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Summary 
Real-time software runs over real-time operating systems, 
and guaranteeing qualities are difficult. In this paper, we 
propose timed weak simulation relation verification and 
apply it to a refinement design method of real-time 
software. Moreover, we apply our proposed method to 
general real-time software scheduled by fixed-priority 
preemptive policy.  
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1. Introduction 

Recently almost microprocessors are used in embedded 
systems. Real-time software runs in embedded systems. 
As real-time software is reactive and concurrent, and its 
timing conditions are strict, it is difficult to design real-
time software [1]. It is important to specify and verify real-
time software [2]. In this paper, we propose timed weak 
simulation relation verification method based on timed 
automata [3], and apply it to stepwise refinement of real-
time software over fixed priority preemptive schedulers 
[4].  
In general, real-time software is designed by dividing it 
into tasks [1]. In this case, it is difficult to design real-time 
software by the following points:  

(1)Real-time software consists of many tasks, which 
concurrently behave. Moreover, tasks interact with 
external environments. In this situation, it is useful to 
distinguish between internal events and external 
events in the sense of process algebra [5].  

(2)In real-time software, stepwise refinement is useful 
[6], and it is important to automatically verify 
whether the concrete specification refines the abstract 
specification.   

From the above results, we propose the followings:  
(1)We use nondeterministic timed automata, which have 

internal and external events. We construct real-time 
software by parallel composition of nondeterministic 
timed automata.  

(2)We verify whether the concrete specification refines 

the abstract specification based on a timed weak 
simulation.  

 
In general, refinement relations such as language inclusion, 
timed bisimulation and timed strong simulation are useful.   

(1)We can easily and naturally verify fairness and 
regularity as acceptance conditions by language 
inclusion. But if we specify verification properties 
using nondeterministic timed automata, language 
inclusion problems are undecidable [3]. On the other 
hand, R. Alur proposed an event-clock automata, 
which is a determinizable of timed automaton [7,8]. 
But an event-clock automaton is a subclass of a timed 
automaton, and accepts a finite timed word (though a 
general timed automaton accepts an infinite timed 
word). As the determinization of an event-clock 
automaton causes an exponential blow-up in the 
number of locations, the verification cost increases. 
Moreover, we can not verify some deadlock using 
language inclusion [9,10].  

(2)Timed bisimulation relation is useful for verifying a 
kind of invariant holding between the more concrete 
specification and the more abstract specification [11]. 
On the other hand, timed strong simulation relation is 
useful for verifying stepwise refinement [12]. But 
when we stepwise develop specifications, we may 
add exception procedures to the concrete 
specification, which are not contained in the abstract 
specification. Both timed bisimulation relation and 
timed strong simulation relation are not adequate for 
this reason.  

From the above result, we use timed weak simulation 
relation in order to verify whether the concrete 
specification refines the abstract specification.  
We survey related works as follows:  

(1)In 1992, Cerans has shown that timed strong and 
weak bisimulation equivalence problem for timed 
automata are decidable [11]. But he has not 
developed bisimulation algorithms.  

(2)In 1996, Tasiran and his colleagues have developed 
the verification algorithm of timed strong simulation 
relation [12]. But they have not developed a timed 
weak simulation relation.  

(3)In 1999, Braberman and his colleagues have 
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developed reachability analysis method of preemptive 
scheduling using timed automata [13]. But they have 
not developed refinement verification method.  

In this paper, we define a timed weak simulation 
relation, and propose the verification algorithm of timed 
weak simulation relation. Moreover we apply our 
proposed method to general real-time software scheduled 
by fixed-priority preemptive policy. To the best of our 
knowledge, timed weak simulation verification methods of 
timed automata have never been developed before now.  

The paper is organized as follows: In section 2, we 
define specification method. In section 3, we define timed 
weak simulation relation verification method and apply it 
to stepwise refinement of real-time software. In section 4, 
we present design support system and some example. 
Finally, in section 5, we present conclusions.  
 

2. Specification of Real-Time Software 

2.1 Syntax and Semantics of Timed Automata 

First we define clock and clock interpretation as follows:  
 

Definition 1(Clock and clock interpretation)  
Given a finite set of variables X={x1,..,xn}, a valuation is a 
function v:X→R, which assigns a nonnegative real value 
to each clock variable. We define VX as the set [X→R]. 0 
denotes the valuation that assigns the value 0 to each x∈X. 
For λ ⊆X, v[λ :=0] denotes the valuation that assigns the 
value 0 to each x∈λ  and agrees with v for all clocks in 
X\λ . Moreover, for every t∈R, v+t denotes the clock 
valuation for which all clocks x take the value v(x)+t.   □  
 
Next we define clock constraints.  
 

Definition 2(Clock constraints)   
For a set X of clock variables, the set Ψ X of clock 
constraints ψ  is inductively defined by   
         ψ ::=x～c|ψ 1Λ ψ 2 , 

where ～∈{≦,＝,≧}, c∈N.  
We write v|=ψ if the valuation v satisfies the formula ψ . 
For each clock x∈X, cx(Ψ X) denotes the maximal clock 
constant inΨ X.                                                               □ 
 
Next we define syntax of timed automaton by the 

followings:  
(1)As tasks interact with external environments and 

other tasks, we distinguish between internal events 
and external events as shown in Figure 1.  

(2)As we think only the external events cause reset 

actions, internal events can not reset clocks.  
 
 
 

 
 

Fig.1 External events and internal events of tasks 
 
 
Definition 3(Syntax of timed automat) 
A timed automaton G is a tuple <S,sinit,∑,X,inv,E>, where   

(1)S is the finite set of locations.  
(2)sinit  is an initial location.  
(3)∑=EXT∪INT is the finite set of events,   

where EXT is the finite set of external events, INT 
is the finite set of internal events.  

(4)X is the finite set of real-valued variables, called 
clocks.  

(5)inv:S→Ψ X is the invariant function that assigns Ψ X 
to each location s∈S.  

(6)E is the finite set of edges.   
Each edge e is a tuple <s, σ , ψ , λ ,s’>=e ∈ E 
consisting of the source location s, the target location 
s’, clock constraintψ ∈Ψ X, the set  λ of clocks to be 
reset, σ ∈∑is an event, whereλ =0  if σ ∈INT.  □ 

 
Next we formally define semantics of timed automata.  
 
Definition 4.(Semantics of timed automata) 
  A state of G is a pair <s,v> containing the location s∈S 
and the valuation v|=ψ . The set of all states is denoted Ω . 
The initial state is a pair < sinit,0>. For each state <s,v>, the 
transition is defined as follows:  
 
1. Discrete transitions:  
  

<s,σ ,ψ ,λ ,s’>∈E, v|=ψ , v[λ :=0] |=inv(s’) 
————————————————————-  
          σ  
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                        <s,v>→<s’,v’> 
 

,where v’= v[λ :=0].  
2. Timed transitions:  
  
δ ∈R, ∀δ ’≦δ  . v+δ ’|=inv(s)  implies <s,v+δ > 
————————————————————— 
         δ  
                        <s,v>→<s’,v’> 
 

,where v’=v+δ .  
A run of timed automaton is an infinite sequence as 
follows:  
                     l1                   l2                   l3 
        <sinit,0>→<s1,v1>→<s1,v1>→……………. 
,where  <sinit,0> is an initial state, <si,vi>∈Ω is a state, li∈ ( ∑ ∪ R) is a label.                                                         
□ 
 

In this paper, we assume that timed automaton is 
nonZeno. It is easy to verify whether a timed automaton is 
nonZeno or not using HYTECH [14].  
 
 

2.2 Parallel Composition of Timed Automata 

In this paper, we construct real-time software by 
parallel composition of tasks. We define parallel 
composition of timed automata as follows:   

(1)If the external event of a task is equal to the external 
event of environments, the task is synchronized with 
environments by the same external event.  

(2)As internal events of tasks are unobservable from 
environments, internal events of tasks and events of 
environments are disjoint.  

Definition 5(Parallel composition) 
 Let be two timed automata G1=<S1,sinit

1,∑1,X1,inv1,E1> 
and G2=<S2,sinit

2,∑2,X2,inv2,E2>. The parallel composition 
of G1 and G2 is the timed automaton G=<S,sinit,
∑,X,inv,E>, where ∑1=EXT1∪INT1, ∑2=EXT2∪INT2. 
Here INT1∩∑2=0 and ∑1∩INT2=0.  

(1)S⊆S1×S2 
(2)sinit=(sinit

1, sinit
2) 

(3)∑=EXT∪INT,  
where EXT=EXT1∪EXT2 and INT=INT1∪INT2.  

(4)X=X1∪X2 
(5)inv((s1,s2))=inv1(s1)Λ inv2(s2) 
(6)<s,σ ,ψ ,λ ,s’>∈E,  

where for <s1,σ ,ψ 1,λ 1,s’1>∈E1 and <s2,σ ,ψ 2,λ 2,s’2>∈E2, each element is as follows:   
(a)When σ∈∑1∩∑2, s=(s1,s2), ψ =ψ 1Λ ψ 2,  

λ =λ 1∪λ 2, s’=(s1’,s2’).  
 

 (b) When σ∈∑1 and ∑2 does not contain σ  , 
s=(s1,s2), ψ =ψ 1,λ =λ 1, s’=(s1’,s2).  

(c) When σ∈∑2 and ∑1 does not contain σ  , 
s=(s1,s2), ψ =ψ 2,λ =λ 2, s’=(s1,s2’).             □ 

 

2.3 Specification Method 

We decide parameters such as priorities and timing 
constraints by V. Braberman’s method [13], which is 
based on WCRT(Worst Case Response Time) [15].  
First we define Worst-Case Response Time as follows:  

 
Definition 6(Worst-Case Response Time)   
If every task j, j<i, has higher priority than task i, the 
worst-case response time Ri of task i is given as recursive 
equation(i=1,…,n). The (k+1)-th worst-case response time 
Ri(k+1) for task i is as follows(k≧0): 
 
                      i-1            Ri(k)

 

      Ri(k+1)   = ∑ (「―」)×Cj ) + Ci 
                      j=1           Tj 

 
,where period Ti, execution time Ci, deadline Di of a 

periodic task i. We can compute Ri=lim k → ∞  Ri(k) as 
Ri(0)=Ci. 「」denotes the integral part.                         □ 
 
Using Ri, we can check whether real-time software is 
schedulable or not as follows:  
    

Real-time software is schedulable if the following 
condition is satisfied:  

For ∀i, Ri≦Di (i=1,..,n) holds true.[15]  
 

Next we specify real-time software using timed 
automata. In general, it is not possible to exactly specify 
preemptive scheduling using timed automata. Therefore, R. 
Alur and T.A. Henzinger have specified preemptive 
scheduling using hybrid automata [16]. In this paper, we 
approximately specify timing constraints by cmin≦x≦cmax 
using timed automata, where we set cmin using timing 
constraints of edges, and set cmax  using worst-case 
response time. Therefore, we can realize the automatic 
verification of timed weak simulation relation. If we 
specify real-time software of preemptive scheduling using 
hybrid automata, it is not possible to automatically verify 
timed weak simulation [17].  
 
Example 1 (Specification of tasks) 
We specify periodic and sporadic tasks over preemptive 
schedulers as shown in Figure 2. 
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(1)Timed automata of tasks contain parameters as 
follows:  
(a)T1 and T2 are periodic times,  
(b)C1 and C2 are minimum response times,  
(c)R1and R2 are worst-case response times,  

where C1≦R1≦T1 and C2≦R2≦T2.  
(2)Each node of tasks is as follows:  

(a)dormant1 and dormant2 are idle states,  
(b)ready1 and ready2 are ready states,  
(c)run1 and run2 are execution states.  

(3)Each event of tasks is as follows:  
(a)start1 and start2 are events, which represent task 

invocation system calls,  
(b)dispatch1 and dispatch2 are events, which 

represent task dispatch system calls,  
(c)end1 and end2 are events, which task terminate 

system calls.  
(4)Each clock of tasks is as follows:  

(a)t1 and t2 measure response time since task arrivals,  
(b)x1 and x2 measure execution time.                      □ 

 

 
Fig.2 Example of a periodic task and an aperiodic task 

 
 

3. Refinement Design Method                                        

It is important to design real-time software by stepwise 
refinement as real-time software is a complex system. In 
this case, it is important to verify whether the concrete 
specification is satisfied by the abstract one or not.  
First we define a timed weak simulation. Next we define 

the verification method of a timed weak simulation. 

Finally we explain the stepwise refinement design method 
of real-time software. 

3.1 A timed weak simulation 

First we define observable transitions as follows:  
 
Definition 7(Observable transitions)  
 For each state <s,v>∈Ω  of timed automaton G=<S,sinit,
∑,X,inv,E>, observable transitions are defined as follows:  
                        ε                                            τ  

Here Let ⇒ if and only if (→)＊ , where ∑=EXT∪
INT and τ ∈INT.  
(1)For an external event σ ∈EXT,   
                      σ                                          ε    σ    ε  

Define <s,v>⇒<s’,v’> as <s,v>⇒→⇒<s’,v’>.   
 
(2)For delay δ 1,..,δ k,  δ ∈R,  

                         δ                                          ε   δ 1        ε   δ k  ε  

Define <s,v>⇒<s’,v’> as <s,v>⇒→….⇒→⇒<s’,v’>. 
In this case, a state <s,v> is called stable from 
environments, and we denote wait(<s,v>),  
whereδ 1+..,+δ k=δ .                                                □ 

  
Definition 8(Timed weak simulation) 

Let G1=<S1,sinit
1,∑ 1,X1,inv1,E1> and G2=<S2,sinit

2,  ∑2 ,X2,inv2,E2> be two timed automata. A timed weak 
simulation relation from G1 to G2 is a binary relation Sim
⊆Ω 1×Ω 2 if the following three conditions are satisfied. 
Moreover we denote G1《G2 if there exists a timed weak 
simulation relation, where Ω 1 is the set of  <s1,v1>,Ω 2 is 
the set of <s2,v2>, ∑1=EXT1∪INT1, ∑2=EXT2∪INT2, 
s1,s1’∈S1, v1,v1’∈VX1, s2,s2’∈S2, v2,v2’∈VX2. 

(1)External event condition:   
    EXT1⊆EXT2 

(2)Simulation condition:   
  For every (<s1,v1>,<s2,v2>)∈Sim and for every θ ∈
(EXT1∪R),   

                θ  

if  <s1,v1>⇒<s1’,v1’> then there exists <s2’,v2’>  
such that   θ  

         <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈Sim. 
We show simulation condition in Figure 3.  

(3)Initial condition:  
    (<sinit

1,0>,<sinit
2,0>)∈Sim.                                  □ 
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Fig.3 Simulation condition 

3.2 Verification method of a timed weak simulation 

We achieve a timed weak simulation by converting this 
check to a finite check on the finitely many equivalence 
classes, which is called a region weak simulation relation. 
First we define a region graph, and next define a region 
weak simulation, and the conversion technique. Finally we 
show the verification algorithm of a timed weak 
simulation.  

3.2.1. Region graph 

Since the number of states is infinite, we cannot possibly 
build a finite automaton. But if two states with the same 
location agree on the integral parts of all clock values, and 
also the ordering of the fractional parts of all clock values, 
then the runs starting from the two states are very similar. 
From the above facts, we can construct region graphs, 
which are finite quotient structures by equivalence 
relations [3].  
First we define equivalence relations of clock values.  
 
Definition 9(Equivalence relations of clock values) 
Let VX be the set of clock values, and Ψ X be the set of 
clock constraints. For any t∈R, 「t」denotes the integral 
part of t, and fract(t) denotes the fractional part of t. For v, 
v’∈VX, v and v’ are equivalent iff the following three 
conditions are satisfied. We denote v⇔v’.  

(1)For clock x∈X, 「v(x) 」 and 「v’(x) 」are the 
same, or both v(x) and v’(x) are greater than cx(Ψ X). 

(2)For all x,y∈X with v(x)≦cx(Ψ X) and fract(v(x)) ≦
fract(v(y)) iff fract(v’(x)) ≦fract(v’(y)).  

(3)For x∈X with , v(x)≦cx(Ψ X) and fract(v(x)) =0 iff 
fract(v’(x))=0.                                                         □ 

 
We use [v] to denote the clock region to which v belongs.  
Next we define the successor of equivalence classes.  
 
Definition 10(Successor of equivalence classes) 
 Let α and β be distinct clock equivalence classes of VX 
andΨ X. For each v∈α  and any δ ∈R, we define the 
successor of equivalence classes:   

(1)We denote β =succ0(α ) iff there existsδ  such that 

α =β  andδ ∈β .  
(2)We denoteβ =succ1(α ) iff there exists δ ’≦δ  such 

thatα ≠β  and v+δ ’∈ α ∪β and v+δ ∈β .    □ 
 
Region is denoted by <s,[v]>, or, <s, α >.  
 
Next we define region graph of timed automaton as 
follows:  
 
Definition 11(Region graph) 
For a timed automaton G=<S,sinit, ∑ ,X,inv,E>, the 
corresponding region graph R(G)=<Q,qinit,L,N> consists 
of four tuples:  

(1)the finite set of states Q.  
(2)the initial state qinit∈Q, where qinit=<sinit,0>.  
(3)the finite set of labels L=∑∪SUCC, where SUCC is 

the set of labels, which represent successor relations 
of equivalence classes.  

(4)a set of transition relations N⊆Q×L×Q.  For any <s, 
α >, a set of transition relations are defined as 
follows:  

                                             σ  

(a) If there exists <s,v>→<s’,v’> such that v’∈β  
for each v∈α ,it is possible to transit to <s’, β > 
by an event,                  σ  
and we denote <s, α >→<s’, β >.  
                                     δ  

(b) If there exists <s,v> → <s,v’> such that β
=succ1(α ) and v’ ∈β  for each v∈α , it is 
possible to transit to  <s, β > by a time delay,  

                                             succi 

and we denote <s, α >→<s, β > (i=0,1), where 
succi∈SUCC.                                               □ 

 
Example 2(Example of region graph)   
We construct region graph from timed automaton G in 
Figure 4. The following transition relations over node s1 
and s2 are constructed, where initial clock values are v1=0, 
v2(x)=0Λ v2(y)=1.  

(1)the transition relation over node s1:   
For the state transition   

             0.5                             0.2                           0.3                            a 

 <s1,v1>→<s1,v1+0.5>→<s1,v1+0.7>→<s1,v1+1>→<s2,v2> 
, the transition relation of regions   
              succ1                  succ0 
<s1,[v1]>→<s1,[v1+0.5]>→<s1,[v1+0.7]> 
                                                succ1                 a →<s1,[v1+1]>→<s2,[v2]> 

The equivalence classes of  s1 are classified into v1=(x-
y=0), [v1+0.5]=[v1+0.7]=(0<x=y<1), [v1+1]=(x=y=1).  

(2)the transition relation over node s2:   
For the state transition   
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             0.2                            0.3                              0.5                           b 

 <s2,v2> → <s2,v2+0.2> → <sw,v2+0.5> → <s2,v2+1> →
<s1,v1> 
, the transition of regions   
              succ1                  succ0 
<s2,[v2]>→<s2,[v2+0.2]>→<s2,[v2+0.5]> 
                                                succ1                 b →<s2,[v2+1]>→<s1,[v1]> 
The equivalence classes of s2 are classified into 
[v2]=(x=0,y=0),[v2+0.2]=([v2+0.5]=(0<x<1<y<2,fr(x)=fr(
y)),[v2+1]=(x=1,y=2). 

We can construct equivalence classes (2) and region 
graph R(G)  (3) from timed automaton (1).                  □ 
 

 

Fig.4. Example of a region graph 

 

3.2.2. Region weak simulation relation 

We will show that the problem of checking the existence 
of a timed weak simulation relation is decidable. We 
achieve this by converting this check to a finite check on 
the finitely many equivalence classes of an equivalence 
relation (what we call region weak simulation relation) 
defined on parallel composition of timed automata.  
We define a region weak simulation relation on parallel 
composition of timed automata from the following 
reasons:  

(1)We can construct all the pairs of (<s1,v1>,<s2,v2>)∈
Sim as <(s1,s2),v12> of parallel compostion of timed 
automata, where s1 and s2 are the node and clock 
value of timed automaton 1, s2 and v2 are the node 
and clock value of timed automaton 2, v12 is the clock 
values of parallel composition of timed automaton 1 

and 2. Therefore a set of state pairs Sim, which 
represent region weak simulation relation, is a subset 
of a set of states of product automaton (parallel 
composition of timed automata) Ω G1∥G2. Namely, 
Sim⊆Ω G1∥G2.  

(2)As it is easy to trace the relation between v1 and v2, 
we trace it by v12 of product automaton.  

                                             δ  

(3)If one timed automaton has  <s1,v1>→<s1,v1’> and  
                                                                δ  

another timed automaton has  <s2,v2>→<s2,v2’>,  
                                                             δ  
product automaton has  <(s1,s2,)v12>→<(s1,s2,)v12’>. 
Therefore we easily represent two timed automata by 
product timed automaton.  

 
Definition 12( R(G1∥G2) )  
 We construct product timed automaton G1∥G2 from G1 
and G2 by parallel composition, where EXT1⊆EXT2. We 
define the region of region graph R(G1∥G2) as <(s1,s2),α
>, where s1∈S1,s2∈S2, α  is the equivalence class of    
VX1∪X2 and Ψ X1∪X2. Let QG1∥G2 be the set of equivalence 
classes on G1∥G2, where <(s1,s2),α >∈QG1∥G2. With 
R(<s1,v1>,<s2,v2>), denote the equivalence class <(s1,s2),α >  that the state (<s1,v1>,<s2,v2>)∈Ω G1∥G2 belongs to.  
For any region <(s1,s2),α >, observable transitions are as 
follows:  

(1)For an external event σ ∈EXT,   
                                      σ                                           

Define <(s1,s2),α >⇒<(s1’,s2’),β >  
             ε    σ    ε  

as  <(s1,s2),α >⇒→⇒<(s1’,s2’),β >.   
 
(2)For succi∈SUCC,  

                                 succi                                        

Define <(s1,s2),α >⇒<(s1’,s2’),β > (i=0,1) 
                                           ε  succi  ε   

as  <(s1,s2),α >⇒→⇒<(s1’,s2’),β >.  □ 
 
Next we define a region weak simulation relation on 
region graph R(G1∥G2) 
.  
Definition 13(Region weak simulation relation) 
 We say that Χ ⊆QG1∥G2 is a region weak simulation from 
G1 to G2 iff for each R(<s1,v1>,<s2,v2>) ∈ Χ  , the 
following three conditions are satisfied.  

(1)For every σ ∈EXT,   
                         σ  
        If  <s1,v1>⇒<s1’,v1’>,  then 
                                            σ  
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 <s2,v2>⇒<s2’,v2’> 
and                             σ  
     R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>) 
 

    such that R(<s1’,v1’>,<s2’,v2’>)∈Χ .  
(2)If wait(<s1,v1>), for any succi∈SUCC,  then  

                                  succi 
     R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>) 
 

    such that R(<s1’,v1’>,<s2’,v2’>)∈Χ .(i=0,1) 
(3) R(<sinit

1, 0>,<sinit
2,0>)∈Χ                                    □ 

  
Theorem 1(Timed weak simulation and region weak 
simulation) 
 For R(<s1,v1>,<s2,v2>)∈Χ , let RΧ ={(<s1,v1>,<s2,v2>)| 
R(<s1,v1>,<s2,v2>)∈Χ }. RΧ  is a weak timed simulation 
relation from G1 to G2 iff Χ  is a region weak simulation 
relation from G1 to G2.   
Proof 1.  
We prove it by dividing it into two cases.  

(l)To prove that if RΧ  is a weak timed simulation relation 
from G1 to G2, Χ  is a region weak simulation relation 
from G1 to G2:   
Assuming that RΧ  is a weak timed simulation relation 

from G1 to G2. From the definition, we can directly prove
Χ  is a region weak simulation relation from G1 to G2.  
 
(ll)To prove that if Χ  is a region weak simulation relation 
from G1 to G2, RΧ  is a weak timed simulation relation 
from G1 to G2:   
Assuming that Χ is a region weak simulation relation 

from G1 to G2. For some θ ∈(EXT∪R),(<s1,v1>,<s2,v2>)
∈RΧ  

                          θ  

and  <s1,v1>⇒<s1’,v1’>.   
We need to show that   

there exists <s2’,v2’> such that  
        θ  

<s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ  . 
(1)Whenθ  is σ ∈EXT:   
From the definition of R(G1∥G2), there exists <s2’,v2’> 
such that   
                          σ  

    <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ  . 
 
(2)When θ  is δ ∈R:   
Let be R(<s1,v1>,<s2,v2>)=<(s1,s2),[v]> and 
R(<s1’,v1’>,<s2’,v2’>)=<(s1’,s2’),[v’]>.  
First we define equivalence classes α 0,…, α k+1 
corresponding to v as follows:  
               α 0=[v] 

               α i+1=succ1(α i)   (0≦i≦k) 
Next we define real values δ 1,…,δ k,δ ’ and clock values 
v(0),…,v(k) corresponding toα i as follows:  
                v(0)=v 
                v(i+1)=v(i) +δ i+1∈α i+1    (0≦i<k) 
                v’= v(i) +δ ’∪α i+1            (i=k) 
As there exists k such that δ =δ 1+…+δ k+δ ’, there are 
two cases(k≧0). 
(a)k=0:   
In this case, as v’ ∈α 0 ∪α 1 byδ =δ ’, the transition is 
as follows:   
                                    succi 

              <( s1,s2), α 0>⇒<( s1,s2), α i> 
Therefore clearly, there exists <s2’,v2’> such that   
                        δ  

   <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ .  
(b)k>0:   
We consider the following regions as  
                            δ i+1 
    <( s1

(i),s2
(i)  ), vi>⇒<( s1

(i+1),s2
(i+1)  ), vi+1> 

of  G1 ∥G2 (0≦i≦k). 
(i )<( s1

(0),s2
(0)  ), α 0>= <( s1,s2

 ), [v]> 
                                   succi 

    (ii) <( s1
(i),s2

(i)  ), α i>⇒<( s1
(i+1),s2

(i)+1  ), α i+1> 
(iii) <( s1

(i),s2
(i)  ), α i>∈Χ  

<( s1
(k),s2

(k)  ), α k> ∈ Χ  is inductively derived from  
<( s1,s2

 ), [v]> .  As v’ ∈α k ∪α k+1 by  δ =δ 1+…+δ k+δ ’, we get the following transition: 
                          succj 

       <( s1
(k),s2

(k)  ), α k>⇒<( s1’,s2’ ), α k+j>. 
Therefore clearly there exists <s2’,v2’>  such that   
                        δ  

 <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ .  □ 
 

3.2.3. Verification algorithm of timed weak 
simulation 

We define the verification algorithm of a timed weak 
simulation as follows:  
Definition 14(Verification algorithm of a timed weak 
simulation ) 
For the concrete specification GL and the abstract 
specification GH we construct GL∥GH, and the region 
graph R(GL∥GH). In this case, we define the verification 
algorithm in order to verify whether there exists a timed 
weak simulation from GL to GH. Basically first we define 
Χ (0), and inductively computeΧ (k+1) from Χ (k). First if 
EXT2 does not contain EXT1, there does not exists a timed 
weak simulation relation. If EXT1⊆EXT2, we compute the 
followings:  
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(1)First we compute the relation Χ (0) =QGL ∥ GH, and 
initialize k by k:=0.  

(2)Next we inductively compute Χ (k+1) from Χ (k) by 
repeating the following procedures (k≧0)  

    (a) Χ (k+1)=0 
(b)If R(<s1,v1>,<s2,v2>)∈Χ (k), we set  

Χ (k+1)= Χ (k+1)∪{R(<s1,v1>,<s2,v2>)}  
when the two following conditions are satisfied.   

( i)For everyσ ∈EXT, if there exists <s1’,v1’>such 
that             σ                σ  

                     <s1,v1>⇒<s1’,v1’> and  <s2,v2>⇒<s2’,v2’> 
                                            σ  
            , R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>),  
            and R(<s1’,v1’>,<s2’,v2’>)∈Χ (k). 

(ii)If wait(<s1,v1>), for every succi∈SUCC, 
                                          succi 

             R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>)  
and R(<s1’,v1’>,<s2’,v2’>)∈Χ (k).(i=0,1)   

(c)If Χ (k+1)=Χ (k), go to (3). If Χ (k+1)≠Χ (k), set k:=k+1, 
and return (2)(a).   

(3)If Χ (k+1) includes R(<sinit
1,0>,<sinit

2,0>), we decide Χ  is 
a timed weak simulation relation. If not so, we decide Χ  is 
not a timed weak simulation relation.                             □ 
 
As this algorithm can be formalized as the greatest 

fixpoint computation, the algorithm terminates.  
 

3.3. Stepwise refinement design method 

We represent both the abstract specification and the 
concrete one by nondeterministic timed automata, and 
verify the consistencies between them by a timed weak 
simulation relation.  
 
Definition 15(Stepwise refinement design method) 
The stepwise refinement design method of real-time 
software consists of the following procedures. We 
illustrate it in Figure 5.  
(1)First we decide task priorities and parameters by 

WCRT, and specify TASKi
(0) by timed automata 

(i=1,…,n), where n is a number of tasks and  (0) is the 
level of refinement.  

(2)Next we refine TASKi
(k) into TASKi

(k+1), and specify 
TASKi

(k+1)  by timed automata (k≧0).  
(3)Finally, we construct SOFT(k)= TASK1

(k) ∥ … ∥
TASKn

(k) and SOFT(k+1)= TASK1
(k+1) ∥ … ∥

TASKn
(k+1) . We revise SOFT(k+1) until there exists a 

timed weak simulation relation from SOFT(k+1) to 
SOFT(k).  

(4)We repeat the above step (1)-(3), and specify the final 
one.                                                                            □ 

4. Example of refinement design 

In this paper, we show our proposed method effective by a 
plant system.  

4.1. Design support system 

In this paper, we implement our proposed method as 
design support system as shown in Figure 6. The design 
support system is implemented by C++ language(7000 
lines) on Sun Blade1000(CPU UltraSPARC-III 900MHz, 
Main memory 1GB).  
 
 

 
Fig.5 Image of a hierarchical refinement design method 
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Fig.6 Configuration of the design support system 

4.2. A plant system 

The plant system is an embedded real-time system, and 
behaves by fixed priority preemptive scheduling.  
 

 
Fig.7 Architecture of the plant system 

 
The plant system is shown in Figure 7. The plant system 

samples data from Sensor, and controls Valve, and outputs 
information on Display. If Sensor is in bad condition, this 
information is announced to administrator by Lamp. Even 
if Sensor is in bad condition, the plant system continue to 
behave by control data. The real-time software of the plant 
system consists of two periodic tasks such as SAMPLER 
and MANAGER. The two tasks communicate with each 
other by QUEUE.  
We explain each task and resource as follows:  

(1)A periodic task SAMPLER:   

We design SAMPLER as T1=20 and C1=6. SAMPLER 
samples signals from Sensor, and decides the state of the 
plant by analyzing signals. If the state changes, 
SAMPLER sends control data to MANAGER via 
QUEUE (This processing takes at least 5 time). If the 
state does not change, SAMPLER does not send control 
data (This processing takes at least 3 time).  

(2)A periodic task MANAGER:   
We design MANAGER as T2=20 and C2=10. 
MANAGER receives control data from SAMPLER via 
QUEUE. If there exists data in QUEUE, MANAGER 
analyzes the data, and controls Valve, and indicates 
system information on Dispaly (This processing takes at 
least 8). If there does not exist data, MANAGER updates 
system information on Display(This processing takes at 
least 4).  

(3)Shared resource QUEUE:   
QUEUE can store two data, and is used for task 
commmunications. The access to QUEUE takes 1.  
 
In this paper, we think the plant system is implemented 

by rate monotonic scheduling. Therefore this rate 
monotonic scheduling algorithm assigns priorities to tasks 
based on their periods: the shorter the period, the higher 
the priority. Moreover, we assume Di=Ti (i=1,2). We 
compute WCRT(Worst Case Response Time) [15]. From 
the results, we can determine two tasks are schedulable. 
The parameters are shown in Table 1.  

Table 1 List of timed parameters of tasks 
task Ti Ci Bi Ri 
SAMPLER 20 6 1 7 

MANAGER 30 10 0 16 

 
 

4.2.1. Specification of the plant system 

We design the plant system, and specify it by timed 
automata.  
First we show external events in Table 2. External events 

are classified into three types such as system call, task 
control and API(APplication Interface).  

Table 2  List of external task events 
TYPE EXTERNAL 

EVENT 
EXPLANATION

system call starti task start 
system call endi task terminate 
system call push_queue send to QUEUE 
system call pop_queue Receive from 

QUEUE 
task control dispatchi CPU assignment 
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API read_sensor Sensor input 
API write_lamp Lamp output 
API write_display Display output 
API write_valve Valve output 
 
 
Next we show the shared resource QUEUE in Figure 8.  
 

 
Fig. 8 Specification of the shared resource QUEUE 

Next we design the abstract specifications SAMPLER(0) 
and MANAGER(0), and specify them by timed automata, 
and show them in Figure 9 and 10. In abstract specification, 
we specify only external events and abstract behaviors. For 
example, we specify SAMPLER(0) by 
nondeterministically behaving write_lamp.  
 

 
Fig. 9. Specification of the periodic task SAMPLER(0) 

 

 
Fig. 10. Specification of the periodic task MANAGER(0) 

Finally we design the concrete specifications 
SAMPLER(1)  and MANAGER(1), and show them in 
Figure 11 and 12. We refine the abstract specification into 
the concrete one by adding internal behaviors, 
transforming nondeterministic behaviors into deterministic 
behaviors and specifying detailed timing constraints. For 
example, SAMPLER(1) executes read_sensor once or 
twice, and if it fails, SAMPLER(1) executes 
make_alternate_data. As the deviation of control data is 
larger the processing of write_valve takes longer time, in 
MANAGER(1), derivation_Small takes 1, 
derivation_Medium takes 2 and derivation_Large takes 3.  
 

 

Fig. 11. Specification of the periodic task SAMPLER(1)  
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Fig. 12. Specification of the periodic task MANAGER(1)  

4.2.2. Verification experiment 

We verify whether SOFT(1) 《 SOFT(0)  holds true or not 
using our design support system, where the abstract 
specification is defined as SOFT(0)=SAMPLER(0) ∥
MANAGER(0) ∥ QUEUE, the concrete specification is 
defined as SOFT(1)=SAMPLER(1) ∥ MANAGER(1) ∥
QUEUE. We measured required memory and execution 
time using ps command, and show them in Table 3. In 
region graph R(SOFT(0)∥SOFT(1) ), the number of the 
equivalence classes is 62367, the number of regions of  
Q SOFT(0)∥SOFT(1) is 1645498 and the number of members 
of region weak simulation Χ  is 1408290.  

  

Table 3. List of results of experiments 
the num. 
of 
regions 

the num. 
of 
transitions 

the num. 
of clocks 

required 
memory 

execution 
time 

1645498 3406342 10 325744 
kB 

62.30min

 
 
 
The members of the set Χ , which are contained in the 

region weak simulation relation are the followings:  

An initial state pair 
R(<(dormant1,dormant2,empty),[t1=x1=t2=x2=y=0]>, 

< (dormant3,dormant4,empty),[t3=x3=t4=x4=y=0] >),  
      ……………………. 

……………………. 
R(<(run1-3,run2-2,empty),[t1 ≦ 7,x1 ≧ 0,t2 ≦ 16,x2 ≧ 0,y ≧
0]>,< (run3-4,run4-4,empty),[ t3≦5,x3≧0, 2≦t4≦9,x4≧1,y
≧0] >),  
R(<(done1-1,run2-2,1element),[t1≦7,x1≧0,t2≦16,x2≧0,y
≧0]>,<(done3-1,run4-4,1element),[ t3≦7,x3 ≧0, 2≦ t4≦
9,x4≧1,y≧0] >),  

……………………. 
……………………. 

 
For example, we focus on  

 R(<(run1-3,run2-2,empty),[t1≦7,x1≧0,t2≦16,x2≧0,y≧
0]>,<(run3-4,run4-4,empty),[t3≦5,x3≧0, 2≦t4≦9,x4≧1,y
≧0]>).  
Here we consider the followings: 
           ε   push_queue ε  

<run1-3,[t1≦7,x1≧0]>⇒    →    ⇒<done1-1,[t1≦7,x1≧0]>, 
ε   push_queue ε  

<run3-4,[t3≦5,x3≧0]>⇒    →    ⇒<done3-1,[t3≦7,x3≧0]> 
ε   push_queue ε  

<empty,[y≧0]> ⇒    →    ⇒<1element,[y≧0] >. 
Therefore, we can get the followings:  
R(<(done1-1,run2-2,1element),[t1≦7,x1≧0,t2≦16,x2≧0,y
≧0]>,<(done3-1,run4-4,1element),[ t3≦7,x3 ≧0, 2≦ t4≦
9,x4≧1,y≧0] >). 
 
As an initial region is contained in Χ , SOFT(1) 

《 SOFT(0) is satisfied. Namely, there exists a timed weak 
simulation from the concrete specification to the abstract 
one.  
Though the verification cost is large, we can specify both 

the abstract and the concrete specifications of real-time 
software using timed automata, and automatically verify 
whether there exists a timed weak simulation from the 
concrete specification to the abstract one.  
 

5. Conclusion 

In this paper, we have proposed the following stepwise 
refinement design methodology of real-time software.  
(1)First as we extend general timed automata by 

distinguishing between internal and external events, this 
timed automata are suitable for stepwise specifying and 
designing real-time software.  

(2)Next we automatically verify whether there exists a 
timed weak simulation relation from the concrete 
specification to the abstract one.   
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To the best of our knowledge, a timed weak simulation 
verification methods of timed automata have never been 
developed before now.  
We are now planning to do the following works: 

(1)We will develop the effective verification techniques 
such as Assume-Gurantee and Abstraction in order to 
verify large software.  

(2)We will apply our proposed method to practical 
problems.   
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