
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

192

Manuscript received August, 2005.
Manuscript reviced September, 2005.

Timed Weak Simulation Verification and its application to
Stepwise Refinement of Real-Time Software

Satoshi Yamane†

†Graduate School of Natural Science&Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 J
apan

Summary
Real-time software runs over real-time operating systems,
and guaranteeing qualities are difficult. In this paper, we
propose timed weak simulation relation verification and
apply it to a refinement design method of real-time
software. Moreover, we apply our proposed method to
general real-time software scheduled by fixed-priority
preemptive policy.
Key words:
Refinement Design Method, Real-Time Software, Timed Weak
Simulation Relation, Verification, Real-Time Scheduling

1. Introduction

Recently almost microprocessors are used in embedded
systems. Real-time software runs in embedded systems.
As real-time software is reactive and concurrent, and its
timing conditions are strict, it is difficult to design real-
time software [1]. It is important to specify and verify real-
time software [2]. In this paper, we propose timed weak
simulation relation verification method based on timed
automata [3], and apply it to stepwise refinement of real-
time software over fixed priority preemptive schedulers
[4].
In general, real-time software is designed by dividing it
into tasks [1]. In this case, it is difficult to design real-time
software by the following points:

(1)Real-time software consists of many tasks, which
concurrently behave. Moreover, tasks interact with
external environments. In this situation, it is useful to
distinguish between internal events and external
events in the sense of process algebra [5].

(2)In real-time software, stepwise refinement is useful
[6], and it is important to automatically verify
whether the concrete specification refines the abstract
specification.

From the above results, we propose the followings:
(1)We use nondeterministic timed automata, which have

internal and external events. We construct real-time
software by parallel composition of nondeterministic
timed automata.

(2)We verify whether the concrete specification refines

the abstract specification based on a timed weak
simulation.

In general, refinement relations such as language inclusion,
timed bisimulation and timed strong simulation are useful.

(1)We can easily and naturally verify fairness and
regularity as acceptance conditions by language
inclusion. But if we specify verification properties
using nondeterministic timed automata, language
inclusion problems are undecidable [3]. On the other
hand, R. Alur proposed an event-clock automata,
which is a determinizable of timed automaton [7,8].
But an event-clock automaton is a subclass of a timed
automaton, and accepts a finite timed word (though a
general timed automaton accepts an infinite timed
word). As the determinization of an event-clock
automaton causes an exponential blow-up in the
number of locations, the verification cost increases.
Moreover, we can not verify some deadlock using
language inclusion [9,10].

(2)Timed bisimulation relation is useful for verifying a
kind of invariant holding between the more concrete
specification and the more abstract specification [11].
On the other hand, timed strong simulation relation is
useful for verifying stepwise refinement [12]. But
when we stepwise develop specifications, we may
add exception procedures to the concrete
specification, which are not contained in the abstract
specification. Both timed bisimulation relation and
timed strong simulation relation are not adequate for
this reason.

From the above result, we use timed weak simulation
relation in order to verify whether the concrete
specification refines the abstract specification.
We survey related works as follows:

(1)In 1992, Cerans has shown that timed strong and
weak bisimulation equivalence problem for timed
automata are decidable [11]. But he has not
developed bisimulation algorithms.

(2)In 1996, Tasiran and his colleagues have developed
the verification algorithm of timed strong simulation
relation [12]. But they have not developed a timed
weak simulation relation.

(3)In 1999, Braberman and his colleagues have

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

193

developed reachability analysis method of preemptive
scheduling using timed automata [13]. But they have
not developed refinement verification method.

In this paper, we define a timed weak simulation
relation, and propose the verification algorithm of timed
weak simulation relation. Moreover we apply our
proposed method to general real-time software scheduled
by fixed-priority preemptive policy. To the best of our
knowledge, timed weak simulation verification methods of
timed automata have never been developed before now.

The paper is organized as follows: In section 2, we
define specification method. In section 3, we define timed
weak simulation relation verification method and apply it
to stepwise refinement of real-time software. In section 4,
we present design support system and some example.
Finally, in section 5, we present conclusions.

2. Specification of Real-Time Software

2.1 Syntax and Semantics of Timed Automata

First we define clock and clock interpretation as follows:

Definition 1(Clock and clock interpretation)
Given a finite set of variables X={x1,..,xn}, a valuation is a
function v:X→R, which assigns a nonnegative real value
to each clock variable. We define VX as the set [X→R]. 0
denotes the valuation that assigns the value 0 to each x∈X.
For λ ⊆X, v[λ :=0] denotes the valuation that assigns the
value 0 to each x∈λ and agrees with v for all clocks in
X\λ . Moreover, for every t∈R, v+t denotes the clock
valuation for which all clocks x take the value v(x)+t. □

Next we define clock constraints.

Definition 2(Clock constraints)
For a set X of clock variables, the set Ψ X of clock
constraints ψ is inductively defined by
 ψ ::=x～c|ψ 1Λ ψ 2 ,

where ～∈{≦,＝,≧}, c∈N.
We write v|=ψ if the valuation v satisfies the formula ψ .
For each clock x∈X, cx(Ψ X) denotes the maximal clock
constant inΨ X. □

Next we define syntax of timed automaton by the

followings:
(1)As tasks interact with external environments and

other tasks, we distinguish between internal events
and external events as shown in Figure 1.

(2)As we think only the external events cause reset

actions, internal events can not reset clocks.

Fig.1 External events and internal events of tasks

Definition 3(Syntax of timed automat)
A timed automaton G is a tuple <S,sinit,∑,X,inv,E>, where

(1)S is the finite set of locations.
(2)sinit is an initial location.
(3)∑=EXT∪INT is the finite set of events,

where EXT is the finite set of external events, INT
is the finite set of internal events.

(4)X is the finite set of real-valued variables, called
clocks.

(5)inv:S→Ψ X is the invariant function that assigns Ψ X
to each location s∈S.

(6)E is the finite set of edges.
Each edge e is a tuple <s, σ , ψ , λ ,s’>=e ∈ E
consisting of the source location s, the target location
s’, clock constraintψ ∈Ψ X, the set λ of clocks to be
reset, σ ∈∑is an event, whereλ =0 if σ ∈INT. □

Next we formally define semantics of timed automata.

Definition 4.(Semantics of timed automata)
 A state of G is a pair <s,v> containing the location s∈S
and the valuation v|=ψ . The set of all states is denoted Ω .
The initial state is a pair < sinit,0>. For each state <s,v>, the
transition is defined as follows:

1. Discrete transitions:

<s,σ ,ψ ,λ ,s’>∈E, v|=ψ , v[λ :=0] |=inv(s’)
————————————————————-
 σ

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

194

 <s,v>→<s’,v’>

,where v’= v[λ :=0].
2. Timed transitions:

δ ∈R, ∀δ ’≦δ . v+δ ’|=inv(s) implies <s,v+δ >
—————————————————————
 δ
 <s,v>→<s’,v’>

,where v’=v+δ .
A run of timed automaton is an infinite sequence as
follows:
 l1 l2 l3
 <sinit,0>→<s1,v1>→<s1,v1>→…………….
,where <sinit,0> is an initial state, <si,vi>∈Ω is a state, li∈ (∑ ∪ R) is a label.
□

In this paper, we assume that timed automaton is
nonZeno. It is easy to verify whether a timed automaton is
nonZeno or not using HYTECH [14].

2.2 Parallel Composition of Timed Automata

In this paper, we construct real-time software by
parallel composition of tasks. We define parallel
composition of timed automata as follows:

(1)If the external event of a task is equal to the external
event of environments, the task is synchronized with
environments by the same external event.

(2)As internal events of tasks are unobservable from
environments, internal events of tasks and events of
environments are disjoint.

Definition 5(Parallel composition)
 Let be two timed automata G1=<S1,sinit

1,∑1,X1,inv1,E1>
and G2=<S2,sinit

2,∑2,X2,inv2,E2>. The parallel composition
of G1 and G2 is the timed automaton G=<S,sinit,
∑,X,inv,E>, where ∑1=EXT1∪INT1, ∑2=EXT2∪INT2.
Here INT1∩∑2=0 and ∑1∩INT2=0.

(1)S⊆S1×S2
(2)sinit=(sinit

1, sinit
2)

(3)∑=EXT∪INT,
where EXT=EXT1∪EXT2 and INT=INT1∪INT2.

(4)X=X1∪X2
(5)inv((s1,s2))=inv1(s1)Λ inv2(s2)
(6)<s,σ ,ψ ,λ ,s’>∈E,

where for <s1,σ ,ψ 1,λ 1,s’1>∈E1 and <s2,σ ,ψ 2,λ 2,s’2>∈E2, each element is as follows:
(a)When σ∈∑1∩∑2, s=(s1,s2), ψ =ψ 1Λ ψ 2,

λ =λ 1∪λ 2, s’=(s1’,s2’).

 (b) When σ∈∑1 and ∑2 does not contain σ ,
s=(s1,s2), ψ =ψ 1,λ =λ 1, s’=(s1’,s2).

(c) When σ∈∑2 and ∑1 does not contain σ ,
s=(s1,s2), ψ =ψ 2,λ =λ 2, s’=(s1,s2’). □

2.3 Specification Method

We decide parameters such as priorities and timing
constraints by V. Braberman’s method [13], which is
based on WCRT(Worst Case Response Time) [15].
First we define Worst-Case Response Time as follows:

Definition 6(Worst-Case Response Time)
If every task j, j<i, has higher priority than task i, the
worst-case response time Ri of task i is given as recursive
equation(i=1,…,n). The (k+1)-th worst-case response time
Ri(k+1) for task i is as follows(k≧0):

 i-1 Ri(k)

 Ri(k+1) = ∑ (「―」)×Cj) + Ci
 j=1 Tj

,where period Ti, execution time Ci, deadline Di of a

periodic task i. We can compute Ri=lim k → ∞ Ri(k) as
Ri(0)=Ci. 「」denotes the integral part. □

Using Ri, we can check whether real-time software is
schedulable or not as follows:

Real-time software is schedulable if the following
condition is satisfied:

For ∀i, Ri≦Di (i=1,..,n) holds true.[15]

Next we specify real-time software using timed
automata. In general, it is not possible to exactly specify
preemptive scheduling using timed automata. Therefore, R.
Alur and T.A. Henzinger have specified preemptive
scheduling using hybrid automata [16]. In this paper, we
approximately specify timing constraints by cmin≦x≦cmax
using timed automata, where we set cmin using timing
constraints of edges, and set cmax using worst-case
response time. Therefore, we can realize the automatic
verification of timed weak simulation relation. If we
specify real-time software of preemptive scheduling using
hybrid automata, it is not possible to automatically verify
timed weak simulation [17].

Example 1 (Specification of tasks)
We specify periodic and sporadic tasks over preemptive
schedulers as shown in Figure 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

195

(1)Timed automata of tasks contain parameters as
follows:
(a)T1 and T2 are periodic times,
(b)C1 and C2 are minimum response times,
(c)R1and R2 are worst-case response times,

where C1≦R1≦T1 and C2≦R2≦T2.
(2)Each node of tasks is as follows:

(a)dormant1 and dormant2 are idle states,
(b)ready1 and ready2 are ready states,
(c)run1 and run2 are execution states.

(3)Each event of tasks is as follows:
(a)start1 and start2 are events, which represent task

invocation system calls,
(b)dispatch1 and dispatch2 are events, which

represent task dispatch system calls,
(c)end1 and end2 are events, which task terminate

system calls.
(4)Each clock of tasks is as follows:

(a)t1 and t2 measure response time since task arrivals,
(b)x1 and x2 measure execution time. □

Fig.2 Example of a periodic task and an aperiodic task

3. Refinement Design Method

It is important to design real-time software by stepwise
refinement as real-time software is a complex system. In
this case, it is important to verify whether the concrete
specification is satisfied by the abstract one or not.
First we define a timed weak simulation. Next we define

the verification method of a timed weak simulation.

Finally we explain the stepwise refinement design method
of real-time software.

3.1 A timed weak simulation

First we define observable transitions as follows:

Definition 7(Observable transitions)
 For each state <s,v>∈Ω of timed automaton G=<S,sinit,
∑,X,inv,E>, observable transitions are defined as follows:
 ε τ

Here Let ⇒ if and only if (→)＊ , where ∑=EXT∪
INT and τ ∈INT.
(1)For an external event σ ∈EXT,
 σ ε σ ε

Define <s,v>⇒<s’,v’> as <s,v>⇒→⇒<s’,v’>.

(2)For delay δ 1,..,δ k, δ ∈R,

 δ ε δ 1 ε δ k ε

Define <s,v>⇒<s’,v’> as <s,v>⇒→….⇒→⇒<s’,v’>.
In this case, a state <s,v> is called stable from
environments, and we denote wait(<s,v>),
whereδ 1+..,+δ k=δ . □

Definition 8(Timed weak simulation)

Let G1=<S1,sinit
1,∑ 1,X1,inv1,E1> and G2=<S2,sinit

2, ∑2 ,X2,inv2,E2> be two timed automata. A timed weak
simulation relation from G1 to G2 is a binary relation Sim
⊆Ω 1×Ω 2 if the following three conditions are satisfied.
Moreover we denote G1《G2 if there exists a timed weak
simulation relation, where Ω 1 is the set of <s1,v1>,Ω 2 is
the set of <s2,v2>, ∑1=EXT1∪INT1, ∑2=EXT2∪INT2,
s1,s1’∈S1, v1,v1’∈VX1, s2,s2’∈S2, v2,v2’∈VX2.

(1)External event condition:
 EXT1⊆EXT2

(2)Simulation condition:
 For every (<s1,v1>,<s2,v2>)∈Sim and for every θ ∈
(EXT1∪R),

 θ

if <s1,v1>⇒<s1’,v1’> then there exists <s2’,v2’>
such that θ

 <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈Sim.
We show simulation condition in Figure 3.

(3)Initial condition:
 (<sinit

1,0>,<sinit
2,0>)∈Sim. □

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

196

Fig.3 Simulation condition

3.2 Verification method of a timed weak simulation

We achieve a timed weak simulation by converting this
check to a finite check on the finitely many equivalence
classes, which is called a region weak simulation relation.
First we define a region graph, and next define a region
weak simulation, and the conversion technique. Finally we
show the verification algorithm of a timed weak
simulation.

3.2.1. Region graph

Since the number of states is infinite, we cannot possibly
build a finite automaton. But if two states with the same
location agree on the integral parts of all clock values, and
also the ordering of the fractional parts of all clock values,
then the runs starting from the two states are very similar.
From the above facts, we can construct region graphs,
which are finite quotient structures by equivalence
relations [3].
First we define equivalence relations of clock values.

Definition 9(Equivalence relations of clock values)
Let VX be the set of clock values, and Ψ X be the set of
clock constraints. For any t∈R, 「t」denotes the integral
part of t, and fract(t) denotes the fractional part of t. For v,
v’∈VX, v and v’ are equivalent iff the following three
conditions are satisfied. We denote v⇔v’.

(1)For clock x∈X, 「v(x) 」 and 「v’(x) 」are the
same, or both v(x) and v’(x) are greater than cx(Ψ X).

(2)For all x,y∈X with v(x)≦cx(Ψ X) and fract(v(x)) ≦
fract(v(y)) iff fract(v’(x)) ≦fract(v’(y)).

(3)For x∈X with , v(x)≦cx(Ψ X) and fract(v(x)) =0 iff
fract(v’(x))=0. □

We use [v] to denote the clock region to which v belongs.
Next we define the successor of equivalence classes.

Definition 10(Successor of equivalence classes)
 Let α and β be distinct clock equivalence classes of VX
andΨ X. For each v∈α and any δ ∈R, we define the
successor of equivalence classes:

(1)We denote β =succ0(α) iff there existsδ such that

α =β andδ ∈β .
(2)We denoteβ =succ1(α) iff there exists δ ’≦δ such

thatα ≠β and v+δ ’∈ α ∪β and v+δ ∈β . □

Region is denoted by <s,[v]>, or, <s, α >.

Next we define region graph of timed automaton as
follows:

Definition 11(Region graph)
For a timed automaton G=<S,sinit, ∑ ,X,inv,E>, the
corresponding region graph R(G)=<Q,qinit,L,N> consists
of four tuples:

(1)the finite set of states Q.
(2)the initial state qinit∈Q, where qinit=<sinit,0>.
(3)the finite set of labels L=∑∪SUCC, where SUCC is

the set of labels, which represent successor relations
of equivalence classes.

(4)a set of transition relations N⊆Q×L×Q. For any <s,
α >, a set of transition relations are defined as
follows:

 σ

(a) If there exists <s,v>→<s’,v’> such that v’∈β
for each v∈α ,it is possible to transit to <s’, β >
by an event, σ
and we denote <s, α >→<s’, β >.
 δ

(b) If there exists <s,v> → <s,v’> such that β
=succ1(α) and v’ ∈β for each v∈α , it is
possible to transit to <s, β > by a time delay,

 succi

and we denote <s, α >→<s, β > (i=0,1), where
succi∈SUCC. □

Example 2(Example of region graph)
We construct region graph from timed automaton G in
Figure 4. The following transition relations over node s1
and s2 are constructed, where initial clock values are v1=0,
v2(x)=0Λ v2(y)=1.

(1)the transition relation over node s1:
For the state transition

 0.5 0.2 0.3 a

 <s1,v1>→<s1,v1+0.5>→<s1,v1+0.7>→<s1,v1+1>→<s2,v2>
, the transition relation of regions
 succ1 succ0
<s1,[v1]>→<s1,[v1+0.5]>→<s1,[v1+0.7]>
 succ1 a →<s1,[v1+1]>→<s2,[v2]>

The equivalence classes of s1 are classified into v1=(x-
y=0), [v1+0.5]=[v1+0.7]=(0<x=y<1), [v1+1]=(x=y=1).

(2)the transition relation over node s2:
For the state transition

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

197

 0.2 0.3 0.5 b

 <s2,v2> → <s2,v2+0.2> → <sw,v2+0.5> → <s2,v2+1> →
<s1,v1>
, the transition of regions
 succ1 succ0
<s2,[v2]>→<s2,[v2+0.2]>→<s2,[v2+0.5]>
 succ1 b →<s2,[v2+1]>→<s1,[v1]>
The equivalence classes of s2 are classified into
[v2]=(x=0,y=0),[v2+0.2]=([v2+0.5]=(0<x<1<y<2,fr(x)=fr(
y)),[v2+1]=(x=1,y=2).

We can construct equivalence classes (2) and region
graph R(G) (3) from timed automaton (1). □

Fig.4. Example of a region graph

3.2.2. Region weak simulation relation

We will show that the problem of checking the existence
of a timed weak simulation relation is decidable. We
achieve this by converting this check to a finite check on
the finitely many equivalence classes of an equivalence
relation (what we call region weak simulation relation)
defined on parallel composition of timed automata.
We define a region weak simulation relation on parallel
composition of timed automata from the following
reasons:

(1)We can construct all the pairs of (<s1,v1>,<s2,v2>)∈
Sim as <(s1,s2),v12> of parallel compostion of timed
automata, where s1 and s2 are the node and clock
value of timed automaton 1, s2 and v2 are the node
and clock value of timed automaton 2, v12 is the clock
values of parallel composition of timed automaton 1

and 2. Therefore a set of state pairs Sim, which
represent region weak simulation relation, is a subset
of a set of states of product automaton (parallel
composition of timed automata) Ω G1∥G2. Namely,
Sim⊆Ω G1∥G2.

(2)As it is easy to trace the relation between v1 and v2,
we trace it by v12 of product automaton.

 δ

(3)If one timed automaton has <s1,v1>→<s1,v1’> and
 δ

another timed automaton has <s2,v2>→<s2,v2’>,
 δ
product automaton has <(s1,s2,)v12>→<(s1,s2,)v12’>.
Therefore we easily represent two timed automata by
product timed automaton.

Definition 12(R(G1∥G2))
 We construct product timed automaton G1∥G2 from G1
and G2 by parallel composition, where EXT1⊆EXT2. We
define the region of region graph R(G1∥G2) as <(s1,s2),α
>, where s1∈S1,s2∈S2, α is the equivalence class of
VX1∪X2 and Ψ X1∪X2. Let QG1∥G2 be the set of equivalence
classes on G1∥G2, where <(s1,s2),α >∈QG1∥G2. With
R(<s1,v1>,<s2,v2>), denote the equivalence class <(s1,s2),α > that the state (<s1,v1>,<s2,v2>)∈Ω G1∥G2 belongs to.
For any region <(s1,s2),α >, observable transitions are as
follows:

(1)For an external event σ ∈EXT,
 σ

Define <(s1,s2),α >⇒<(s1’,s2’),β >
 ε σ ε

as <(s1,s2),α >⇒→⇒<(s1’,s2’),β >.

(2)For succi∈SUCC,

 succi

Define <(s1,s2),α >⇒<(s1’,s2’),β > (i=0,1)
 ε succi ε

as <(s1,s2),α >⇒→⇒<(s1’,s2’),β >. □

Next we define a region weak simulation relation on
region graph R(G1∥G2)
.
Definition 13(Region weak simulation relation)
 We say that Χ ⊆QG1∥G2 is a region weak simulation from
G1 to G2 iff for each R(<s1,v1>,<s2,v2>) ∈ Χ , the
following three conditions are satisfied.

(1)For every σ ∈EXT,
 σ
 If <s1,v1>⇒<s1’,v1’>, then
 σ

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

198

 <s2,v2>⇒<s2’,v2’>
and σ
 R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>)

 such that R(<s1’,v1’>,<s2’,v2’>)∈Χ .
(2)If wait(<s1,v1>), for any succi∈SUCC, then

 succi
 R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>)

 such that R(<s1’,v1’>,<s2’,v2’>)∈Χ .(i=0,1)
(3) R(<sinit

1, 0>,<sinit
2,0>)∈Χ □

Theorem 1(Timed weak simulation and region weak
simulation)
 For R(<s1,v1>,<s2,v2>)∈Χ , let RΧ ={(<s1,v1>,<s2,v2>)|
R(<s1,v1>,<s2,v2>)∈Χ }. RΧ is a weak timed simulation
relation from G1 to G2 iff Χ is a region weak simulation
relation from G1 to G2.
Proof 1.
We prove it by dividing it into two cases.

(l)To prove that if RΧ is a weak timed simulation relation
from G1 to G2, Χ is a region weak simulation relation
from G1 to G2:
Assuming that RΧ is a weak timed simulation relation

from G1 to G2. From the definition, we can directly prove
Χ is a region weak simulation relation from G1 to G2.

(ll)To prove that if Χ is a region weak simulation relation
from G1 to G2, RΧ is a weak timed simulation relation
from G1 to G2:
Assuming that Χ is a region weak simulation relation

from G1 to G2. For some θ ∈(EXT∪R),(<s1,v1>,<s2,v2>)
∈RΧ

 θ

and <s1,v1>⇒<s1’,v1’>.
We need to show that

there exists <s2’,v2’> such that
 θ

<s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ .
(1)Whenθ is σ ∈EXT:
From the definition of R(G1∥G2), there exists <s2’,v2’>
such that
 σ

 <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ .

(2)When θ is δ ∈R:
Let be R(<s1,v1>,<s2,v2>)=<(s1,s2),[v]> and
R(<s1’,v1’>,<s2’,v2’>)=<(s1’,s2’),[v’]>.
First we define equivalence classes α 0,…, α k+1
corresponding to v as follows:
 α 0=[v]

 α i+1=succ1(α i) (0≦i≦k)
Next we define real values δ 1,…,δ k,δ ’ and clock values
v(0),…,v(k) corresponding toα i as follows:
 v(0)=v
 v(i+1)=v(i) +δ i+1∈α i+1 (0≦i<k)
 v’= v(i) +δ ’∪α i+1 (i=k)
As there exists k such that δ =δ 1+…+δ k+δ ’, there are
two cases(k≧0).
(a)k=0:
In this case, as v’ ∈α 0 ∪α 1 byδ =δ ’, the transition is
as follows:
 succi

 <(s1,s2), α 0>⇒<(s1,s2), α i>
Therefore clearly, there exists <s2’,v2’> such that
 δ

 <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ .
(b)k>0:
We consider the following regions as
 δ i+1
 <(s1

(i),s2
(i)), vi>⇒<(s1

(i+1),s2
(i+1)), vi+1>

of G1 ∥G2 (0≦i≦k).
(i)<(s1

(0),s2
(0)), α 0>= <(s1,s2

), [v]>
 succi

 (ii) <(s1
(i),s2

(i)), α i>⇒<(s1
(i+1),s2

(i)+1), α i+1>
(iii) <(s1

(i),s2
(i)), α i>∈Χ

<(s1
(k),s2

(k)), α k> ∈ Χ is inductively derived from
<(s1,s2

), [v]> . As v’ ∈α k ∪α k+1 by δ =δ 1+…+δ k+δ ’, we get the following transition:
 succj

 <(s1
(k),s2

(k)), α k>⇒<(s1’,s2’), α k+j>.
Therefore clearly there exists <s2’,v2’> such that
 δ

 <s2,v2>⇒<s2’,v2’> and (<s1’,v1’>,<s2’,v2’>)∈RΧ . □

3.2.3. Verification algorithm of timed weak
simulation

We define the verification algorithm of a timed weak
simulation as follows:
Definition 14(Verification algorithm of a timed weak
simulation)
For the concrete specification GL and the abstract
specification GH we construct GL∥GH, and the region
graph R(GL∥GH). In this case, we define the verification
algorithm in order to verify whether there exists a timed
weak simulation from GL to GH. Basically first we define
Χ (0), and inductively computeΧ (k+1) from Χ (k). First if
EXT2 does not contain EXT1, there does not exists a timed
weak simulation relation. If EXT1⊆EXT2, we compute the
followings:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

199

(1)First we compute the relation Χ (0) =QGL ∥ GH, and
initialize k by k:=0.

(2)Next we inductively compute Χ (k+1) from Χ (k) by
repeating the following procedures (k≧0)

 (a) Χ (k+1)=0
(b)If R(<s1,v1>,<s2,v2>)∈Χ (k), we set

Χ (k+1)= Χ (k+1)∪{R(<s1,v1>,<s2,v2>)}
when the two following conditions are satisfied.

(i)For everyσ ∈EXT, if there exists <s1’,v1’>such
that σ σ

 <s1,v1>⇒<s1’,v1’> and <s2,v2>⇒<s2’,v2’>
 σ
 , R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>),
 and R(<s1’,v1’>,<s2’,v2’>)∈Χ (k).

(ii)If wait(<s1,v1>), for every succi∈SUCC,
 succi

 R(<s1,v1>,<s2,v2>)⇒R(<s1’,v1’>,<s2’,v2’>)
and R(<s1’,v1’>,<s2’,v2’>)∈Χ (k).(i=0,1)

(c)If Χ (k+1)=Χ (k), go to (3). If Χ (k+1)≠Χ (k), set k:=k+1,
and return (2)(a).

(3)If Χ (k+1) includes R(<sinit
1,0>,<sinit

2,0>), we decide Χ is
a timed weak simulation relation. If not so, we decide Χ is
not a timed weak simulation relation. □

As this algorithm can be formalized as the greatest

fixpoint computation, the algorithm terminates.

3.3. Stepwise refinement design method

We represent both the abstract specification and the
concrete one by nondeterministic timed automata, and
verify the consistencies between them by a timed weak
simulation relation.

Definition 15(Stepwise refinement design method)
The stepwise refinement design method of real-time
software consists of the following procedures. We
illustrate it in Figure 5.
(1)First we decide task priorities and parameters by

WCRT, and specify TASKi
(0) by timed automata

(i=1,…,n), where n is a number of tasks and (0) is the
level of refinement.

(2)Next we refine TASKi
(k) into TASKi

(k+1), and specify
TASKi

(k+1) by timed automata (k≧0).
(3)Finally, we construct SOFT(k)= TASK1

(k) ∥ … ∥
TASKn

(k) and SOFT(k+1)= TASK1
(k+1) ∥ … ∥

TASKn
(k+1) . We revise SOFT(k+1) until there exists a

timed weak simulation relation from SOFT(k+1) to
SOFT(k).

(4)We repeat the above step (1)-(3), and specify the final
one. □

4. Example of refinement design

In this paper, we show our proposed method effective by a
plant system.

4.1. Design support system

In this paper, we implement our proposed method as
design support system as shown in Figure 6. The design
support system is implemented by C++ language(7000
lines) on Sun Blade1000(CPU UltraSPARC-III 900MHz,
Main memory 1GB).

Fig.5 Image of a hierarchical refinement design method

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

200

Fig.6 Configuration of the design support system

4.2. A plant system

The plant system is an embedded real-time system, and
behaves by fixed priority preemptive scheduling.

Fig.7 Architecture of the plant system

The plant system is shown in Figure 7. The plant system

samples data from Sensor, and controls Valve, and outputs
information on Display. If Sensor is in bad condition, this
information is announced to administrator by Lamp. Even
if Sensor is in bad condition, the plant system continue to
behave by control data. The real-time software of the plant
system consists of two periodic tasks such as SAMPLER
and MANAGER. The two tasks communicate with each
other by QUEUE.
We explain each task and resource as follows:

(1)A periodic task SAMPLER:

We design SAMPLER as T1=20 and C1=6. SAMPLER
samples signals from Sensor, and decides the state of the
plant by analyzing signals. If the state changes,
SAMPLER sends control data to MANAGER via
QUEUE (This processing takes at least 5 time). If the
state does not change, SAMPLER does not send control
data (This processing takes at least 3 time).

(2)A periodic task MANAGER:
We design MANAGER as T2=20 and C2=10.
MANAGER receives control data from SAMPLER via
QUEUE. If there exists data in QUEUE, MANAGER
analyzes the data, and controls Valve, and indicates
system information on Dispaly (This processing takes at
least 8). If there does not exist data, MANAGER updates
system information on Display(This processing takes at
least 4).

(3)Shared resource QUEUE:
QUEUE can store two data, and is used for task
commmunications. The access to QUEUE takes 1.

In this paper, we think the plant system is implemented

by rate monotonic scheduling. Therefore this rate
monotonic scheduling algorithm assigns priorities to tasks
based on their periods: the shorter the period, the higher
the priority. Moreover, we assume Di=Ti (i=1,2). We
compute WCRT(Worst Case Response Time) [15]. From
the results, we can determine two tasks are schedulable.
The parameters are shown in Table 1.

Table 1 List of timed parameters of tasks
task Ti Ci Bi Ri
SAMPLER 20 6 1 7

MANAGER 30 10 0 16

4.2.1. Specification of the plant system

We design the plant system, and specify it by timed
automata.
First we show external events in Table 2. External events

are classified into three types such as system call, task
control and API(APplication Interface).

Table 2 List of external task events
TYPE EXTERNAL

EVENT
EXPLANATION

system call starti task start
system call endi task terminate
system call push_queue send to QUEUE
system call pop_queue Receive from

QUEUE
task control dispatchi CPU assignment

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

201

API read_sensor Sensor input
API write_lamp Lamp output
API write_display Display output
API write_valve Valve output

Next we show the shared resource QUEUE in Figure 8.

Fig. 8 Specification of the shared resource QUEUE

Next we design the abstract specifications SAMPLER(0)
and MANAGER(0), and specify them by timed automata,
and show them in Figure 9 and 10. In abstract specification,
we specify only external events and abstract behaviors. For
example, we specify SAMPLER(0) by
nondeterministically behaving write_lamp.

Fig. 9. Specification of the periodic task SAMPLER(0)

Fig. 10. Specification of the periodic task MANAGER(0)

Finally we design the concrete specifications
SAMPLER(1) and MANAGER(1), and show them in
Figure 11 and 12. We refine the abstract specification into
the concrete one by adding internal behaviors,
transforming nondeterministic behaviors into deterministic
behaviors and specifying detailed timing constraints. For
example, SAMPLER(1) executes read_sensor once or
twice, and if it fails, SAMPLER(1) executes
make_alternate_data. As the deviation of control data is
larger the processing of write_valve takes longer time, in
MANAGER(1), derivation_Small takes 1,
derivation_Medium takes 2 and derivation_Large takes 3.

Fig. 11. Specification of the periodic task SAMPLER(1)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

202

Fig. 12. Specification of the periodic task MANAGER(1)

4.2.2. Verification experiment

We verify whether SOFT(1) 《 SOFT(0) holds true or not
using our design support system, where the abstract
specification is defined as SOFT(0)=SAMPLER(0) ∥
MANAGER(0) ∥ QUEUE, the concrete specification is
defined as SOFT(1)=SAMPLER(1) ∥ MANAGER(1) ∥
QUEUE. We measured required memory and execution
time using ps command, and show them in Table 3. In
region graph R(SOFT(0)∥SOFT(1)), the number of the
equivalence classes is 62367, the number of regions of
Q SOFT(0)∥SOFT(1) is 1645498 and the number of members
of region weak simulation Χ is 1408290.

Table 3. List of results of experiments
the num.
of
regions

the num.
of
transitions

the num.
of clocks

required
memory

execution
time

1645498 3406342 10 325744
kB

62.30min

The members of the set Χ , which are contained in the

region weak simulation relation are the followings:

An initial state pair
R(<(dormant1,dormant2,empty),[t1=x1=t2=x2=y=0]>,

< (dormant3,dormant4,empty),[t3=x3=t4=x4=y=0] >),
 …………………….

…………………….
R(<(run1-3,run2-2,empty),[t1 ≦ 7,x1 ≧ 0,t2 ≦ 16,x2 ≧ 0,y ≧
0]>,< (run3-4,run4-4,empty),[t3≦5,x3≧0, 2≦t4≦9,x4≧1,y
≧0] >),
R(<(done1-1,run2-2,1element),[t1≦7,x1≧0,t2≦16,x2≧0,y
≧0]>,<(done3-1,run4-4,1element),[t3≦7,x3 ≧0, 2≦ t4≦
9,x4≧1,y≧0] >),

…………………….
…………………….

For example, we focus on

 R(<(run1-3,run2-2,empty),[t1≦7,x1≧0,t2≦16,x2≧0,y≧
0]>,<(run3-4,run4-4,empty),[t3≦5,x3≧0, 2≦t4≦9,x4≧1,y
≧0]>).
Here we consider the followings:
 ε push_queue ε

<run1-3,[t1≦7,x1≧0]>⇒ → ⇒<done1-1,[t1≦7,x1≧0]>,
ε push_queue ε

<run3-4,[t3≦5,x3≧0]>⇒ → ⇒<done3-1,[t3≦7,x3≧0]>
ε push_queue ε

<empty,[y≧0]> ⇒ → ⇒<1element,[y≧0] >.
Therefore, we can get the followings:
R(<(done1-1,run2-2,1element),[t1≦7,x1≧0,t2≦16,x2≧0,y
≧0]>,<(done3-1,run4-4,1element),[t3≦7,x3 ≧0, 2≦ t4≦
9,x4≧1,y≧0] >).

As an initial region is contained in Χ , SOFT(1)

《 SOFT(0) is satisfied. Namely, there exists a timed weak
simulation from the concrete specification to the abstract
one.
Though the verification cost is large, we can specify both

the abstract and the concrete specifications of real-time
software using timed automata, and automatically verify
whether there exists a timed weak simulation from the
concrete specification to the abstract one.

5. Conclusion

In this paper, we have proposed the following stepwise
refinement design methodology of real-time software.
(1)First as we extend general timed automata by

distinguishing between internal and external events, this
timed automata are suitable for stepwise specifying and
designing real-time software.

(2)Next we automatically verify whether there exists a
timed weak simulation relation from the concrete
specification to the abstract one.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

203

To the best of our knowledge, a timed weak simulation
verification methods of timed automata have never been
developed before now.
We are now planning to do the following works:

(1)We will develop the effective verification techniques
such as Assume-Gurantee and Abstraction in order to
verify large software.

(2)We will apply our proposed method to practical
problems.

References
[1]J.W.S. Liu. : Real-Time System, Prentice-Hall (2000).
[2]K.M. Kavi. : Real-Time Systems, Abstractions, Languages,

and Design Methodologies, IEEE Computer Society (1992).
[3]R. Alur, D.L. Dill. : A theory of timed automata, Theoretical

Computer Science, Vol. 126, pp.183-235 (1994).
[4]Giorgio C. Buttazzo. : Hard Real-Time Computing Systems,

Kluwer Academic Publishers (1987).
[5]R. Milner. : Communication and Concurrency, p.260, Prentce

Hall (1989).
[6]R.H. Thayer, M. Dorfman. : System and Software

Refinements Engineering, IEEE Computer Society (1990).
[7]R. Alur, L. Fix, T.A. Henzinger. : Event-Clock Automata: A

Determinizable Class of Timed Automata, in Proc. of CAV’94,
LNCS 818, pp.1-13 (1994).

[8]C. Dima. : Removing slient transitions from event-clock
automata, in Proc. of CITTI 2000, pp 75-81 (2000).

[9]R. Milner. : Operational and Algebraic Semantics of
Concurrent Processes. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, J. van
Leeuwen, ed., North-Holland Pub. Co./MIT Press, pp. 1201-
1242 (1990).

[10]A. Pnueli. : Linear and Branching Structures in the
Semantics and Logics of Reactive Systems. ICALP 1985,
volume 194 of LNCS, pp. 15-32 (1985).

[11]K. Cerans. : Decidability of bisimulation equivalences for
parallel timer processes. LNCS 663, pp.269-300, Springer
Verlag (1992).

[12]S.Tasiran, R.Alur, R.P.Kurshan, and R.K.Brayton. :
Verifying Abstractions of Timed Systems. LNCS 1119,
pp.546-562, Springer Verlag (1996).

[13]V.Braberman, M.Felder. : Verification of Real-Time
Designs: Combining Scheduling Theory with Automatic
Formal Verification, LNCS 1687, pp.494-510(1999)

[14] T. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. : Symbolic
model checking for real-time systems, Information and
Computation 111, pp.193–244(1994).

[15]M.Joseph. : Real-Time System Specification, Verification
and Analysis. Prentice Hall (1996).

[16]R. Alur, T.A. Henzinger, P.-H. Ho. : Automatic symbolic
verification of embedded systems. IEEE Trans. on Software
Engineering 22(3), pp.181-201(1996).

[17]T.A. Henzinger, P.W. Kopke, A. Puri, and P.
Varaiya. : What’s decidable about hybrid automata?

Journal of Computer and System Sciences 57, pp.94–
124(1998).

Satoshi Yamane received the Ph.D
in Computer Science from Kyoto
University in 1997. He was an
Associate Professor at Kagoshima
University in 1999. He jointed
Kanazawa University , and is
currently a Professor. His research
interests include formal verification
of real-time and hybrid systems. He

is a member of ACM, IEEE, and EATCS.

