategy is a variant of QMRP [12] for 
handling new joining members. QMRP searches the out-
going links of a router in only two rounds. The numbers of 
links searched in the two rounds are 1 and N − 1, 
respectively. Searching the entire N − 1 links in the 
second round may cause unnecessary control messages 
and resource reservations. Restricted QMRP addresses 
these drawbacks by limiting the number of searched paths, 
which may exclude the paths that can satisfy the QoS 
requirements of some group members.  

3.5. Protocol for Handling Group Dynamics 

We briefly discuss techniques for handling group 
dynamics due to joining or leaving senders and group 
members in this section. The goal of these techniques is to 
avoid violating QoS requirements of existing group 
members and to keep management overhead low. Recall 
that without a renegotiation mechanism, users whose QoS 
requirement cannot be satisfied are rejected in the 
beginning. Hence, only group members whose QoS 
requirements can be met participate in the multicast. 
Various scenarios causing group dynamics are listed in 
Table 2. 
 
For an addition of a new member router or a new sender 
router, we employ the QoS path search protocol in Section 
3.4 to find a QoS constrained path to attach a new node to 
one of the existing multicast trees of the group. For 
deletion of an existing member router or a sender router, 
we update corresponding routing entries and prune the 
proper paths to the leaving router from the corresponding 
tree when appropriate. We discuss Case I in more details 
to convey our ideas. Since handling group dynamics is 
itself a research topic that requires more investigation to 
provide a good conclusion, we provide comments on other 
options and leave the detailed investigation for future 
work. 
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Table 2: Scenarios causing group dynamics 
Case I: A router wishes to join the group as a new member 
router because the router is designated by a new member 
wishing to join the group. This router could be a new router 
that has not participated in the group before or the router is 
currently participating as a sender router only. 
Case II: An existing member router wishes to leave the 
group since none of its designating members wants to 
participate in the group any longer. 
Case III: A router wishes to become a new sender router of 
the group because either this router has not participated in 
this group before but has a new joining sender or the router is 
currently participating as a member router, but the member 
wishes to multicast its data to the group. 
Case IV: An existing sender router wishes to stop 
participating because its designating senders no longer want 
to multicast data to the group. 
Case V: A router wishes to participate in the group as both a 
member router and a sender router. This case is a hybrid of 
cases I and III. 
Case VI: A router that currently is both member router and 
sender router of the group wishes to leave the group. This 
case is a combination of cases II and IV. 

 
Case I: The joining router (i.e., the router that wishes to 
join the group as a member router) uses the QoS 
constrained path search protocol discussed in Section 3.4 
to search for a QoS assured path from an on-tree node in 
one of the multicast trees of the group to itself. The joining 
router gets the information about the core(s) of the group 
from a bootstrap router. It then sets the final destination of 
the RESV message to be the root of each of the multicast 
tree and sets the value of the flag field to one. Upon 
receiving the RESV message, an on-tree router †† 
determines whether the requested QoS metric can be 
assured if the joining router becomes its descendant. For 
the end-to-end delay QoS metric, the on-tree router 
compares the requested delay, RESV.req_delay, with the 
sum of s2c_delay and c2e_delay fields of its 
corresponding routing entry r. That is, if r.s2c_delay + 
r.c2e_delay + RESV.acc_delay + delay (l) ≤ 
RESV.req_delay, where l is the link from which the 
RESV message has arrived, the on-tree router can accept 
the joining router as its descendant. The joining router is 
rejected if no on-tree router of any tree of the group is able 
to accept the joining router as its descendant. 
 
The mechanisms to handle the group dynamics outlined in 
this section do not cause any disruptions for the services 
provided to the existing group members. This is since 
neither creating a new multicast tree nor adjusting existing 
shared trees of the group is considered. However, a 

                                                           
†† The on-tree router includes the core that is the destination of 
the RESV message as well.  

number of new group participants may be rejected. Some 
improvements along the ideas proposed in previous work 
can be considered if higher overhead and/or service 
disruptions are allowed. For instance, to accommodate 
new joining routers as member routers, existing multicast 
trees may need to be adjusted or a new multicast tree may 
need to be constructed. To accommodate new sender 
routers without violating the QoS requirement of any 
existing group members, a number of source-specific trees 
can be used. If none of these can reasonably increase the 
number of new participants that can join the group, most 
of the steps of our core selection protocol may have to be 
repeated with a new set of sender routers and/or a new set 
of member routers. A multicast tree rooted at each newly 
selected core is, then, constructed using our multicast tree 
construction protocol. Due to the complexity of this 
problem, the detailed investigation to identify the best 
approach is beyond the scope of this paper. 
 
4. Performance Evaluation 
 
In this section, we extensively evaluate the performance of 
our core selection and multicast tree construction 
protocols via simulations. We compare the performance of 
our core selection technique with the optimal solution and 
QCSA discussed in Section 2. Finally, we investigate 
overhead of our multicast tree construction protocol. Table 
3 summarizes the performance metrics used in this study. 

4.1. Simulation Model 

The QoS requirements used in our study are end-to-end 
delays. We constructed fifty networks based on the transit-
stub model using GT-ITM [7, 6]. The stub domains and 
stub nodes represent regional multicast capable networks. 
Each network has a total of 300 nodes. GT-ITM assigns a 
distance to each link. We map the link distance to a link 
delay such that the longest path in the network has the 
total delay of approximately 70 ms, the delay we observed 
from separate experiments with the Internet. Queuing 
delays at the routers were not simulated since we are only 
interested in relative performance comparisons. 
 
We conducted simulations under various group sizes 
ranging from 5 to 50 members. These group sizes cover 
many multi-sender multimedia applications.  For each 
simulation run, the member routers were randomly 
selected only from the routers in the stub domains since 
the backbone routers are not directly connected to any user. 
All the member routers joined a single multicast group. In 
most simulations, each member router was also a sender 
router unless stated otherwise. Service classes in Table 1 
were used in the simulations. We assigned only one 
service class to each member router. This restriction is 
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Fig. 2. Performance of the proposed algorithm (Cover-Merge) and the optimal algorithm.
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required to formulate the QoS core selection problem as 
an integer programming problem in which the optimal 
solution exists. In addition, each member router or sender 
router had only one group member or sender attached to it, 
respectively. In other words, the number of member 
routers and group members in our simulations were the 
same. This allows for clear observations on the effect of 
increasing a group size or the number of senders. Similarly, 
the number of sender routers and senders were the same. 
We generated the number of member routers subscribing 
to each service class based on the following assumption 
unless stated otherwise. That is, many more group 
members subscribe to the classes with a reasonable service 
fee (short_delay and medium_delay) compared to  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the most expensive class (very_short_delay) or the least 
expensive class (best_effort) that does not provide any 
guarantee. The member routers were randomly assigned to 
each service class. For QCSA, these member routers 
requested for the bounds indicated by the service classes. 

Table 3: Performance Metrics 
For evaluation of core selection algorithms, we use 
percentage of group members and number of selected 
cores as the metrics. 

 

Percentage of rejected group members: The rejected 
group members include both insatiable members and 
satiable members whose QoS cannot be satisfied by some 
core selection algorithm. The lower the percentage, the 
better the protocol. 
Number of selected cores: A small number indicates low 

sender-to-core traffic. 
For evaluation of the proposed tree construction 
algorithm, we use degree of overlapping, routing 
overhead, and stress as the metrics. 

 

Degree of overlapping: Numbers of on-tree routers with 
multiple multicast routing entries. A small overlapping 
degree indicates that small portions of multicast trees of a 
group are overlapped. 
Routing overhead: Average of the numbers of routing 
entries per group at an on-tree router. 
Stress: Average of the numbers of duplicate packets on 
every tree branch in all multicast trees of a multicast group. 
The stress close to one is desirable since it indicates low 
packet duplication. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2. Simulation Results 
 
We use the terms Optimal, Cover-Merge, and QCSA to 
refer to the optimal algorithm, our core selection algorithm, 
and QCSA, respectively. Each point in each of the 
subsequent plots is the average of the results of 5000 
simulation runs. 

4.2.1. Effectiveness of the Algorithms 

Fig. 2 shows the performance comparison between 
Optimal and Cover-Merge. The optimal algorithm invokes 
the linear programming solver [3] to solve the QoS core 
selection problem formulated as an integer programming 
problem. The plots in the left column depict the average 
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percentage of rejected group members (member routers) 
whereas the corresponding plots on the right indicate the 
number of cores used under the same simulation 
parameters.  
 
Fig. 2(a) shows the results when different group members 
may select different classes. This is the default condition 
we used in most of our simulations unless stated otherwise. 
In this scenario, Cover-Merge uses slightly more cores 
than Optimal on average. This demonstrates an 
effectiveness of our greedy algorithm. From the figure, 
Cover-Merge rejects the same number of group members 
as Optimal does. All of the rejected members are 
insatiable members which may come from any service 
class. 
 
Fig. 2(b) contains the results when group members 
selected only the short_delay class. This is to simulate the 
situation when every group member subscribes to only one 
service class. In this scenario, Cover-Merge also chooses 
slightly more cores than Optimal on average. All of the 
rejected members in this case are also insatiable members. 
They are from short_delay class only.  
 
Notice that in the second scenario, the number of rejected 
members increases as the group size increases. On the 
other hand, in the first scenario, the number of rejected 
members varies as the group size increases. This indicates 
the influences of insatiable members from the 
very_short_delay and medium_delay classes and requires 
further investigations.   

4.2.2. Performance Comparison with QCSA 

We evaluate Cover-Merge and QCSA with respect to the 
percentage of rejected group members and the number of 
selected cores. Due to some differences between Cover-
Merge and QCSA, a number of modifications were 
applied in order to fairly compare the two techniques. We 
modified our Cover-Merge to select only one core that 
covers the largest number of group members and call this 
modification Cover-Merge-One. Since the original QCSA 
only guarantees core-to-end delays, we modified the 
original QCSA to guarantee end-to-end delays. This 
modified technique is named QCSA-modified. We also 
improved QCSA-modified further to handle the case that 
no candidate core can construct QoS-assured paths to all 
other candidates. In this case, the candidate with the 
largest covering set is chosen as the core. We call this 
QCSA-modified-cover since it is influenced by our cover 
heuristic. 

 
 
Fig. 3(a) shows that Cover-Merge-One rejects 77.09% less 
group members than QCSA-modified and performs as 
well as QCSA-modified-cover. QCSA-modified has a 
very large percentage of rejected members because it 
ignores the case when not every candidate core can 
construct QoS-assured paths to all other candidates. The 
core selection fails and all the group members are rejected 
in that case. The similar performance between QCSA- 
modified-cover and Cover-Merge-One is expected since 
both schemes use the same concept in selecting one core. 
The rejected group members in those two cases are both 
insatiable members and the group members whose 
requirements cannot be satisfied by the single selected 
core. Fig. 3(a) also indicates that Cover-Merge reduces the 
percentage of rejected members by about 97.59% 
compared to QCSA-modified. Only the insatiable 
members cannot be satisfied by Cover-Merge. The plot 
labeled as insatiable in this figure indicates the average 
number of insatiable members in all the simulations. Fig. 
3(b) demonstrates that Cover-Merge uses more cores 
when the group size increases. Although Cover-Merge 
uses about 3 cores when there are 50 group members, it 
can satisfy about 48% more group members compared to 
QCSA-modified. 
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Fig. 3. Effect of routing with a core set. 
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Fig. 4. Performance of the multicast tree construction protocol. 

(b) Routing Overhead  

4.2.4. Performance of the Tree Construction Protocol 

To evaluate the performance of our tree construction 
protocol, we measure the degree of overlapping, routing 
overhead, and stress of multicast trees constructed using 
the protocol. In the simulations, the number of senders 
was ranged from 20% to 160% of the group sizes. The 
results are shown in Fig. 4. 
 
Fig. 4(a) shows that for any number of senders, multicast 
trees of a group are not overlapped much. In the most 
extreme scenario when the group size is 50 and the 
number of senders is 160%, the degree of overlapping is 
less than 7% on average. This indicates that not many of 
the on-tree routers are required to maintain multiple 
routing entries per group. The figure also demonstrates 
that for any number of senders, multicast trees of a group 
are overlapped more as the group size increases. This is 
because there are more group members to satisfy. Fig. 4(b) 
also show that for any number senders, multicast trees of 
the group do not cause much routing overhead to the on-
tree routers. From the figures, the number or routing 
entries per group at an on-tree router in the most extreme 
case is about 1.07. The protocol incurs on average 1.05 
duplicate packets forwarded on a tree branch (i.e., Stress). 
We omit the results here due to limited space. 
 
5. Concluding Remarks 
 
This paper presents new core-based routing with QoS 
support for multisender multimedia applications. Our 
contributions are the distributed core selection protocol 
and the multicast tree construction protocol. The core 
selection protocol employs the core selection algorithm 
that utilizes as many cores as necessary to maximize the 
number of group members with satisfied QoS 
requirements. Our simulations confirm that about 70% 
more members can be served with the desired service 
quality compared with a recent QoS core selection 
algorithm using a single core. The proposed core selection 
protocol is distributed, which helps to alleviate the hot 
spot and the single point of failure problems. Our 
multicast tree construction protocol utilizes path 
information gathered during the core selection protocol to 
construct a multicast tree rooted at each core of the group. 
The tree construction protocol ensures loop-free routing. 
The simulations demonstrate that the protocol does not 
incur much overhead on the network links and routers. 
Our ongoing research focuses on extending the new core-
based routing for application-level multicast.   
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