
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

123

Manuscript revised January 29, 2006.

Object-Oriented Petri nets Based Architecture Description

Language for Multi-agent Systems

Zhenhua Yu and Yuanli Cai

School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, China

Summary
To narrow the gap between multi-agent formal modeling and
multi-agent practical systems, multi-agent systems (MAS) are
studied from the point of view of software architecture. As the
existing architecture description languages (ADLs) are not
suitable for describing the semantics of MAS, a novel
architecture description language for MAS (ADLMAS) rooted in
BDI model is proposed, which adopts Object-Oriented Petri nets
presented in this paper as a formal theory basis. ADLMAS is
suitable for representing concurrent, distributed and synchronous
MAS, and it is brought directly into the design phase and served
as the high-level design for MAS implementation. ADLMAS can
visually and intuitively depict a formal framework for MAS from
the agent level and society level, describe the static and dynamic
semantics, and analyze, simulate and validate MAS and
interactions among agents with formal methods. To illustrate the
favorable representation capability of ADLMAS, an example of
multi-agent systems in electronic commerce is provided. Finally,
the MAS model and its key behaviors properties are analyzed
and verified.
Key words:
Multi-agent systems, software architecture, architecture
description language, Object-Oriented Petri nets, BDI model

1. Introduction

Multi-agent systems (MAS) have been recognized as a
main aspect of the distributed artificial intelligence and
predicted to be the future mainstream computing paradigm.
MAS are the most promising technology to develop
complex software systems, and many attentions have been
paid to MAS in complicated, large-scale and distributed
industrial and commercial applications [1], [2].
 MAS are adaptive and flexible systems in order to
adapt to changes in their environment, in which agents
may be added or deleted at run-time, and the agent
behaviors and interactions among agents may vary
dynamically [3], so there exist many difficulties in
analyzing the structure and behaviors of MAS. There is a
pressing need for a formal specification to support the
design and implementation of MAS, and ensure the
developed systems to be robust, reliable, verifiable, and
efficient [5]. It has been recognized that the lack of rigor is
one of the major factors that hamper the wide-scale

adoption of multi-agent technology [4]. A rigorous
approach toward MAS architecture level design can help
to detect and eliminate design errors early in the
development cycle, and thus to reduce overall
development cost. In the past several years, some work has
tended to investigate the formal modeling techniques of
MAS. However, the effort in multi-agent systems
modeling suffers from lack of systematic approach that is
grounded in software development methodologies.
 In this paper, to provide effective support for the
development of correct, robust and dynamic MAS in a
systematic way, a formal specification, called architecture
description language for multi-agent systems (ADLMAS),
is proposed. Our proposed formalism studies MAS from
the point of view of software architecture. Architecture
Description Language (ADL) [15] describes software
architecture in a formal way, represents software design at
the high level rather than the implementation details of any
specific source modules. So far, many ADLs have been
proposed for representing and analyzing software
architecture, however the existing ADLs are difficult and
not suitable for accurately describing the architecture,
complex dynamic characteristics and reasoning of MAS.
The ADLMAS adopts Object-Oriented Petri nets (OPN) as
its formal theory bases. The OPN are graphical and
mathematical modeling tool, which is simplicity and
strong expressive power in depicting system structure and
dynamic system behaviors. A notable benefit of using
OPN is its modular and object-based approach for the
specification and prototyping of complex software system.
Most importantly, OPN supports formal analysis of MAS
architecture in a variety of well-established techniques,
such as simulation, deadlock detection, reachability
analysis and model checking. As the
Belief-Desire-Intention (BDI) model is well suited for
describing an agent’s mental state, ADLMAS roots in the
BDI model.
 ADLMAS is brought directly into the MAS design
phase, and the formal MAS model is served as the
high-level design for MAS implementation. ADLMAS is a
graphical-intuitive language with formal and precise
semantics to handle concurrency and synchronization,
which can not only depict complex dynamic structure, but

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

124

also describe the static and dynamic semantics and provide
a basis for verification and validation of the functionality
of MAS. The ultimate goal of ADLMAS is to provide a
tool that generates executable implementation skeletons
from a formal model and enables software engineers to
develop reliable and trustworthy MAS.
 The rest of this paper is organized as follows: Section
2 overviews the related work; Section 3 presents
Object-Oriented Petri nets. Section 4 proposes a novel
architecture description language based on
Object-Oriented Petri nets for multi-agent systems. Section
5 discusses MAS modeling process based on ADLMAS.
Section 6 provides an agent society in electronic
commerce to illustrate ADLMAS. Finally, Section 7
summarizes the results of this paper and discusses further
research directions.

2. Related Work

So far, there have existed several typical formal
specifications and agent-oriented methodologies for MAS,
which can be classified into four main groups. The first
group uses formal languages, such as Z, to provide a
formal theory basis for representing MAS. dMARS [6] is
an agent specification using the Z language as its formal
theory basis. In dMARS, agent’s beliefs, goals, intentions,
plans, and actions are all described using Z. RIO
framework [7] represents MAS based on Object-Z and
state-charts, which uses Object-Z to specify the
transformational aspects and state-charts to specify the
reactive aspects. Although Z is precise and unambiguous,
and facilitates the system description at different levels of
abstraction, a key criticism using Z is that it cannot
effectively model the interactions among agents and
support the effective definition of concurrent and
distributed MAS, and it is less expressive with regard to
mental states of agents.
 The second group of researches uses temporal logics
and multimodal logics to describe dynamic aspects of the
agents that form a basis for specifying, implementing and
verifying MAS. In the Concurrent METATEM [8], the
temporal logic is applied to describe individual agent
behaviors where the representation can be executed
directly, verified with respect to a logical requirement, or
transformed into a more refined representation. However
MAS based on concurrent METATEM have no explicit
architecture and interactions among agents are vague.
DESIRE [4] based on temporal logic focuses on
hierarchical task-based decomposition and provides a
much clear and more readily comprehensible description
of the application. Although these formal specifications are
claimed to represent MAS, it is impractical to use a logic
notation directly in the specification and reasoning about
large-scale MAS, because such the specification will be a
complicated logic formula that consists of mathematical

notations and symbols. Such formalism has led to a sizable
gap between these formal models and implemented MAS.
 The third group consists of some new formal
languages that support the formal specification and
verification MAS, such as SLABS [9], agent-based G-net
[5], etc. SLABS includes a modular structure suitable for
the formal specification of multi-agent systems, a scenario
description mechanism for defining agents behavior in the
context of environment situations, and a notion of caste as
a collection of agents that have same behavior and
structural characteristics. Agent-based G-net, which is a
type of Petri nets, is explicitly oriented for specifying and
defining the design architecture of multi-agent software
systems and illustrates a useful role for inheritance in the
agent-oriented models. However, agent-based G-net does
not provide adequate means to describe the BDI model
which is a crucial characteristic of MAS. Furthermore the
set of methods in agents based on G-net is fixed and may
not adapt by changing their knowledge-base, goals and
plans, not by reconfiguring, adapting or exchanging their
methods [14].
 The fourth group is agent-oriented development
methodologies, such as Gaia [10], MaSE [11], AUML [12],
Tropos [20], DECAF [21], and framework for MAS [22]
development, etc. Gaia methodology emphasizes a few
models that can be utilized to form the whole system. It
describes what these models are, but the processes used to
develop these models are vague [13]. Moreover Gaia
requires that a single agent abilities and agent relationships
remain static at run-time which makes the agent lack of
autonomy. MaSE consists of seven phases to develop
MAS. The goal of MaSE is to lead the designer from the
initial system specification to the implemented agent
system. MaSE requires that agent-interactions are
one-to-one and not multicast [13]. Gaia supports MAS
development in both the micro-level and macro-level,
including analysis and design processes. AUML is an
extension of UML to develop MAS. AUML addresses only
the interactions among agents and does not facilitate the
representation of reasoning and proactive nature of MAS,
moreover it is only a semi-formal specification, and cannot
verify and validate MAS. Tropos covers the very early
phases of requirement analysis and the conceptual
modeling is formalized in a metamodel described with a
set of UML class diagrams. However, one criticism of this
approach is that it does not provide strong support for
protocols and modeling the dynamic aspects of the system.
 Despite the important contribution of these four groups
of formalisms and agent-oriented methodologies to a solid
underlying foundation for MAS, most formal
specifications are not oriented for software engineering in
terms of providing a modeling notation that directly
supports software development and how an
implementation can be derived, and less expressive with
regard to mental state of agents. These are challenges for

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

125

formal modeling formalism. According to the above
description, a preferable formal language for modeling
MAS should satisfy the following requirement:
(i) The language should precisely and unambiguously

describe the structure and behaviors of MAS in a
readable and understandable manner;

(ii) The language should allow agents to be specified by
using a combination of graphics and text;

(iii) The language should hide some details when
necessary, and describe MAS at different levels so that
the developers can effectively understand MAS;

(iv) The language should depict static and dynamic
semantics, and provide tool support for modeling,
analysis and verification;

(v) The language should be oriented for software
engineering and easily implemented.

 Our proposed ADLMAS can satisfy the above
requirements. We use OPN to visualize the agent structure,
agent behavior, and agent functionality for intelligent
agents, and use well-established methods to analyze the
model. ADLMAS is brought into the MAS design phase
and served as the high-level design for agent
implementation. ADLMAS is oriented for software
engineering, therefore can effectively narrow the gap
between MAS formal models and MAS implementation.

3. Object-Oriented Petri nets (OPN)

Petri nets are a graphical and mathematical modeling tool
applicable to many systems that exhibit concurrency and
synchronization [16]. The ordinary Petri nets, which
highly depend on the system and lack the modularity and
flexibility, easily lead to the so-called state-explosion. In
order to solve the complexity and state-explosion, Petri
nets are combined with Object-Oriented methods to set up
the Object-Oriented Petri nets. OPN can tersely and
independently represent all kinds of resources in a
complex system, increase the flexibility of the model,
discover the design mistakes in the earlier stage, and
shorten the modeling cycle. In the OPN model, a system is
composed of mutually objects and their interconnection
relations; the formal definition is given as follows.
 Definition 1. OPN is a 2-tuple, OPN=(O, MPR),
where O is a finite set of physical object in the system,
O={O1, O2, …, Oi}; MPR is a finite set of message passing
relations among physical objects.
 Definition 2. Oi is a 9-tuple, Oi= (P, IP, OP, T, F, IIA,
OIA, E, C), where P is a finite set of places, P={p1, p2, …,
pj}; IP (Input Place) is a set of input message places in
OPN, IP={ip1, ip2, … , ipl}; OP (Output Place) is a set of
output message places, OP={op1, op2, …, opm}; T is a
finite set of physical object transitions in the system, T={t1,
t2, …, tk}; F⊆(P×T) (T∪ ×P) (IP∪ ×T) (T∪ ×IP) (OP∪ ×T)

(T∪ ×OP) is the input and output relationships between
transitions and places; IIA (Input Interface Arc) is a set of

the input transition arc from outside to OPN, IIA= {iia1,
iia2, …, iian} [17]; OIA (Output Interface Arc) is a set of
output transition arc from OPN to outside, OIA= {oia1,
oia2, …, oiao} [17]; E: F→ (ID, CDS) is expression
functions in the arcs, ID is the identification of the arc and
CDS is a complicated data structure; C(P) is a set of color
associated with the places P, C (P) = {cp1, cp2,…, cpj}; C
(IP) and C (OP) are sets of color associated with the input
and output message places.
 Definition 3. MPR is defined as MPR= (ILP, C),
where ILP is the Intelligent Linking Place denoted by
ellipse. The information obtained from the external is
saved in the ILP. Each OPN dispatches the information by
ILP. C (ILP) is a set of color associated with the ILP.
 In the OPN model, some concepts of CPN are
employed and some behavioral semantics does not violate
the semantics of CPN formalism. In the places of OPN,
data types of Token are defined, which can express
complex data structures or objects. IP and OP are
responsible for internal message passing, and message
dispatching among objects.

4. Novel Architecture Description Language
for Multi-agent Systems (ADLMAS)

ADLMAS is suitable for describing MAS architecture
which possesses the advantages of semantics strictness and
precision of the traditional program languages, and defines
the abstract elements for MAS architecture. The main
design object of ADLMAS provides a dynamic
architecture modeling mechanism aiming at the complex
dynamic characteristics of MAS, and lets the MAS
architecture serve as the high-level design for MAS
implementation.
 In order to accurately describe MAS architecture,
OPN presented in this paper are adopted as a formal theory
basis of ADLMAS. OPN are a graphical and mathematical
modeling tool, and are suitable for describing the
large-scale, complicated and distributed MAS.
 ADLMAS should provide with the essential
characteristics of ADL. The traditional ADL mainly
describes the components, connectors, in which
components and connectors as modeling elements. A
component is a unit of data or computation, loci of status
store and computation with extended and integrated; a
connector is used to model interactions among components
and rules that govern those interactions. Agents are
modeling elements in MAS. An agent is an encapsulated
computer system that is situated in some environment and
can act flexibly and autonomously in that environment to
meet its design objectives [18]. There exists much
difference between components and agents in semantics
and function. In order to provide the uniform semantics,
ADLMAS substitutes computing agents and connecting
agents for components and connectors as the computation

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

126

and interaction elements in MAS. ADLMAS studies MAS
from the agent level and society level: The agent level to
the structure of each agent, and the society level to a
formal framework for MAS and interactions among
agents.
 Definition 4. ADLMAS is a 3-tuple, ADLMAS=
(Computing agents, Connecting agents, Configurations).

4.1 Modeling computing agents

Computing agents are a finite set of the computing agent
in MAS. Computing agents are responsible for interacting
with users and environment to provide specific
applications. A computing agent is based upon the
Belief-Desire-Intention (BDI) model, which is used to
describe its mental states.
 A computing agent is a 2-tuple, Computing Agent =
(ID, AS), where ID is the identifier of a computing agent;
AS (Agent Structure) is the tuple Oi in the OPN model
which defines the interfaces and internal implementation
of a computing agent. AS based on the BDI model is
composed of the Knowledge-base module, Goal module,
Plan module, and Interface module. The modules are
described as follows: in practical terms, the
Knowledge-base module corresponds to the agent’s
Beliefs, which describes the knowledge of the
environment and other agents. The Beliefs of an agent may
be represented as simple variables and data structures or,
complex systems such as knowledge bases. The Goal
module corresponds to the agent’s Desires, which
describes some desired final states and consists of a goal
set. The Desires of an agent represent its motivation and
are the main source for the agent’s actions. The Desires
may be associated with a value of a variable, a record
structure, or a symbolic expression in some logic so that
desires can be prioritized. The Plan module corresponds to
the agent’s Intentions, which is a list of plans and describes
the actions achieving the Goal values of an agent [19]. The
interface module allows a computing agent to interact with
other agents and the environment, and is used to send and
receive messages between agents. The interfaces specify
the services (messages, operations, and variables) which a
computing agent requires and provides, and are especially
the channels for messages passing. A computing agent
model is shown in Fig. 1, where Private Utilities represent
private method and utilities, such as register and destroy
information; the Knowledge-base, Goal and Plan are
denoted by ellipses. As Fig. 1 only represents a template of
a computing agent, interfaces and internal implementation
are added according to the specific system requirements,
and the BDI model can be refined.
 For simplicity and clarity of the diagrams, only names
of places, transitions and arcs of all agents models are
presented in this paper, and inscriptions, colors, guards and
marking are left unspecified.

Use/Update
Knowledge

IP
Knowledge

base

Goal Plan

Private utilities

Internal
Implementation

OP

Execute
Plan

Update
Goal Update

Plan

IIA

OIA

Use/Update
Knowedge

Fig. 1 A computing agent model

 Agents communicate with other ones by message
passing, which follows speech act theory and uses
complex protocols to negotiate [5], e.g., the FIPA agent
communication language(ACL) and KQML.
Communication is the basis for interaction and
organization without which agents would be unable to
cooperate, coordinate, or sense changes in their
environment. The agents proposed in this paper speak and
understand FIPA ACL. In agent model, a message is
described as a message token which is abbreviated to
msgTkn. msgTkn is a 2-tuple msgTkn=(mID, body),
where mID represents a message holds an unambiguous
identification and body is a complicated data structure. .
More specifically, the msgTkn body is defined as follows:
struct msgBody{

int sndAgent; // the identifier of the sending message
agent

int recAgent; // the identifier of the receiving message
agent

int recAgentInterface; // the identifier of the interface
of the receiving message agent

string protocolType; // the type of protocol
string msgName; // the name of the message
string msgContent; // the content of the message

}
 When a computing agent first receives a message, a
conversation is set up which is responsible for messages
passing among agents; meanwhile, the message Token is
dispatched into the “Internal Implementation” and further
dealt with, and simultaneously updates the Knowledge
base, Goal and Plan. The messages belonging to the
conversation hold an unambiguous identification (mID). If
an agent next receives a message carrying such a reference
to an existing Token, the message will be directly
dispatched into the knowledge base, and executed
according to the former experience.

4.2 Modeling connecting agents

Connecting agents are a finite set of the connecting agent
which is communication facilitator dealing with the
interaction information among agents and defining the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

127

rules that govern those interactions. Fig. 2(a) describes a
MAS consisted of a communication facilitator and some
computing agents, and such MAS is called a group where
agents are to achieve a certain goal. Fig. 2(b) represents
several groups constitute a large-scale MAS, and these
groups is connected by a communication facilitator.

Communication
FacilitatorComputing Agent 1 Computing Agent n

Computing Agent i

......

Communication
Facilitator

... ...

...

Group 1 Group i

Group n

(a)

(b)

Fig. 2 The communication model of MAS. (a) the
communicationmodel of a group, (b) the
communication models of multi-group.

 A connecting agent is defined as Connecting Agent=
(MPR, KBP, T, F, Role), where MPR (Message Passing
Relations) is the tuple in OPN model; KBP represents
Knowledge Base Place which is defined to apperceive the
external environment, acquire requisite knowledge, and
describe services which computing agents provide via
interfaces. Role is a set of interfaces in computing agents,
which is defined as Role = {CID1… CIDn}, where CIDi is
the identifier of the computing agent. The services
provided by the role are stored in the KBP. There are two
types of roles, static and dynamic role respectively.
Dynamic role will change with the computing agent
deleted or added.
 Connecting agents are not only responsible for
message passing of multi-agent systems, but also manage
the common knowledge of the MAS. From the point of
view of communication, connecting agents control and
manage the communication and collaboration among
agents; from the point of view of the system connection
and conglutination, connecting agents play the role of glue
conglutinating the MAS.
 In MAS, computing agents first enroll their
information (such as name, address, interface and
capability) in connector agents. If a computing agent
achieves its goal, it must delete its information, and then
the information in connecting agents will not fall into
confusion. If a computing agent requests a service, the

connecting agent queries its knowledge base to search a
corresponding computing agent providing the service.
When the request computing agent receives the identifier
of the service computing agent, it sends the message to the
service computing agent by the connecting agent. If the
service computing agent does not exist, the request
computing agent can subscribe for this service. The
connecting agent will inform the request computing agent
as long as it becomes aware of the information that a
corresponding computing agent registers.
 In ADLMAS, computing agents and connecting
agents describe agent structure from the agent level, as
well as the behaviors and interfaces of the individual
agent.

4.3 Modeling Configurations

MAS configurations are connected graphs of computing
agents and connecting agents that describe architectural
structure. Explicit architectural configurations facilitate
communication among a system’s many stakeholders, who
are likely to have various levels of technical expertise and
familiarity with the problem at hand [15].

Computing agent 4Computing agent 3

IP1

Computing agent 1 Computing agent 2

Connecting agentInput interface

Output interface

OP1

IP1

OP1KB

ILP
IP1

OP1

IP1

OP1

IIA1 IIA2

IIA3 IIA4

OIA1

OIA3 OIA4

OIA2

Fig. 3 MAS architectural configurations.

 In MAS, existing agents cooperate towards some
purposes beyond an agent’s ability. The multi-agent
systems architecture can not only describe individual agent,
but also depict the whole system and interaction among
agents. The multi-agent systems architectural
configuration based on ADLMAS is shown in Fig. 3, and
the MAS are studied from the society level, where MAS
are conceived as a multitude of interacting agents. In the
society level, the key point is the overall behaviors of the
MAS, rather than the mere behaviors of individuals. For
simplicity and clarity of the diagrams, this model is
predigested. The computing agents are represented by IP,
OP and abstract transitions denoted by shaded rectangles.
The abstract transitions can be refined into subnets shown

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

128

in Fig. 1. This architecture consists of four computing
agents and one connecting agent.
 The computing agent connects with the connecting
agent by the interface; therefore an arborescent topology is
formed. The static semantics of the multi-agent systems
architecture is described in Fig. 3, and the dynamic
semantics of the multi-agent systems architecture is
controlled by the firing rule. The firing of the transition
makes the Token dispatch, which expresses the message
passing and well depicts interactions among agents. The
purpose of modeling multi-agent systems in ADLMAS is
to make full use of the well-established analysis methods
proposed for Petri nets. These methods are commonly used
to detect the deadlock, and boundedness properties of
systems models. ADLMAS can systematically analyze,
verify and validate the properties of the implemented
system.
 ADLMAS is a visual ADL, which can make users
effectively understand and analyze MAS before MAS are
implemented, and narrow the gap between agent
formalism and practical systems.

5. MAS Modeling Process Based on ADLMAS

The purpose of the proposed ADLMAS is to ease the
developer’s effort to implement complicated applications
of MAS. In order to design a MAS using ADLMAS, the
requirement specification should be decomposed and
described by formal methods, and then the computing
agents and connecting agents are identified. In the early
process of MAS modeling, the exact detailed information
of the system is not known. Thus the detailed information
and constraints can be temporarily ignored to simplify the
modeling complexity of MAS, and a basic MAS model
can be constructed to represent the static characteristics
and dynamic behaviors. In this way, each agent model is
reusable for future modeling. In the next step, these
models are refined with the constraints and interrelations
among agents, and analyzed (e.g. deadlock and boundness).
Then, a complete MAS model based on ADLMAS may be
constructed. The procedure for constructing a complete
MAS model based on ADLMAS is summarized as
follows.
(i) According to the system specification, the computing

agents and connecting agents are distinguished, and
the function of each agent is defined.

(ii) Define and initialize a set of goals Φ in the computing
agent, where each goal is defined as a goal tree Γ,
which means a goal may have a number of subgoals.
The goal set is dynamic, which means the goals
accomplished may be deleted from Φ and newly goals
could be added into Φ at run time. Finally according
to the template of the computing agent, the OPN
model of the Goal module should be set up.

(iii) Define a set of plans P in the computing agent. Each
plan has a priority and a set of conditions, and is
associated with a particular goal or subgoal. Finally
according to the template of the computing agent, the
OPN model of the Plan module should be set up.

(iv) Define and initialize the knowledge base in the
computing agent and connecting agent, and an
interaction protocol among agents. The knowledge
base is dynamic. Finally according to the template of
the computing agent, the OPN model of the
Knowledge module should be set up. As a result of the
execution of a plan, the knowledge base may be
updated at run time.

(v) Set up the MAS architecture, and simulate and analyze
it with the supporting tools and analysis methods of
Petri nets. If the model is not correct, we should return
step 2 to redefine the MAS model until it is correct.
Finally, we implement the MAS model.

 There exists some feedback and adoptions of design
information between steps. These steps can be performed
in an iterative and incremental way. From the modeling
process, this modeling approach based on ADLMAS
follows the natural style of human thinking:
Desire-Intention-Belief, rather than Intention-Desire-
Belief.
 The goal of ADLMAS is to lead the designer from the
initial system specification to the implemented MAS, and
further support for automatic code generation. ADLMAS
has been successfully applied to Kunming Police
Geographical Information System (KPGIS), which is a
large-scale, multilevel, and distributed multi-agent system.
The application of ADLMAS demonstrated that ADLMAS
can help architecture designers to effectively analyze and
design the complex, distributed and concurrent MAS. At
present, a visual integrated development tool based on
ADLMAS has been developed; the MAS architecture can
be modeled and analyzed by this tool, and the
development process will be discussed in detail in our
future working paper.

6. An Example of Multi-agent Systems in
Electronic Commerce

In this section, a multi-agent system in an electronic
commerce is considered. The buyer agents and seller
agents negotiate price, and finally the buyer agents
determine whether to buy or not. The MAS architecture
based on ADLMAS is set up, and then the model is
analyzed by mathematical methods of Petri nets to ensure
a correct design.

6.1 MAS modeling in electronic commerce

The architecture of the price negotiation MAS in
electronic marketplace based on ADLMAS is shown in Fig.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

129

4, which represents a pair wise negotiation process. The
MAS is composed of three functional agents (one buyer
agent and two seller agents) bargaining for goods. The
seller agents are abstracted as abstract transitions, interface
arcs, input places, and output places. This is feasible
because agent models can only interact with each other
through interfaces. For simplicity, the Goal, Plan, and
Knowledge-base modules are not refined in more detailed
units, but remain as abstract units; some constraints are
omitted in this figure. The arc OIA3 describes the interface
that registers or destroys the agent information, the arc
OIA1 describes the output interface that sends a call for
price proposals, the arc IIA1 represents the interface that
receives the proposals from other agents, and the arc OIA2
represents the interface that executes the buying plan.

T11

P7

T13

P8

T12

OP

IP

T7

T1

T2

ILP

KB

OIA1

OIA3

OP OIA2

IP

OP

IIA1

P1

P2 P3

P6 T8

P9 T9

T5 T6P4

P11

T16

P12

P13

P14

T17

T19

T18

Buyer Agent

Connecting
Agent

Seller Agent 1

IP

OP

P15

P16

T20

T22

T21

Seller Agent 2
T3

OP

P10 T15T14

P5

T4
T10

Fig. 4 MAS model in electronic commerce.

 The legend provided in Table 1 and Table 2 describes
the meaning of each place and transition in Fig. 4. The
negotiation process can be described by ML. When a
negotiation begins, each agent must register its basic
information to the connecting agent. The connecting agent
can accept or reject the registration based on the enrolled
agent’s reputation or function. The buyer agent starts the
conversation by sending a call for price proposal to the
connecting agent through the interface OIA1, then its state
changes to Waiting (P8). An msgTkn token with an
unambiguous identification will be deposited and dealt
with in the connecting agent, and then the connecting
agent sends it to the corresponding seller agents. The seller
agents send the price proposals to the buyer agent by the
interface IIA1. Upon the arrival of the price proposals, the
buyer agent thinks whether the price proposals are
acceptable or not with the help of its knowledge-base (P1).
If the proposals are rejected, the transition reject proposal
(T12) will fire and update the knowledge-base (P1), and
the buyer agent will negotiate again. If the proposals are
accepted, the transition accept proposal (T11) will fire and
update the knowledge-base (P1). Finally the plan plan_buy
(T14) will be generated and executed. To ensure the
system is robust, the timeout mechanism is adopted, and
this triggers the exception action (the transition throw
exception) to stop the buyer agent from the waiting state,

update knowledge-base (P1), and continue to send call for
price proposal (T4). By then, the conversation of price
negotiation is finished. When the buyer agent receives a
message carrying identification the same as the existing
message identification, the transition deal with similar
price proposal (T10) will be enabled. The message is
directly dispatched into the place knowledge-base (P1),
dealt with according to the previous experience, and
finally the corresponding plan will be executed.

Table 1: Legend of Fig. 4 (description of places).
Place Description

P1 The abstract place for the knowledge-base module o
the buyer agent.

P2 The abstract place for the goal module of the buyer
agent.

P3 The abstract place for the plan module of the buyer
agent.

P4/P6/P10/P14/
P16

The places for dispatching outgoing messages.

P5 The places for initial call for price.
P7 The place for timeout mechanism.
P8 The place for waiting price proposal.
P9/P13/P15 The places for dispatching incoming messages.
P11 The ILP place of the connecting agent.
P12 The abstract place for the knowledge-base module

of the connecting agent.

Table 2: Legend of Fig. 4 (description of transitions).

Transition Description
T1 The transition update goal that updates the goal

set.
T2 The transition update plan that updates the plan

set.
T3 The transition update or use kb that updates or

uses the knowledge-base. The plan set can make
use of the knowledge base. As a result of the
execution of a plan, knowledge base may be
updated

T4 The transition call for new price proposal that
sends a new price proposal for seller agents.

T5 The transition register or destroy that registers
the buyer agent, or deletes its information if it
achieves its goal.

T6/T8/T15/T19/T22 The transitions related to the OP places.
T7 The transition send call for price proposal.
T9/T17/T20 The transitions related to the IP places.
T10 The transition deal with similar price

proposal.
T11 The transition accept proposal means the seller

agent accepts the proposal which the seller
agents propose.

T12 The transition reject proposal means the seller
agent rejects the proposal.

T13 The transition throw exception is the exception
process.

T14 The transition execute buy plan that executes the
acquired plan.

T16 The transition query or update knowledge-base.
T18/T21 The abstract transition represents the BDI

module, internal implementation and private
utilities of the seller agent

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

130

 The dynamic semantics is represented as follows. In
ILP of the connecting agent, when the number of Tokens is
greater than one, according to the message mID and body
of a Token, the Token is sent to the IP in the corresponding
agent and then dispatched. When the output result is
produced in an agent, Tokens in the OP are sent to the ILP
and then Tokens are dispatched. All the Tokens associated
with an input interface in an agent are formed a message
queue in ILP, and follow the rule of “First Come First
Serve”. If there are two Tokens in ILP, corresponding with
two different interfaces in an agent respectively, the
transitions meet the fire rule, then they can fire and
execute concurrently.
 ADLMAS visually describes the dynamic semantics
of the multi-agent systems architecture. The firing of the
transition makes the Token dispatch, which expresses the
message passing and well depicts interactions among
agents.

6.2 Analysis of MAS model in electronic commerce

A significant advantage provided by ADLMAS based on
Petri nets is that the verification and validation of the
model can be accomplished before implementation, and
help ensure a correct design (such as liveness, deadlock
freeness, boundness and concurrency) with respect to the
original specification to enable software engineers to
develop reliable and trustworthy MAS. In this section, the
deadlock of the MAS model is analyzed. It is important
that how to handle deadlock situations for development of
electronic commerce systems and operating systems,
where the communication plays a key role.
 The theory of invariants [16] is employed as the
deadlock detection method to analyze the simplified MAS
model.
 Theorem 1. Let N is a Petri net model, an n-vector I
is a P-invariant (place invariant) of N if and only if IT •[N]
=0T. ||I||={p∈P|I(p)≠0} is called the support of an
invariant. If all P-invariants are marked in the initial
marking and there are no empty siphons, the N is live [16].
 By analyzing, there are three P-invariants in the MAS
model, and their supports are || I1|| = {P12 }, ||I2|| = {P1,
P2, P3, P4, P5, P6, P8, P9, P10, P11, P13, P14, P15,
P16}, ||I3||= {P1, P2, P3, P4, P5, P6, P7, P9, P10, P11,
P13, P14, P15, P16} respectively. All P-invariants are
marked in the initial marking; moreover there are no
empty siphons, so the model is live.
 Deadlock analysis can help eliminate human errors in
the design process, and verify some key behaviors for the
MAS model to perform as expected, and increase
confidence in the MAS design process.

7. Conclusions

Multi-agent systems are regarded as the most promising
technology to develop complex software systems. Formal
framework for MAS provides a base to design, verify and
implement MAS, and ensures that robust, reliable, and
efficient software is developed. In this paper, from the
software architecture point of view, a novel architecture
description language for MAS (ADLMAS) rooted in Petri
nets is proposed to support the modeling and analysis of
multi-agent systems. ADLMAS based on
Belief-Desire-Intention (BDI) agent model stresses
practical software design methods instead of reasoning
theories, and analyze the static and dynamic semantics,
and depict the overall and individual characteristics of
MAS. ADLMAS can be applied to investigate MAS from
the agent level and society level. From the agent level, the
researchers can pay more attention to the implementation
details of each agent; and from the society level, they can
pay more attention to the overall design and interactions
among agents. An example of an agent society in
electronic marketplace is used to illustrate modeling
capability of ADLMAS; and moreover, how to detect the
deadlock in the MAS model by the theory of invariants is
discussed. ADLMAS, as a visual ADL, can promote the
intercourse and understand among clients, architecture
designers and developers, and provide an effective
modeling method for MAS modeling and verifying.
 The tool kit based on ADLMAS will be considered in
our future work, which can support automatic code
generation. Also the learning ability of MAS will be
further investigated.

Acknowledgment

This work is supported by the National High Technology
Research and Development Program of China (863
Program), No. 2003AA721070. We thank all anonymous
referees for the careful review of this paper and the many
suggestions for improvements they provided.

References
[1] F. Zambonelli and A. Omicini, “Challenges and research

directions in agent-oriented software engineering”,
Autonomous Agents and Multi-Agent Sytems, vol. 9, no. 3,
pp. 253-283, 2004.

[2] M. Luck, P. Mcburney, and C. Preist, “A manifesto for agent
technology: towards next generation computing”,
Autonomous Agents and Multi-Agent Sytems, vol. 9, no. 3,
pp. 203-252, 2004.

[3] W. Jiao, M. Zhou, and Q. Wang, “Formal framework for
adaptive multi-agent systems”, Proceedings of the
IEEE/WIC International Conference on Intelligent Agent
Technology, pp. 442-446, 2003.

[4] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J.
Treur, “DESIRE: modelling multi-agent systems in a
compositional formal framework”, International Journal of
Cooperative Information Systems, vol. 6, no. 1, pp. 67-94,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

131

1997.
[5] H. Xu and S. M. Shatz, “A framework for model-based

design of agent-oriented software”, IEEE Transactions on
Software Engineering, vol. 29, no.1, pp. 15-30, 2003.

[6] M. Luck and M. d’Inverno, “A formal framework for agency
and autonomy”, Proceedings of First Int’l Conf.
Multi-Agent Systems, pp. 254-260, 1995.

[7] P. Gruera, V. Hilairea, A. Koukama, and K. Cetnarowicz, “A
formal framework for multi-agent systems analysis and
design”, Expert Systems with Applications, vol. 23, no. 4,
pp. 349-355, 2002.

[8] M. Fisher and M. Wooldridge, “On the formal specification
and verification of multi-agent systems”, International
Journal of Cooperative Information Systems, vol. 1, no. 6,
pp. 37–65, 1997.

[9] H. Zhu, “SLABS: a formal specification language for
agent-based systems”, International Journal Software
Engineering and Knowledge Engineering, vol. 11, no. 5, pp.
529-558, 2002.

[10] M. Wooldridge, N. R. Jennings, and D. Kinny, “The Gaia
methodology for agent-oriented analysis and design”,
International Journal of Autonomous Agents and
Multi-Agent Systems, vol. 3, no. 3, pp. 285– 312, 2000.

[11] S. DeLoach, “Multiagent Systems Engineering”,
Proceedings of Agent Oriented Information Systems, pp.
45-57, 2000.

[12] J. Odell, H. V. D. Parunak, and B. Bauer, „Representing
agent interaction protocols in UML”, Proceedings of 1st
International Workshop on Agent Oriented Software
Engineering, pp. 121-140, 2000.

[13] T. I. Zhang, E. Kendall, and H. Jiang, ”A software
engineering process for BDI agent-based systems”,
Proceedings of the IEEE/WIC International Conference on
Intelligent Agent Technology, pp. 392-399, 2003.

[14] M. Köhler, D. Moldt, and H. Rölke, “Modelling the
structure and behaviour of Petri net agents”, Lecture Notes
in Computer Science, vol. 2075, pp. 224-241, 2001.

[15] N. Medvidovic and R. N. Taylor, ”A classification and
comparison framework for software architecture
description languages”, IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp. 70-93, 2000.

[16] T. Murata, “Petri nets: properties, analysis, and application”,
Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[17] J. A. Saldhana and S. M. Shatz, “Formalization of object
behavior and interactions from UML models”, International
Journal of Software Engineering and Knowledge
Engineering, vol. 11, no. 6, pp. 643-673, 2001.

[18] N. R. Jennings and S. Bussmann, “Agent-based control
systems: Why are they suited to engineering complex
systems”, IEEE Control Systems Magazine, vol. 23, no. 3,
pp. 61-73, 2003.

[19] K. M. Kavi, M. Aborizka and D. Kung, “A framework for
designing, modeling and analyzing agent based software
systems”, Proceedings of 5th International Conference
Algorithms and Architectures for Parallel Processing,
pp.196 – 200, 2002,.

[20] P. Bresciani, A. Perini, etc, “Tropos: an agent-oriented
software development methodology”, Autonomous Agents
and Multi-Agent Sytems, vol. 8, no. 3, pp. 203-236, 2004.

[21] J. Graham, K. Decker, and M. Mersic, “DECAF-A flexible

multi agent system architecture”, Autonomous Agents and
Multi-Agent Systems, vol. 7, no. 1, pp. 7-27, 2004.

[22] S. Park and V. Sugumaran, “Designing multi-agent systems
a framework and application”, Expert Systems with
Applications, vol. 28, no. 2, pp. 259-271, 2005.

Zhenhua Yu received the B.S.
and M.S. degrees in Control Theory
and Control Engineering from Xidian
University, Xi’an, China, in 1999 and
2003, respectively. He is currently
pursuing the Ph.D. degree at Xi’an
Jiaotong University, Xi’an, China.
His research interests include
Modeling and Analyzing Multi-agent

Systems, Reinforcement Learning, Petri nets, etc.

Yuanli Cai received the B.S.,
M.S. and Ph.D. degrees in
Aerospace Engineering from
Northwestern Polytechnical
University, Xi’an, China, in 1984,
1987 and 1991, respectively. He is
currently Professor at Xi’an Jiaotong
University, Xi’an, China. His
research interests include
Multi-agent Systems, Intelligent

Transport Systems, and Intelligent Guide, etc.

