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Summary 
This paper presents a high performance GF(2m) Elliptic Curve 
Cryptoprocessor architecture. The proposed cryptoprocessor is 
based on normal basis representation and uses three multipliers 
to perform parallel field multiplications. Point operations are 
performed using Mixed coordinate system to increase the 
performance and the immunity against timing attacks. The basic 
idea is to select a combination of point addition and point 
doubling from Mixed coordinate system such that both point 
operations requires the same number of multiplication cycles. 
Thus, an attacker cannot distinguish  between point doubling and 
point addition and therefore it is not possible to extract the key 
pattern using a timing attack. Results show that the proposed 
cryptoprocessor gives better time complexity than existing 
designs which use fake computations by 76%. The proposed 
cryptoprocessor has been synthesized on a Xilinx Vertex II 
FPGA (xc2v8000) over GF(2173) and it required 159522 clock 
cycles to perform scalar multiplication. The proposed 
cryptoprocessor required 28154 Slices, which is only 60% out of 
the total number of available Slices. 
  
Key words: 
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1. Introduction 

Recently, Elliptic Curves Cryptosystems (ECC) [1] [2] has 
attracted many researchers and has been included in many 
standards [3]-[8]. ECC is evolving as an attractive 
alternative to other public-key schemes such as RSA by 
offering the smallest key size and the highest strength per 
bit. Extensive research has been done on the underlying 
math, security strength and efficient implementations. 
Among the different fields that can underlie elliptic curves, 
prime fields GF(p) and binary polynomial fields GF(2m) 
have shown to be best suited for cryptographic 
applications. In particular, binary fields allow for fast 
computation in software as well as in hardware. Small key 
sizes and computational efficiency make ECC not only 

applicable to hosts processing security protocols over 
wired networks, but also to small wireless devices such as 
cell phones, PDAs and Smartcards. 

Side channel attacks on such devices are 
considered serious threats due to the physical 
characteristics of these devices and their use in potentially 
hostile environments. Side channel attacks seek to break 
the security of these devices through observing their 
power consumption trace or computations timing [9]. 
Careless or naive implementations of cryptosystems may 
allow side channel attacks to infer the secret key or obtain 
partial information about it. Thus, designers of such 
systems seek to introduce algorithms and designs that are 
not only efficient, but also side channel attack resistant. 

Inversion operations, which are needed in point 
addition over Elliptic Curves are the most expensive 
operation over Finite Fields [10]. The approach adopted in 
the literature is to represent Elliptic Curve points in 
projective coordinate in order to replace the inversion 
operations with repetitive multiplications. Recently, 
several ECC processors have been proposed in the 
literature based on projective coordinate representation. 
There are many projective coordinate systems to choose 
from. In exiting architectures, the selection of a projective 
coordinate is based on the number of arithmetic operations, 
mainly multiplications. This is to be expected due to the 
sequential nature of these architectures where a single 
multiplier is used. For high performance servers, such 
sequential architectures are too slow to meet the demand 
of increasing number of users. For such servers, high-
speed cryptoprocessors are becoming crucial. One solution 
for meeting this requirement is to exploit the inherent 
parallelism within Elliptic curve point operations in 
projective coordinate.  

This paper presents a high performance elliptic 
curve cryptoprocessor over GF(2m). Parallelism is 
exploited at the projective coordinate level to increase 
both the performance and the immunity against timing 
attacks.  The rest of this paper is organized as follows: 
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Section 2 explains the GF(2m) arithmetic background. 
Section 3 gives a brief introduction to ECC. Section 4 
discusses the projective coordinates in GF(2m). The 
proposed architecture will be explained in Section 5. 
Section 6 discusses and compares the efficiency for the 
existing and the proposed architecture. Finally, Section 7 
concludes this work. 

2. GF(2m) Arithmetic Background 

The finite GF(2m) field has particular importance in 
cryptography since it leads to particularly efficient 
hardware implementations. Elements of the field are 
represented in terms of a basis. Most implementations use 
either a Polynomial Basis or a Normal Basis [11]. For the 
implementation described in this paper, normal basis is 
chosen since it leads to more efficient hardware 
implementations. Normal basis is more suitable for 
hardware implementations than polynomial basis since 
operations are mainly comprised of rotation, shifting and 
exclusive-OR operations which can be efficiently 
implemented in hardware. A normal basis of GF(2m) is a 
basis of the form 
  

(ß2^(m-1),  ….., ß8 , ß4 , ß2,  ß) , where ß ∈ GF(2m) 
 

In a normal basis, an element A ∈ GF(2m) can be 
uniquely represented in the form 
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where ai ∈  {0, 1}.  
 

GF(2m) operations using normal basis are performed 
as follows: 

1. Addition and Subtraction: Addition and 
subtraction are performed by a simple bit-wise 
exclusive-OR (XOR) operation. 

2. Squaring:  Squaring is simply performed by a 
rotate left operation. 

3. Multiplication:  ∀A, B  ∈ GF(2m), where  
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the product C = A*B, is given by: 
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then multiplication is defined in terms of a 
multiplication table λij ∈  {0, 1} 
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An optimal normal basis (ONB) [12] is one with 
the minimum number of terms in (3), or 
equivalently, the minimum possible number of 
nonzero λij. This value is 2m-1, and since it allows 
multiplication with minimum complexity, such a 
basis would normally lead to more efficient 
hardware implementations. 

4. Inversion: Inverse of a ∈ GF(2m), denoted as a-1, 
is defined as follows.  

 
1 1 mod 2maa− =   (4) 

 
Most inversion algorithms used are derived from 
Fermat's Little Theorem:  
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for all a ≠ 0 in GF(2m).  

3. Elliptic Curves 

Here we present a brief introduction to elliptic curves. Let 
GF(2m) be a finite field of characteristic two. A non-
supersingular elliptic curve E over GF(2m) is defined to be 
the set of solutions (x, y) ∈  GF(2m) X GF(2m) to the 
equation, 

y2 + xy = x3 + ax2 + b,   (6) 
 

where a and b ∈  GF(2m), b ≠ 0, together with the point at 
infinity denoted by O. It is well known that E forms a 
commutative finite group, with O as the group identity, 
under the addition operation known as the tangent and 
chord method. Explicit rational formulas for the addition 
rule involve several arithmetic operations (adding, 
squaring, multiplication and inversion) in the underlying 
finite field. In affine coordinates, the elliptic group 
operation is given by the following.  
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Let P = (x1, y1) ∈E; then -P = (x1, x1 + y1). For all P ∈  E, 
O + P = P + O = P. If Q = (x2, y2) ∈  E and Q ≠ -P, then P 
+ Q = (x3 , y3), 

where 
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1
21

2
3 x

bxx +=   (9) 

 

33
1

1
11

2
3 )( xx

x
yxxy +++=   (10) 

 
if P = Q. 

 
Computing P + Q is called elliptic curve point addition 

if P ≠ Q and is called elliptic curve point doubling if P = 
Q. Point subtraction is a useful operation in some 
algorithms. This operation can be performed with the point 
addition or point doubling formulas using the additive 
inverse of the point to be subtracted. For example, the 
point subtraction P − Q can be computed using the point 
addition operation where: P − Q = P + (−Q). The additive 
inverse of a point P = (x, y) is the point (x, x + y) for 
curves defined over the GF(2m) fields.     

Scalar multiplication is the basic operation for ECC. 
Scalar multiplication in the group of points of an elliptic 
curve is the analogous of exponentiation in the 
multiplicative group of integers modulo a fixed integer m. 
Computing dP can be done with the straightforward 
double-and-add approach, as described in Algorithm 1, 
based on the binary expression of d = (dl-1,…,d0) where dl-1 
is the most significant bit of d. However, several scalar 
multiplication methods have been proposed in the 
literature. A good survey is presented by Gordon in [13].  
 
 
Algorithm 1: from most significant bit 

input P, d 
Q ← P  
for i from l-2 to 0 do 

Q ← 2Q 
if  di = 1 then Q ← Q + P 

output Q 

In the NAF method [14], signed digit 

representation are used ( i
l

i
idd 2

1

0
∑
−

=

= ), where }1,0{ ±∈id . 

NAF has the property that no two consecutive coefficients 
di are nonzero. Every positive integer d has a unique NAF, 
denoted NAF(d). Moreover, NAF(d) has the fewest 
nonzero coefficients of any signed digit representation of 
d (see Algorithm 2). 
 
Algorithm 2 (Binary NAF method): from most 
significant bit 

input P, NAF(d)= i
l

i
id 2

1

0
∑
−

=

 

Q ← O  
for i from l-1 to 0 do 

Q ← 2Q 
if  di = 1 then Q ← Q + P 
if  di = -1 then Q ← Q - P 

output Q 

4. Projective Coordinate in GF(2m) 

The projective coordinate are to eliminate the need for 
performing inversion. For elliptic curve defined over 
GF(2m), many different forms of formulas are found [9] 
for point addition and doubling. The projective coordinate 
system (Pr), so called homogeneous coordinates, have the 
form  (x,y)=(X/Z,Y/Z), while the Jacobian coordinate 
system have the form (x,y)=(X/Z2,Y/Z3). From the Jacobian 
coordinates, two other coordinates where proposed. These 
are: the Chudnovsky Jacobian coordinate system (Jc) 
representing the point with the quintuple (X, Y, Z, Z2, Z3) 
and the Modified Jacobian coordinate system (Jm) 
representing the point with the quadruple (X, Y, Z, aZ4).  

Mixed coordinate system was proposed in [15] leading 
to better performance. In Mixed coordinate system, point 
operations can be performed using different coordinate 
systems. Table 1 demonstrates all possible efficient 
combinations of different coordinate systems using Mixed 
coordinate system over GF(2m). Point addition using 
Mixed coordinate system can have the first point 
represented in a coordinate system and the other point in 
another coordinate system and the result also in another 
coordinate system. For point addition in Table 1, if the two 
points are represented using the same coordinate system, 
the result will be in the same coordinate system. If the two 
points are represented with two different coordinate 
systems, the result may be the coordinate of one of the two 
point’s coordinate system or another coordinate system. 
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Point doubling using Mixed coordinate system also can 
have the point in a coordinate system and the resulting 
point in the same coordinate system or in another 
coordinate system (see Table 1).  

5. The Proposed Cryptoprocessor  

The basic idea of the proposed architecture is exploit the 
parallelism at the projective coordinate level to increase 
both the performance and the resistance to timing attacks. 
Since multiplication is the most dominant operation and 
most time consuming when computing point operations in 
normal basis, point addition and point doubling are 
selected from Table 1 such that both point operations 
requires the same number of multiplication cycles. The 
dataflow of all combinations of Table 1 are investigated 
using parallel multipliers such that point addition and 
point doubling requires exactly the same multiplication 
cycles. This makes it impossible for an attacker to 
distinguish between point addition and point doubling via 
timing attacks. 

Table 1: Mixed Coordinate System. 
Addition Doubling 

(Jm+ Jm) (2Pr) 
(Jm+ Jc= Jm) (2Jc) 
(J+ Jc= Jm) (2J) 
(J+ J) (2Jm= Jc) 
(Pr+ Pr) (2Jm) 
(Jc+ Jc= Jm) (2A= Jc) 
(Jc+ Jc) (2Jm= J) 
(Jc+ J= J) (2A= Jm) 
(Jc+ Jc= J) (2A= J) 
(J+ A= Jm)  
(Jm+ A= Jm)  
(Jc+ A= Jm)  
(Jc+ A= Jc)  
(J+ A= J)  
(Jm+ A= J)  
(A+ A= Jm)  
(A+ A= Jc)  

   
In the proposed ECC cryptoprocessor, point 

addition is performed using Mixed coordinate system 
using the combination (Jc+ A= Jm) which requires 4 
multiplication cycles as illustrated in Fig. 1 where a circle 
represents a multiplication and rectangle represent either 
field addition or squaring. The input of point addition is a 
point represented in the Chudnovsky Jacobian (Jc) 
coordinate system and another point represented in affine 

coordinate system. The resulting point of point addition is 
represented in the Modified Jacobian (Jm) coordinate 
system.   

On the other hand, the input of point doubling is 
selected to be in Modified Jacobian (Jm) coordinate system 
and the resulting point is represented in Chudnovsky 
Jacobian (Jc) coordinate system. This requires  three 
multiplication cycles using three multipliers. However, we 
changed the dataflow scheduling to be performed within 
four multiplication cycles such that point addition and 
point doubling will require the same time exactly (see Fig. 
2). 

The proposed cryptoprocessor architecture uses 3 
multipliers, a cyclic shift register to perform squaring, an 
XOR unit for field addition and a register file. Only one 
cyclic shift register and XOR unit is used since both 
squaring and field addition requires only one clock cycle 
and hence it can be reused several times while a single 
multiplication operation is computed. Each of these 
arithmetic units can get operands from the register file and 
store the result in the register file. The controller generates 
control signals for all the arithmetic units and the register 
file (see Fig. 3).  

 

 

Fig. 1: Dataflow of point addition. 

Several normal basis multipliers have been proposed in 
the literature. The most well known and widely used is the 
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Massey-Omura bit-serial multiplier [16]. The Massey-
Omura bit-serial multiplier works for both the optimal 
normal basis of type I and type II. Massey-Omura 
multiplier is selected because it support both type I and 
type II optimal normal basis which makes the proposed 
architecture more parametric. Fig. 4 shows an example of 
the Massey-Omura bit-serial multiplier over GF(25). In the 
example shown in Fig. 4 we have  

 
c0 = a4b4 + (a0b1 + a1b0) + (a1b3 + a3b1) + (a2b4 + 
a4b2) + (a2b3 + a3b2)    (11) 

 
In order to obtain c1, simply rotate both A and B and use 
the same circuit. 

 
c1 = a0b0 + (a1b2 + a2b1) + (a2b4 + a4b2) + (a3b0 + 
a0b3) + (a3b4 + a4b3)    (12) 

 
The space complexity of Massey-Omura multiplier is 

(2m − 1) AND gates + (2m − 2) XOR gates, while the 
time complexity is TA+(1+ log2(m−1))TX, where TA and TX 
are the time delay of an AND and an XOR gates 
respectively. 

The proposed cryptoprocessor uses NAF method 
[14] for scalar multiplication. This increases the 
performance since the number of 1s in the private key will 
be on average 1/3 of the key bits instead of 1/2 of the key 
bits using the normal binary encoding. Accordingly, the 
number of point additions will be reduced.  

6. Results and Comparisons 

Chevallier-Mames et. al. in [17] proposed inserting fake 
computation within point doubling to make point doubling 
requires the same time of point addition which is very 
costly. The time complexity of the proposed work in [17] 
is {[15*n + 15*(n/2)] * n}, where point doubling and 
addition requires 15 multiplications using the Jacobian 
coordinate system in addition to the fake computations. 

More recently, Hodjat et. al. in [18] proposed a 
new scalar multiplication algorithm that inspects three bits 
at a time. The proposed work in [18] defined new dataflow 
for both point addition and point doubling. The time 
complexity to perform scalar multiplication of the 
proposed design in [18] is {[(18*(n+3) + (n+3)/2 +1)] * 
(n/3)}. However, the proposed work in [18] uses two 
multipliers and a squarer using polynomial basis where 
squaring requires 1/2 the time required for a multiplication. 

In this paper, the proposed cryptoprocessor is 
based on normal basis which squaring is implemented 
simply by a rotate operation which requires only one clock 

cycle.  Instead of using two multipliers as in [18], three 
multipliers are used to perform parallel field 
multiplications. The proposed cryptoprocessor requires 
{[4*n + 4*(n/3)] * n} to perform scalar multiplication 
using NAF method. The proposed cryptoprocessor 
performs point doubling and addition within four 
multiplication cycles. The number of point doubling and 
addition using NAF method is (n) and (n/3) respectively. 

Table 2 summarize the time complexities of the 
proposed designs in [17, 18] and the proposed design here. 
Fig. 5 shows the time complexity of these different 
designs. It is clear that the proposed cryptoprocessor here 
is the best among the others. The timing performance of 
proposed cryptoprocessor is better than the proposed 
design in [17] by 76% without losing the immunity against 
timing attacks. The proposed cryptoprocessor also 
performs better than the proposed design in [18] by 15%.   

The proposed cryptoprocessor has been 
synthesized on a Xilinx Vertex II FPGA (xc2v8000) over 
GF(2173). The total number of clock cycles on average, 
with 173 double and 58 add, required 159522 clock cycles 
and it required only 28154 out of 46592 Slices. The 
synthesis report showed that the minimum clock period is 
18.753 ns (7.962 ns logic, 10.792 ns route), which means 
that the maximum clock frequency is 53.323 MHz. 

 

Fig. 2: Dataflow of point doubling. 
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Fig. 3: The Proposed Architecture 

 
 
 

 
 

Fig. 4: Massey-Omura bit-serial multiplier over GF(25). 

  

 Table 2: The time complexity of different designs.  
Reference Design Time Complexity 
Chevallier-Mames et. al. 
[17] 

{[15*n + 15*(n/2)] * n} 

Hodjat et. al. [18] {[(18*(n+3) + (n+3)/2 +1)] * 
(n/3)} 

Presented here {[4*n + 4*(n/3)] * n} 
    

7. Conclusion 

In this paper we presented a high performance GF(2m) 
Elliptic Curve Cryptoprocessor. The proposed 
cryptoprocessor is based on normal basis representation 
and uses three multipliers to perform parallel field 
multiplications. Point operations are performed using 
Mixed coordinate system to increase the performance and 
the immunity against timing attacks. The basic idea is 
based on performing point addition point doubling such 
that both point operations requires the same number of 
multiplication cycles. This is done by scheduling the 
dataflow of point addition and point doubling to be 
computed within four multiplication cycles. Thus, an 
attacker cannot distinguish  between point doubling and 
point addition and therefore it is not possible to extract the 
key pattern using a timing attack.  

Results show that the proposed cryptoprocessor 
gives better time complexity than existing designs that use 
extra dummy computations by 76%. The proposed 
cryptoprocessor has been synthesized on a Xilinx Vertex II 
FPGA (xc2v8000) over GF(2173) and it required 159522 
clock cycles to perform scalar multiplication and it 
required 28154 Slices, which is only 60% out of the total 
number of available Slices.   
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Fig. 5: Time complexities of different designs. 
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