
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

204

Architectures for Self-Healing Databases under Cyber

Attacks

Peng Liu† and Jiwu Jing††

†College of Information Sciences and Technology, Pennsylvania State University, University Park, PA 16802 USA
††State Key Lab of Information Security, Chinese Academy of Sciences, Beijing, China

Summary
In this paper, we propose five architectures for self-healing
databases under malicious attacks. While traditional secure
database systems rely on prevention controls, a self-healing
database system can autonomically estimate, locate, isolate,
contain, and repair damage caused by attacks in such a way that
the database can “heal” itself on-the-fly and continue delivering
essential services in the face of attacks. With a focus on attacks by
malicious transactions, Architecture I can detect intrusions, and
locate and repair the damage caused by the intrusions.
Architecture II enhances Architecture I with the ability to isolate
attacks so that the database can be immunized from the damage
caused by a lot of attacks. Architecture III enhances Architecture I
with the ability to dynamically contain the damage in such a way
that no damage will leak out during the attack recovery process.
Architecture IV enhances Architectures II and III with the ability
to adapt the self-healing controls to the changing environment so
that a stabilized level of healthiness can be maintained.
Architecture V enhances Architecture IV with the ability to
deliver differential, quantitative QoIA services to customers.
Key words:
Self-Healing Databases, Cyber Security, Architectures

1. Introduction

As society increasingly relies on database systems to store,
manage, and access information digitally (e.g., database
products are today a multi-billion dollar industry; database
systems motivated 32% of the hardware server volume in
1995 [44], and 39% of the server volume in 2000),
maintaining the integrity, availability, and confidentiality
of databases is crucial. Many large-scale database systems
critical to businesses are expected to be available
continuously and can only be stopped for repair at great cost.
However, fraudulent transactions can contaminate such
databases and necessitate repairs, and traditional
prevention-centric database security is very limited in
tackling this problem. A self-healing database system
would guarantee that under sustained malicious transaction
attacks, the database is continuously accessible; the
contamination or “wound” (on the data) is autonomically
located, contained or isolated, and healed, without stopping
the system; and the database’s healthiness is carefully

maintained in such a way that self-healing will not prevent
(most) essential services from being provided correctly.
The ITDB (Intrusion Tolerant Data Base) framework,
which we will present shortly, combines a family of new
database survivability or intrusion tolerance techniques to
build self healing databases.

1.1 Technologies for Self-Healing Database Systems

A database is a set of data objects. The database state at
time t is determined by the values of these data objects at
that time. A data object x is contaminated, damaged or
corrupted if its value is changed to a wrong value due to an
attack (or a mistake). At this situation, the data integrity of x
is jeopardized or degraded. A database is damaged if some
data objects are damaged. A damaged data object x is
repaired or healed if its value is restored to a correct value.

Self-healing does not always require on-the-fly repair.
Self-healing systems can choose to do self healing either
offline or online, based on the application’s requirements
and the overall cost-effectiveness. When the application
does not have strict real-time constraints and is insensitive
to short period of down time, a more cost-effective
self-healing could be to autonomically select the best time
to shut down the service, do the repair, then resume the
service. Nevertheless, since many large-scale database
systems critical to businesses are expected to be available
continuously and can only be stopped for repair at great cost
(i.e., they basically cannot tolerate any down time), in this
paper we focus on online self-healing technologies.

Besides the ability to autonomically locate and repair
the damage on-the-fly, online self-healing requires the
system to be able to maintain its own healthiness or at least
curable fitness, because if a self-healing system could not
ensure that it is always curable, in some cases it cannot heal
itself. Intuitively, a database is healthy when most of its
data objects are not damaged. Similar to a human body,
sometimes a system has too bad “health” to heal up.
Curability means that every damaged data object can be
“ultimately” repaired.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

205

Existing database security mechanisms are very
limited in maintaining healthiness. In particular,
authentication and access control cannot prevent all attacks;
integrity constraints are weak at prohibiting plausible but
incorrect data; concurrency control and recovery
mechanisms cannot distinguish legitimate transactions
from malicious ones; and automatic replication facilities
and active database triggers can even serve to spread the
damage.

Besides curability, online self-healing also requires
availability, that is, the database should be always useful
and the system should always be able to deliver correct
services. It should be noticed that being useful and being
accessible are different. A totally contaminated database
(i.e., every data object is damaged) can still be 100%
accessible (e.g., it can still process transactions smoothly),
but the database is no longer useful at all.

Moreover, note that curability and availability are not
identical. Being useful implies making the database
accessible as well as maintaining a certain level of data
integrity of the current database state. In contrast, even if
the current database state is seriously contaminated, the
database may still be curable if the latest clean version of
every damaged data object is kept in the log files (e.g., the
redo log, the checkpoint files, etc.) intact and can be
precisely located. Hence, availability has typically stronger
data integrity requirements on current data versions than
curability. On the other hand, note that when the database
audits are seriously contaminated, even if the database is
quite useful, it may not be curable.

Finally, since better healthiness in general not only
implies easier and quicker self-healing with lower cost, but
also implies better usability, maintaining good fitness of the
system in the presence of attacks should be a crucial aspect
of self healing database system development.

1.1.1 A Multi-Layer Approach to Self-Healing Databases

Building an attack resistant or self-healing database
requires in general a multi-layer approach, since attacks
could come from any of the following layers: hardware, OS,
DBMS, and transactions (or applications). A multi-layer
approach can be developed along two directions: (a) from
scratch or (b) using “off-the-shelf” components.

Along the from-scratch direction, tamper-resistant
processor environments, and trusted OS or trusted
DBMS loaders have been applied to close the door on
hardware attacks and OS bugs; programming security
technologies such as certified programs (e.g., [36]),
bug-guarding compilers (e.g., [9]), and bug finding (e.g.,
[11]) can be applied to close the door on many DBMS bugs;
and signed checksums (and a small amount of
tamper-resistant storage to keep the signing key) have been
used to detect OS-level data corruption [30]. Note that
when the transaction logs are securely maintained, the

corresponding OS-level repair can be efficiently done either
online or offline.

Based on “off-the-shelf” components, OS-level attacks
have been addressed by several efforts. In
[5], (signed) checksums are smartly used to detect data
corruption. In [33], a technique is proposed to detect
storage jamming, malicious modification of data, using a
set of special detect objects which are indistinguishable to
the jammer from normal objects. Modification of detect
objects indicates a storage jamming attack.

Although the above techniques may effectively handle
DBMS, OS, and hardware level intrusions, they cannot
handle authorized but malicious transactions. For example,
neither trusted OS nor signed checksums can detect or
repair the data corruption caused by a malicious transaction
issued by an attacker assuming the identity of an authorized
user. The goal of this paper is to explore the self-healing
database architectures that can handle fraudulent
transactions.

1.1.2 Intrusion Detection Technologies

One critical step towards self-healing databases under
attacks is intrusion detection, which has attracted many
researchers. The existing methods of intrusion detection
can be roughly classed as signature-based detection (e.g.,
[16]), anomaly detection based on profiles (e.g., [21]), or
specification-based detection (e.g., [42]). Intrusion
detection can supplement protection of network and
information systems by rejecting the future access of
detected attackers and by providing useful hints on how to
strengthen the defense. However, intrusion detection has an
inherent limitation in doing self-healing: Intrusion
detection makes the system attack-aware but not
attack-resistant, that is, intrusion detection itself cannot
maintain integrity and availability of the database in the
face of attacks. As a result, although intrusion detection and
checkpoints can be used together to heal the database after
an attack is detected, such self-healing requires the database
to roll back its state to a clean checkpoint before the attack
happens, is very difficult to be processed online, and will
make all the good work done after the attack invalid.

1.1.3 Fault Tolerance Technologies

When the causes for self-healing are faults and failures, the
corresponding self-healing technologies belong to the field
of fault tolerance. However, when the causes for
self-healing are malicious attacks, the corresponding
self-healing technologies can be quite different from fault
tolerance technologies, due to several fundamental
differences between fault tolerance and intrusion tolerance.
To illustrate, first, in fault tolerance, failures randomly
happen; but in security, attacks are typically intentional and
do not randomly happen. Moreover, attacks are more active

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

206

than failures, so more proactive techniques are needed for
intrusion tolerance. Second, intrusion detection is typically
more challenging and complicated than failure detection.
Third, in traditional fault tolerance under fail stop fault
model, being accessible means correct/quality services (i.e.,
being useful), but this is not true in online self-healing
under attacks.

Accordingly, traditional database recovery
mechanisms are fairly limited in healing the database under
attacks. They do not address this problem, except for
complete rollbacks, which undo the work of benign
transactions as well as malicious ones, and compensating
transactions, whose utility depends on application
semantics. More important, they cannot maintain database
healthiness under attacks in such a way that both the
curability and usability requirements can be satisfied.

Nevertheless, fault tolerance technologies build a solid
foundation for developing intrusion tolerant systems. Some
specific fault tolerance technologies, such as Byzantine
fault tolerance [7], have been found crucial in developing
several types of intrusion tolerant systems.

1.1.4 Intrusion Tolerance Technologies

From the healthiness maintenance perspective, self-healing
systems are indeed an intrusion tolerant system. We can
classify existing intrusion tolerance technologies into two
categories: intrusion masking and defense-in-depth.

Intrusion Masking The goal of intrusion masking is to
creatively use enough redundancy (and maybe data
fragmentation and distribution) to ensure that the system
can function correctly even if part of it is hacked. In this
sense, we say such systems can mask intrusions.
Techniques in this category focus on how to enhance the
inherent resilience of the system, and their effectiveness is
typically much less sensitive to the agility and accuracy of
intrusion detection than pragmatic intrusion response
techniques. General principles in developing intrusion
masking systems include but are not limited to (a)
redundancy & replication; (b) diversity; (c) randomization;
(d) fragmentation& threshold cryptography; and (e)
increased layers of indirections. Techniques in this category
include but are not limited to Byzantine intrusion masking
techniques (e.g., [31]) and threshold-cryptography-based
survivable systems (e.g., [50]).

Nevertheless, although Byzantine fault tolerance and
threshold-cryptography-based survivability can be very
effective when a group of replicated processing or storage
servers are infected by outside attacks, they are very limited
in surviving malicious user activities such as fraudulent
transactions. In particular, these two technologies cannot
exploit redundancy to distinguish a malicious transaction
submitted by an attacker assuming the identity of a trusted
user from a legitimate transaction submitted by the trusted

user, and as a result, the system must treat them similarly,
and this intrusion cannot be modeled as Byzantine faults.
Defense-in-depth The goal of defense-in-depth
technologies is to arm the system with a set of intrusion
response facilities which, with the help of intrusion
detection, can respond to intrusions in such a way that the
system can operate through attacks. Technologies in this
category include (a) boundary controllers such as firewalls
and access control; (b) intrusion detection; and (c) intrusion
response. Boundary controllers cannot prevent every attack.
Intrusion detection is already discussed. Intrusion response
technologies can be classified into three categories:
o Reactive response. Facilities in this category are

activated only when an intrusion is identified and their
effectiveness is highly dependent on the accuracy and
latency of intrusion detection.

o Proactive response. Facilities in this category are
activated in a proactive manner based on suspicious
activities (or signs) before an intrusion is confirmed.
Although proactive response may consume more
resources, it may immunize the system from the
damage caused by many attacks.

o Adaptive response. Feedback based adaptation is a nice
feature of many survivable systems, where the defense
posture (i.e., security mechanism configurations) of
the system is dynamically adjusted based on the
changing environment.

Compared with intrusion masking technologies, where
many attacks may be masked without causing any system
security (e.g., integrity and availability) degradation,
defense-in-depth technologies usually would introduce
certain level of security degradation. On the other hand, the
advantages of defense-in-depth technologies are that (a)
they can be directly applied to legacy systems, (b) they may
effectively handle malicious user activities, and (c) their
overhead (or cost) can be much smaller than intrusion
masking technologies. For example, defense-in-depth
systems usually need much less redundancy. The key issues
in defense-in-depth include but are not limited to: How to
quickly contain/isolate the intrusions so that their infection
will not be too serious to operate through? How to quickly
distinguish the damaged part from the undamaged part of
the system? How to quickly repair the contaminated part of
the system without bringing it offline? How to handle the
impact of false alarms, undetected intrusions, and detection
latency? How to make the intrusion response facilities
adaptive and proactive?

1.2 Overview of the ITDB Framework

The ITDB framework, which is composed of five
architectures, as shown in Figures 1, 2, 3, 4 and 5,
respectively, combines a family of novel defense-in-depth
techniques to achieve database self-healing under attacks.
In particular, Architecture I detects intrusions, and locates

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

207

and repairs the damage caused by intrusions. Architecture II
enhances Architecture I with the ability to isolate attacks so
that the database can be immunized from the damage
caused by a lot of intrusions. Architecture III enhances
Architecture I with the ability to dynamically contain the
damage in such a way that no damage will leak out during
the attack recovery process. Architecture IV enhances
Architectures II and III with the ability to adapt the self
healing controls to the changing environment so that a
stabilized level of healthiness can be maintained.
Architecture V enhances Architecture IV with the ability to
deliver differential, quantitative QoIA services to
customers.

The ITDB framework focuses on transaction-level
intrusion tolerance, which, based on the fact that most
attacks are from insiders [6], should be a major aspect of
self-healing database systems. Although using
“off-the-shelf” components, ITDB cannot (directly) defend
against processor, OS, or DBMS-level attacks, when the
lower-level attacks are not so serious and when most attacks
are via malicious transactions, ITDB can still be very
effective. Moreover, existing lower-level self-healing
mechanisms, such as those proposed in [30, 5, 33], can be
easily integrated into ITDB architectures to build a
multi-layer, self-healing database system.

The remainder of the paper is organized as follows.
Section 2 discusses some related work. In Sections 3, 4, 5, 6,
and 7, we present five self-healing database system
architectures. Section 8 concludes the paper.

2. Related Work

Database security concerns the confidentiality, integrity,
and availability of data stored in a database. A broad span of
research from authorization [15, 39, 18], to inference
control [1], to multilevel secure databases [49, 41], and to
multilevel secure transaction processing [4], addresses
primarily how to protect the security of a database,
especially its confidentiality. Intrusion tolerance, however,
is seldom addressed.

One critical step towards intrusion-tolerant database
systems is intrusion detection (ID), which has attracted
many researchers [29, 35]. The existing methodology of ID
can be roughly classed as anomaly detection [19, 40, 21,
43] or misuse detection [12, 17]. However, current ID
research focuses on identifying attacks on OS and computer
networks. Although there has been some work on database
ID [8, 45], these methods are neither application aware nor
at the transaction-level.

The need for intrusion tolerance has been recognized
by many researchers in such contexts as information
warfare [14]. Recently, extensive research has been done in
general principles of survivability [20, 48, 13], survivability
of networks [34], survivable storage systems [51],
survivable application development via middleware [37],

persistent objects [32], and survivable document editing
systems [46].

Some research has also been done in database intrusion
tolerance. In [3], a fault tolerant approach is taken to
survive database attacks where (a) several useful
survivability phases are suggested, though no concrete
mechanisms are proposed for these phases; (b) a color
scheme for marking damage (and repair) and a notion of
integrity suitable for partially damaged databases are used
to develop a mechanism by which databases under attack
could still be safely used.

Some of the architectures presented in this paper are
directly or indirectly proposed, investigated (using detailed
system and algorithm designs), and evaluated (using
prototypes) by our previous research. In particular,
Architecture I is addressed in [2, 27]; Architecture II is
addressed in [25, 23]; and Architecture III is proposed in
[24, 26].

3. Scheme I

Since the property of database atomicity indicates that only
committed transactions can really change the database, it is
theoretically true that if we can detect every malicious
transaction before it commits, then we can roll back the
transaction before it causes any damage. However, this
“perfect” solution is not practical for two reasons. First,
transaction execution is, in general, much quicker than
detection, and slowing down transaction execution can
cause very serious denial-of-service. For example, the
Microsoft SQL Server can execute over 1000 (TPC-C)
transactions within one second (see www.oracle.com),
while the average anomaly detection latency is typically in
the scale of minutes or seconds. Detection is much slower
since: (1) in many cases detection needs human
intervention; (2) to reduce false alarms, in many cases a
sequence of actions should be analyzed. For example, [21]
shows that when using system call trails to identify
sendmail attacks, synthesizing the anomaly scores of a
sequence of system calls (longer than 5) can achieve much
better accuracy than based on single system calls.

Second, some authorized but malicious transactions
are very difficult to detect. They look and behave just like
other legitimate transactions. Anomaly detection based on
the semantics of transactions (and the application) may be
the only effective way to identify such attacks, however, it
is very difficult, if not impossible, for an anomaly detector
to have a 100% detection rate with reasonable false alarm
rate and detection latency.

Hence, a practical goal should be: “After the database
is damaged, locate the damaged part and repair it as soon as
possible, so that the database can continue being useful in
the face of attacks.” In other words, we want the database
system to operate through attacks.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

208

Architecture I, as shown in Figure 1, combines
intrusion detection and attack recovery to achieve this goal.
In particular, the Intrusion Detector monitors and analyzes
the trails of database sessions and transactions in a
real-time manner to identify malicious transactions as soon
as possible. Alarms of malicious transactions, when raised,
will be instantly sent to the Repair Manager, which will
locate the damage caused by the attack and repair the
damage. During the whole intrusion detection and attack
recovery process, the database continues executing new
transactions.

Fig. 1 Architecture I

Although there are lots of anomaly detection

algorithms (for host or network based intrusion detection),
they usually cannot be directly applied in malicious
transaction detection, which faces the following unique
challenges:
o Application semantics must be captured and used. For

example, for a school salary management application,
a $3000 raise is normal, but a $10000 raise is very
abnormal. Application semantics based intrusion
detection is application aware. Since different
applications can have very different semantics, general
application-aware database intrusion detection systems
must support dynamic integration of application
semantics. Since different anomaly detection
algorithms may be good for different application
semantics, a general application-aware database
intrusion detection system must adapt itself to
application semantics.

o Multi-layer intrusion detection is usually necessary for
detection accuracy. First, proofs from application layer,
session layer, transaction layer, process layer, and
system call layer should be synthesized to do intrusion
detection. Lower level proofs can help identify higher
level anomalies. Second, OS-level and
transaction-level intrusion detection should be coupled
with each other.

We suggest a flexible cartridge-like detector to address
these challenges. The detector is a cartridge which should
be general enough to plug in a variety of (a) anomaly
detection algorithms such as [8] and [45], (b) application
semantics extraction algorithms, and (c) application
semantics based adaptation policies. The user should be

able to prepare some of these algorithms and policies. The
detector should provide the interfaces for the user to pick
existing and provide new bullets, and the detector should
not be required to rebuild itself again and again to support
each new bullet. (Here each bullet indicates an algorithm or
a policy that the detector wants to plug in.) In this way, one
detector can be used to meet the intrusion detection needs of
multiple applications. Flexibility and expressiveness are the
key challenges for developing such a detector.

Malicious transactions can seriously corrupt a database
through a vulnerability denoted as damage spreading. In a
database, the results of one transaction can affect the
execution of other transactions. When a transaction Ti reads
a data object x updated by another transaction Tj, Ti is
directly affected by Tj . If a third transaction Tk is affected
by Ti, but not directly affected by Tj , Tk is indirectly
affected by Tj . It is easy to see that when a (relatively old)
transaction Bi that updates x is identified as malicious, the
damage to x can spread to every object updated by a good
transaction that is affected by Bi, directly or indirectly. In a
word, the read-from dependency among transactions forms
the traces along which damage spreads.

The job of attack recovery is two-fold: damage
assessment and repair. In particular, the job of the Damage
Assessor is to locate each affected good transaction, i.e., the
damage spreading traces; and the job of the Damage
Repairer is to recover the database from the damage caused
on the objects updated along the traces. In particular, when
an affected transaction T is located, the Damage Repairer
builds a specific cleaning transaction to clean each object
updated by T (and not cleaned yet). Cleaning an object is
simply done by restoring the value of the object to its latest
undamaged version.

Temporarily stopping the database will certainly make
the attack recovery job simpler since the damage will no
longer spread and the repair can be done backwardly after
the assessment is done, that is, we can repair the database
by simply undoing the malicious as well as affected
transactions in the reverse order of their commit order. An
even simpler approach is to roll back the database (state) to
a check-point taken before the attack [22], though all
(legitimate) work done after the checkpointing time will be
lost. However, since many critical database servers need to
be 24*7 available and temporarily making the database shut
down can be the real goal of the attacker, on-the-fly attack
recovery which never stops the database is necessary in
many cases.

On-the-fly attack recovery faces several unique
challenges. First, we need to do repair forwardly since the
assessment process may never stop. Second, cleaned data
objects could be re-damaged during attack recovery.
Finally, the attack recovery process may never terminate.
Since as the damaged objects are identified and cleaned
new transactions can spread damage if they read a damaged

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

209

but still unidentified object, so we face two critical
questions. (a) Will the attack recovery process terminate?
(b) If the attack recovery process terminates, can we detect
the termination?

To tackle challenge 1, we must ensure that a later on
cleaning transaction will not accidentally damage an object
cleaned by a previous cleaning transaction. To tackle
challenge 2, we must not mistake a cleaned object as
damaged, and we must not mistake a re-damaged object as
already cleaned. To tackle challenge 3, our study in [2]
shows that when the damage spreading speed is quicker
than the repair speed, the repair may never terminate.
Otherwise, the repair process will terminate, and under the
following three conditions we can ensure that the repair
terminates: (1) every malicious transaction is cleaned; (2)
every identified damaged object is cleaned; (3) further
(assessment) scans will not identify any new damage (if no
new attack comes).

From a state-transition angle, the job of attack recovery
is to get a state of the database, which is determined by the
values of the data objects, where (a) no effects of the
malicious transactions are there and (b) the work of good
transactions should be retained as much as possible. In
particular, transactions transform the database from one
state to another. Good transactions transform a good
database state to another good state, but malicious
transactions can transform a good state to a damaged one.
Moreover, both malicious and affected (good) transactions
can make an already damaged state even worse. We say a
database state S1 is better than another one S2 if S1 has
fewer corrupted objects. The goal of on-the-fly attack
recovery is to get the state better and better, although during
the repair process new attacks and damage spreading could
(temporarily) make the state even worse. (A state-oriented
object-by-object attack recovery scheme is proposed in
[38].)

Architecture I has the following properties: (1) It builds
itself on top of an “off-the-shelf” DBMS. It does not require
the DBMS kernel to be changed. It has almost no impact on
the performance of the database server except that the
Mediator can cause some service delay and the cleaning
transactions can make the server busier. (2) The
self-healing processes are all on-the-fly. (3) During attack
recovery, the data integrity level can vary from time to time.
When the attacks are intense, damage spreading can be very
serious, and the integrity level can be dramatically lowered.
In this situation, asking the Mediator to slow down the
execution of new transactions can help stabilize the data
integrity level, although this can cause some availability
loss. This indicates that integrity and availability can be two
conflicting goals in self-healing. (4) More availability loss
can be caused when (a) the Intrusion Detector raises false
alarms; or (b) a corrupted object is located (It will not be
accessible until it is cleaned. Making damaged parts of the
database available to new transactions can seriously spread

the damage). (5) Inaccuracy of intrusion detection can
cause some damage to not be located or repaired. (6)
Architecture I is not designed to and cannot handle physical
world attack recovery, which usually requires many
additional activities. Logically repairing a database does
not always indicate that the corresponding physical world
damage can be recovered.

A major concern people may have is whether
Architecture I can achieve better survivability when the
Intrusion Detector is limited and whether the gained
survivability, if any, is worth the corresponding
performance degradation. To justify the cost-effectiveness
of Architecture I, we have implemented a prototype of
Architecture I on top of an Oracle database server. Our
evaluation results suggest that when the performance of the
Intrusion Detector is reasonable, Architecture I can
effectively locate and repair damage on-the-fly with a
reasonable amount of performance degradation (around
30%) [47].

4. Scheme II

One problem of Architecture I is that during the detection
latency of a malicious transaction B, i.e., the duration from
the time B commits to the time B is detected, damage can
seriously spread. The reason is that during the detection
latency many innocent transactions could be executed and
affected. For example, if the detection latency is 2 seconds,
then Microsoft SQL Server can execute over 2000
transactions during the latency on a single system, and they
can access the objects damaged by B freely (since we do
not know which objects are damaged by B during the
latency).

Quicker intrusion detection can mitigate this problem,
however, reducing detection latency without sacrificing the
false alarm rate or the detection rate is very difficult, if not
impossible. When the detection rate is decreased, more
damage is left unrepaired. When the false alarm rate is
increased, more denial-of-service will be caused. These two
outcomes contradict the goal of Architecture I.

Architecture II, as shown in Figure 2, integrates a novel
isolation technique to tackle this problem. In particular, first,
the Intrusion Detector will raise two levels of alarms: when
the (synthesized) anomaly of a transaction (or session) is
above Level 1 anomaly threshold THm, the transaction is
reported malicious; when the anomaly is above Level 2
anomaly threshold THs (but below THm), the transaction is
reported suspicious. (The values of THm and THs are
determined primarily based on the statistics about previous
attacks). Suspicious transactions should have a significant
probability that they are an attack. Second, when
a malicious transaction is reported, the system works in the
same way as Architecture I. When a suspicious transaction
Ts is reported, the Mediator, with the help of the Isolation

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

210

Manager, will redirect Ts (and the following transactions
submitted by the user that submits Ts) to a virtually
separated database environment where the user will be
isolated. Later on, if the user is proven malicious, the
Isolation Manager will discard the effects of the user; if the
user is shown innocent, the Isolation Manager will merge
the effects of the user back into the main database. In this
way, damage spreading can be dramatically reduced
without sacrificing the detection rate or losing the
availability to good transactions.

Fig. 2 Architecture II

We enforce isolation on an user-by-user basis because
the transactions submitted by the same user (during the
same session) should be able to see the effects of each other.
And the framework should be able to isolate multiple users
simultaneously. Isolating a group of users within the same
virtual database can help tackle collusive attacks, however,
a lot of availability may be lost when only some but not all
members of the group are malicious. Using a completely
replicated database to isolate a user has two drawbacks: (1)
it is too expensive; (2) new updates of unisolated users are
not visible to isolated users. In Architecture II, we use data
versions to virtually build isolating databases. In particular,
a data object x always has a unique trustworthy version,
denoted x[main]. And only if x is updated by an isolated
user can x have an extra suspicious version. In this way, the
total number of suspicious versions will be much less than
the number of main versions.

The isolation algorithm has two key parts: (1) how to
perform the read and write operations of isolated users
(Note that unisolated users can access only the main
database); and (2) how to do merging after an isolated user
is proven innocent. For part 1, we can enforce one-way
isolation where isolated users can read main versions if they
do not have the corresponding suspicious versions, and all
writes of isolated users must be performed on suspicious
versions. In this way, the data freshness to isolated users is
maximized without harming the main database.

The key challenge in part 2 is the inconsistency
between main versions and suspicious versions. If a
trustworthy user and an isolated user update the same object
x independently, x[main] and the suspicious version will

become inconsistent, and one update has to be backed out in
order to do consistent merging. In addition, [25] shows that
(1) even if they do not update the same object,
inconsistency could still be caused; and (2) the merging of
the effects of one isolated user could make another still
being isolated history invalid. These inconsistencies must
be resolved during a merging (e.g., [25] proposes a
precedence-graph based approach that can identify and
resolve all the inconsistencies).

Architecture II has the following set of properties. (1)
Isolation is, to large extent, transparent to suspicious users.
(2) The extra storage cost for isolation is extremely low. (3)
The data consistency is kept before isolation and after
merging. (4) During a merge, if there are some
inconsistencies, some isolated or unisolated transactions
have to be backed out to resolve these inconsistencies. This
is the main cost of Architecture II. Fortunately, the
simulation study done in [10] shows that the back-out cost
is only about 5%. After the inconsistencies are resolved, the
merging can be easily done by forwarding the left updates
of the isolated user to the main database. (5) Architecture II
has almost no impact on the performance of the database
server except that during each merging process (a) the
isolated user cannot execute new transactions; and (b) the
main database tables involved in the update forwarding
process will be temporarily locked.

We have been implementing an isolation subsystem
prototype to further justify the cost-effectiveness of
Architecture II. In order to transparently isolate a
transaction on top of a commercial single-version DBMS
such as Oracle, we need to (a) use extra tables to simulate
multiple versions and (b) rewrite the SQL statements
involved in this transaction in such a way that the one-way
isolation policy can be achieved. Note that query rewriting
could cause some service delay to isolated users but not to
unisolated users.

5. Scheme III

Another problem of Architecture I is that its damage
containment may not be effective. Architecture I contains
the damage by disallowing transactions to read the set of
data objects that are identified (by the Damage Assessor) as
corrupted. This one-phase damage containment approach
has a serious drawback, that is, it cannot prevent the
damage caused on the objects that are corrupted but not yet
located from spreading. Assessing the damage caused by a
malicious transaction B can take a substantial amount of
time, especially when there are a lot of transactions
executed during the detection latency of B. During the
assessment latency, the damage caused during the detection
latency can spread too many other objects before being
contained.

Architecture III, as shown in Figure 3, integrates a
novel multi-phase damage containment technique to tackle

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

211

this problem. In particular, the damage containment process
has one containing phase, which instantly contains the
damage that might have been caused (or spread) by the
intrusion as soon as the intrusion is detected and one or
more later on uncontaining phases to uncontain the objects
that are mistakenly contained during the containing phase,
and the objects that are cleaned. In Architecture III, the
Damage Container will enforce the containing phase (as
soon as a malicious transaction is reported) by sending
some containing instructions to the Containment Executor.
The Uncontainer, with the help from the Damage Assessor,
will enforce the uncontaining phases by sending some
uncontaining instructions to the Containment Executor. The
Containment Executor controls the access of the user
transactions to the database according to these instructions.

Fig. 3 Architecture III

When a malicious transaction B is detected, the
containing phase must ensure that the damage caused
directly or indirectly by B will be contained. In addition, the
containing phase must be quick enough because otherwise
either a lot of damage can leak out during the phase, or
substantial availability can be lost. Time stamps can be
exploited to achieve this goal. The containing phase can be
done by just adding an access control rule to the
Containment Executor, which denies access to the set of
objects updated during the period of time from the time B
commits to the time the containing phase starts. This period
of time is called the containing-time-window. When the
containing phase starts, every active transaction should be
aborted because they could spread damage. New
transactions can be executed only after the containing phase
ends.

It is clear that the containing phase overcontains the
damage in most cases. Many objects updated within the
containing time window can be undamaged. And we must
uncontain them as soon as possible to reduce the
corresponding availability loss. Accurate uncontainment
can be done based on the reports from the Damage Assessor,
which could be too slow due to the assessment latency. [24]
shows that transaction types can be exploited to do much
quicker uncontainment. In particular, assuming that (a)
each transaction Ti belongs to a transaction type type(Ti)
and (b) the profile for type(Ti) is known, the read set

template and write set template can be extracted from
type(Ti)’s profile. The templates specify the kind of objects
that transactions of type(Ti) can read or write. As a result,
the approximate read-from dependency among a history of
transactions can be quickly captured by identifying the
read-from dependency among the types of these
transactions. Moreover, the type-based approach can be
made more accurate by materializing the templates of
transactions using their inputs before analyzing the
read-from dependency among the types.

Architecture III has the following set of properties. (1)
It can ensure that after the containing phase no damage
(caused by the malicious transaction) leaks out. (2) As a
result, the attack recovery process needs only to repair the
damage caused by the transactions that commit during the
containing time window, and the termination problem
addressed in Architecture I does not exist any longer. (3)
One phase containment and multi-phase containment are
the two extremes of the spectrum of damage containment
methods. In particular, one-phase containment has
maximum damage leakage (so minimum integrity) but
maximum availability, while multi-phase containment has
zero damage leakage (so maximum integrity) but minimum
availability. In the middle of the spectrum, there could be a
variety of approximate damage containment methods that
allow some damage leakage.

Architectures II and III share the same goal, that is, to
reduce the extent of damage spreading, while they take two
very different approaches. We are pleased to find that these
two architectures are actually complementary to each other
and can be easily integrated into one architecture, as
illustrated in Figure 4.

Finally, in [3], a color scheme for marking damage and
a notion of integrity suitable for partially damaged
databases are used to develop a mechanism by which
databases under attack could still be safely used. This
mechanism can be viewed as a containment mechanism,
however, it assumes that each object has an (accurate)
initial damage mark, but Architecture III does not. In fact,
Architecture III focuses on how to mark (and contain) the
damage and how to deal with the impact of inaccurate
damage marks.

6. Scheme IV

The self-healing components introduced in Architectures I,
II, and III can behave in many different ways. At one point
of time, the resilience or healthiness of a self-healing
database system is primarily affected by four factors: (a) the
current attacks; (b) the current workload; (c) the current
system state; and (d) the current defense behavior of the
system. It is clear that based on the same system state,
attack pattern, and workload, two self-healing database
systems (of the same Architecture) with different behaviors
can yield very different levels of resilience. This suggests

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

212

that one defense behavior is only good for a limited set of
environments, which are determined by factors (a), (b), and
(c). To achieve the maximum amount of resilience,
intrusion tolerant systems must adapt their behaviors to the
environment.

Architecture IV, as shown in Figure 4, integrates a
reconfiguration framework to handle this challenge. In
particular, the Adaptor is deployed to monitor the
environment changes and adjust the behaviors of the
self-healing components in such a way that the adjusted
system behavior is more (cost) effective than the old system
behavior in the changed environment.

Fig. 4 Architecture IV

In Architectures I, II, and III, almost every self-healing
component is reconfigurable and the behavior of each such
component is controlled by a set of a parameters. For
example, the major control parameters for the Intrusion
Detector are THm and THs. The major control parameter for
the Damage Container is the amount of allowed damage
leakage, denoted DL. When DL = 0, multi-phase
containment is enforced; when there is no restriction on DL,
one-phase containment is enforced. The major control
parameter for the Mediator is the transaction delay time,
denoted DT. When DT = 0, transactions are executed in full
speed; when DT is not zero, transaction executions are
slowed down. At time t, we call the set of control
parameters (and the associated values) for an intrusion
tolerance component Ci, the configuration (vector) of Ci at
time t, and the set of the configurations for all the
self-healing components, the configuration of the
self-healing system at time t. In Architecture IV, each
reconfiguration is done by adjusting the system from one
configuration to another configuration.

The goal of Architecture IV is to improve the
healthiness or resilience of the system, which has three
major aspects: (1) how well the level of data integrity is
maintained in the face of attacks; (2) how well the level of
data and system availability is maintained in the face of
attacks; and (3) how well the level of cost effectiveness is
maintained in the face of attacks.

To do optimal reconfiguration, we want to find the best
configuration (vector) for each (new) environment.
However, this is very difficult, if not impossible, since the
adaptation space of Architecture IV systems contains an
exponential number of configurations. To illustrate, the
simplest configuration of an Architecture IV system could
be [THm, THs,DL,DT], then the size of the adaptation
space is domain(THm) × domain(THs) × domain(DL) ×
domain(DT), which is actually huge. Moreover, we face
conflicting reconfiguration criteria, that is, healthiness and
cost conflict with each other, and integrity and availability
conflict with each other. Therefore, we envision the
problem of finding the best system configuration under
multiple conflicting criteria a NP-hard problem.

Architecture IV focuses on near optimal heuristic
adaptation algorithms which can have much less
complexity. For example, a data integrity favored heuristic
can work as follows: when the level of data integrity, i.e., LI,
is below a specific warning threshold Iw, (a) switch the
system to multi-phase containment, i.e., let DL = 0; (b)
slow down the execution of new transactions by DT = DT +
α(Iw − LI); and (c) lower the anomaly levels required for
alarm raising, that is, THm = THm − β(Iw − LI), and
THs = THs − γ(Iw − LI). In this way, we reject and isolate
more transactions. Here the values of α, β, and γ are
determined based on previous experiences. Note that it is
very possible that different (value) combinations of (α, β,
γ) are optimal for different environments. Hence it is
worthy to have multiple such heuristics with different
combinations of (α, β, γ).

It is clear that under different environments different
heuristics are the most effective. For example, in some
cases integrity favored heuristics can be better, but in some
other cases availability favored heuristics can be better.
Architecture IV systems should have a mechanism to guide
the system to pick the right heuristic (for the current
environment). For example, a rule-based mechanism such
as [28] can be used for this purpose.

7. Scheme V

The resilience achieved by Architecture IV is state-oriented
survivability, that is, the amount of resilience or healthiness
achieved by Architecture IV is specified, measured, and
delivered in terms of the database state. For example, at
time t, an integrity level of 0.92 achieved by an self-healing
database system that protects a database of 10,000 data
objects can simply mean that 800 objects are corrupted, and
an availability level of 0.98 can simply mean that only 200
objects are not accessible. Note than Architecture IV does
not differentiate between data objects.

Unfortunately, state-oriented self-healing database
systems have one serious drawback, that is, they are in

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

213

general not cost-effective in handling people’s self-healing
requirements in the real world. In the real world, different
users usually have different healthiness or usability
requirements on the shared database system. For example,
in a bank, customer Alice could be able to tolerate much
less fraud loss on her accounts than Bob on his. In other
words, Alice has a much higher integrity level requirement
than Bob. In this situation, to satisfy both Alice and Bob,
Architecture IV has to achieve (and maintain) the integrity
level required by Alice across the whole database, and as a
result Architecture IV can waste substantial resources to
protect Bob’s accounts.

The drawback of state-oriented survivability motivates
the idea of service-oriented survivability where users’
intrusion-tolerant requirements are associated with each
(transaction processing) service, and the database system’s
goal is to make sure that the amount of resilience
requirement associated with a service is satisfied when the
service is delivered. In particular, we call a service
associated with a specific level of assurance a Quality of
Information Assurance (QoIA) service. And from the
viewpoint of users, the goal of a self-healing database
system is enabling people to get the QoIA services that they
have subscribed for even in the face of attacks. To illustrate,
in the above example a QoIA balance inquiry service
delivered to Alice could be associated with either one of the
following two healthiness levels: (1) above 90% accounts
involved in this service are not corrupted; (2) for each
account involved in this inquiry, the balance reported is at
least 90% of the correct balance.

It should be noticed that state-oriented survivability
and service-oriented survivability are closely related to
each other. Their relationship can be captured by the
notions of state trustworthiness or healthiness, which is
dependent on the extent to which the data objects can be
corrupted or made unavailable and service trustworthiness
or healthiness, which is dependent on the extent to which a
service can be distorted by the attacker. If we assume that
the DBMS and all transaction codes are trusted, then it is
not difficult to see that the QoIA requirements associated
with a service can be equivalently mapped to a set of state
healthiness requirements since each service can be modeled
as a function of the database state on which the service is
executed.

Architecture V, as shown in Figure 5, extends
state-oriented self-healing database systems to service
oriented self-healing database systems. In particular, the
QoIA Reservation Console enables users to subscribe for
QoIA services. The Observer monitors (and measures) the
trustworthiness or healthiness of the database state. The
Trustworthiness Assessor uses the observed healthiness
measurements to infer the “real” healthiness of the database
state. The QoIA Adaptor enhances the Architecture IV
Adaptor with the ability to map QoIA requirements
associated with services to a set of state trustworthiness

requirements and the ability to maintain differential state
trustworthiness. The adaptation operations performed by
the QoIA Adaptor are determined based on the difference
between the inferred set of state trustworthiness
measurements and the set of state trustworthiness
requirements mapped from user QoIA requirements.

To develop an Architecture V system, we face several
key challenges. First, although the QoIA requirements
associated with a service can be straightforwardly specified
based on the results and outputs of the service, delivering a
set of QoIA services in a differential way is challenging.
Our idea is to indirectly deliver QoIA services through
differential state trustworthiness maintenance via the
mapping from QoIA requirements to state trustworthiness
requirements. Although it is not very difficult to map one
service’s QoIA requirements to a set of state
trustworthiness requirements based on the “function”
performed by the service, it could be difficult to resolve the
inconsistencies among the set of different state
trustworthiness requirements that the set of QoIA services
have on a shared data object. Second, how can we maintain
differential state trustworthiness? Our idea is to apply
different self-healing controls on different parts of the
database. To make this idea feasible, we need to make sure
that one set of self-healing controls does not influence
another set of self-healing controls. Third, how do we
ensure that the (mapped) state trustworthiness requirements
on a part of the database can be satisfied in the face of
attacks? Our idea is through QoIA-aware adaptations where
the set of self-healing controls enforced on a part of the
database can adapt to the changing environment in such a
way that the set of state trustworthiness requirements can be
satisfied with minimum cost. To make this idea feasible, we
need to be able to accurately measure state trustworthiness.
However, this is not an easy job. The measurements
observed by the Observer are usually incomplete and could
even be misleading due to false negatives, false positives,
and detection delays. New techniques are needed to infer
the “real” trustworthiness of the database state based on the
observed measurements. For example, a statistics based
approach could work for this purpose.

Fig. 5 Architecture V

8. Conclusion

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

214

In this paper, we have presented five self-healing database
system architectures which can be built on top of COTS
components. These architectures indicate that: (1) a
multi-layer, defense-in-depth approach, as summarized in
Figure 6, is usually more cost-effective than having the
system’s survivability depend on the effectiveness of one or
two mechanisms such as intrusion detection; (2) adaptive
intrusion-tolerant mechanisms are usually more
cost-effective than pre-programmed intrusion tolerant
mechanisms; (3) service-oriented, intrusion-tolerant
database systems are usually more cost-effective than
state-oriented, intrusion-tolerant database systems. Finally,
we would like to restate that OS-level and transaction-level
self-healing mechanisms should be seamlessly integrated to
build multi-layer, self-healing database systems. This
integration requires careful study of the relationships
between these two layers of mechanisms. For example,
although OS-level data corruptions cannot be detected
using transaction-level approaches, transaction-level
approaches can be very useful to recover from these
corruptions.

Fig. 6 Intrusion Tolerance in Depth

Finally, we would like to mention a couple of exciting
future research directions that should be able to further
improve the proposed architectures:
o Malicious transactions may be able to be masked by a

set of partially replicated database servers where each
server executes only a group of but not all transactions.
The key challenge for such a masking framework
should be the tradeoff between security and data
consistency.

o It is in general true that the accuracy and latency of the
Intrusion Detector can have a big impact on the overall
cost-effectiveness of an intrusion-tolerant (database)
system. Hence it is very desirable to know how “good”
a detector needs to be (in terms of false positive rate,
false negative rate, and detection latency) in order to
make an intrusion tolerant database system (of
Architectures I, II, III, IV, or V) that deploys the
detector, cost-effective.

o OS-level and transaction-level intrusion-tolerance
mechanisms should be seamlessly integrated to build
multi-layer, intrusion-tolerant database systems. This
integration requires careful study of the relationships
between these two layers of mechanisms. For example,

although OS-level data corruptions cannot be detected
using transaction-level approaches, transaction-level
approaches can be very useful to recover from these
corruptions.

Acknowledgment

This work is supported by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Material Command, USAF, under
agreement number F30602-00-2-0575, by DARPA and
AFRL, AFMC, USAF, under award number
F20602-02-1-0216, by NSF CCR-TC-0233324, and by
Department of Energy Early Career PI Award.

References
[1] M. R. Adam. Security-Control Methods for Statistical

Database: A Comparative Study. ACM Computing Surveys,
21(4), 1989.

[2] P. Ammann, S. Jajodia, and P. Liu. Recovery from malicious
transactions. IEEE Transactions on Knowledge and Data
Engineering, 15(5):1167–1185, 2002.

[3] P. Ammann, S. Jajodia, C.D. McCollum, and B.T. Blaustein.
Surviving information warfare attacks on databases. In
Proceedings of the IEEE Symposium on Security and Privacy,
pages 164–174, Oakland, CA, May 1997.

[4] V. Atluri, S. Jajodia, and B. George. Multilevel Secure
Transaction Processing. Kluwer Academic Publishers, 1999.

[5] D. Barbara, R. Goel, and S. Jajodia. Using checksums to
detect data corruption. In Proceedings of the 2000
International Conference on Extending Data Base
Technology, Mar 2000.

[6] Carter and Katz. Computer Crime: An Emerging Challenge
for Law Enforcement. FBI Law Enforcement Bulletin, 1(8),
December 1996.

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In Proc. OSDI 99, 1999.

[8] C. Y. Chung, M. Gertz, and K. Levitt. Demids: A misuse
detection system for database systems. In 14th IFIP WG11.3
Working Conference on Database and Application Security,
2000.

[9] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks.
In Proc. 7th USENIX Security Symposium, 1998.

[10] S. B. Davidson. Optimism and consistency in partitioned
distributed database systems. ACM Transactions on
Database Systems, 9(3):456–581, September 1984.

[11] D. Engler, Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors in
systems code. In Proc. SOSP 01, 2001.

[12] T.D. Garvey and T.F. Lunt. Model-based intrusion detection.
In Proceedings of the 14th National Computer Security
Conference, Baltimore, MD, October 1991.

[13] K. Goseva-Popstojanova, F. Wang, R. Wang, G. Feng, K.
Vaidyanathan, K. Trivedi, and B. Muthusamy.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

215

Characterizing intrusion tolerant systems using a a state
transition model. In Proc. 2001 DARPA Information
Survivability Conference (DISCEX), June 2001.

[14] R. Graubart, L. Schlipper, and C. McCollum. Defending
database management systems against information warfare
attacks. Technical report, The MITRE Corporation, 1996.

[15] P. P. Griffiths and B. W. Wade. An Authorization Mechanism
for a Relational Database System. ACM Transactions on
Database Systems, 1(3):242–255, September 1976.

[16] K. Ilgun. Ustat: A real-time intrusion detection system for
unix. In Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA, May 1993.

[17] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition
analysis: A rule-based intrusion detection approach. IEEE
Transactions on Software Engineering, 21(3):181–199,
1995.

[18] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino.
A unified framework for enforcing multiple access control
policies. In Proceedings of ACM SIGMOD International
Conference on Management of Data, May 1997.

[19] H. S. Javitz and A. Valdes. The sri ides statistical anomaly
detector. In Proceedings IEEE Computer Society Symposium
on Security and Privacy, Oakland, CA, May 1991.

[20] J. Knight, K. Sullivan, M. Elder, and C. Wang. Survivability
architectures: Issues and approaches. In Proceedings of the
2000 DARPA Information Survivability Conference &
Exposition, pages 157–171, CA, June 2000.

[21] W. Lee and D. Xiang. Information-theoretic measures for
anomaly detection. In Proc. 2001 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2001.

[22] J. L. Lin and M. H. Dunham. A survey of distributed database
checkpointing. Distributed and Parallel Databases, 5(3),
1997.

[23] P. Liu. Dais: A real-time data attack isolation system for
commercial database applications. In Proceedings of the 17th
Annual Computer Security Applications Conference, 2001.

[24] P. Liu and S. Jajodia. Multi-phase damage confinement in
database systems for intrusion tolerance. In Proc. 14th IEEE
Computer Security Foundations Workshop, Nova Scotia,
Canada, June 2001.

[25] P. Liu, S. Jajodia, and C.D. McCollum. Intrusion
confinement by isolation in information systems. Journal of
Computer Security, 8(4):243–279, 2000.

[26] P. Liu and Y. Wang. The design and implementation of a
multiphase database damage confinement system. In
Proceedings of the 2002 IFIP WG 11.3 Working Conference
on Data and Application Security, 2002.

[27] P. Luenam and P. Liu. Odar: An on-the-fly damage
assessment and repair system for commercial database
applications. In Proceedings of the 2001 IFIP WG 11.3
Working Conference on Database and Application Security,
2001.

[28] P. Luenam and P. Liu. The design of an adaptive intrusion
tolerant database system. In Proc. IEEE Workshop on
Intrusion Tolerant Systems, 2002.

[29] T.F. Lunt. A Survey of Intrusion Detection Techniques.
Computers & Security, 12(4):405–418, June 1993.

[30] U. Maheshwari, R. Vingralek, and W. Shapiro. How to build
a trusted database system on untrusted storage. In
Proceedings of 4th Symposium on Operating System Design
and Implementation, San Diego, CA, October 2000.

[31] D. Malkhi, M. Merritt, M. K. Reiter, and G. Taubenfeld.
Objects shared by byzantine processes. Distributed
Computing, 16(1), 2003.

[32] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind. Persistent
objects in the fleet system. In Proc. 2001 DARPA
Information Survivability Conference (DISCEX), June 2001.

[33] J. McDermott and D. Goldschlag. Towards a model of
storage jamming. In Proceedings of the IEEE Computer
Security Foundations Workshop, pages 176–185, Kenmare,
Ireland, June 1996.

[34] D. Medhi and D. Tipper. Multi-layered network survivability
- models, analysis, architecture, framework and
implementation: An overview. In Proceedings of the 2000
DARPA Information Survivability Conference & Exposition,
pages 173–186, CA, June 2000.

[35] B. Mukherjee, L. T. Heberlein, and K.N. Levitt. Network
intrusion detection. IEEE Network, pages 26–41, June 1994.

[36] G. C. Necula. Proof-carrying code. In Proc. 24th ACM
Symposium on Principles of Programming Languages, 1997.

[37] P. P. Pal, J. P. Loyall, R. E. Schantz, and J. A. Zinky. Open
implementation toolkit for building survivable applications.
In Proc. 2000 DARPA Information Survivability Conference
(DISCEX), June 2000.

[38] B. Panda and J. Giordano. Reconstructing the database after
electronic attacks. In Proceedings of the 12th IFIP 11.3
Working Conference on Database Security, Greece, Italy,
July 1998.

[39] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of
authorization for next-generation database systems. ACM
Transactions on Database Systems, 16(1):88–131, 1994.

[40] D. Samfat and R. Molva. Idamn: An intrusion detection
architecture for mibile networks. IEEE Journal of Selected
Areas in Communications, 15(7):1373–1380, 1997.

[41] R. Sandhu and F. Chen. The multilevel relational (mlr) data
model. ACM Transactions on Information and Systems
Security, 1(1), 1998.

[42] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H.
Yang, and S. Zhou. Specification-based anomaly detection: a
new approach for detecting network intrusions. In Proc. 9th
ACM Conference on Computer and Communications
Security, 2002.

[43] S. Sekar, M. Bendre, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In Proc. 2001 IEEE Symposium on Security and
Privacy, Oakland, CA, May 2001.

[44] P. Stenstrom and et al. Trends in shared memory
multiprocessing. IEEE Computer, (12):44–50, December
1997.

[45] S. Stolfo, D. Fan, and W. Lee. Credit card fraud detection
using meta-learning: Issues and initial results. In Proc. AAAI
Workshop on AI Approaches to Fraud Detection and Risk
Management, 1997.

[46] M. Tallis and R. Balzer. Document integrity through
mediated interfaces. In Proc. 2001 DARPA Information
Survivability Conference (DISCEX), June 2001.

[47] H. Wang, P. Liu, and L. Li. Evaluating the impact of intrusion
detection deficiencies on the cost-effectiveness of attack
recovery. In Proc. 7th Information Security Conference,
2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

216

[48] F. Webber, P. P. Pal, R. E. Schantz, and J. P. Loyall.
Defense-enabled applications. In Proc. 2001 DARPA
Information Survivability Conference (DISCEX), June 2001.

[49] M.Winslett, K. Smith, and X. Qian. Formal query languages
for secure relational databases. ACMTransactions on
Database Systems, 19(4):626–662, 1994.

[50] J.Wylie, M. Bigrigg, J. Strunk, G. Ganger, H. Kiliccote, and P.
Khosla. Survivable information storage systems. IEEE
Computer, (8), 2000.

[51] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger, H.
Kiliccote, and P. K. Khosla. Survivable information storage
systems. IEEE Computer, (8):61–68, August 2000.

Peng Liu is now an assistant
professor of Information Sciences and
Technology at Penn State University
and the director of Cyber Security Lab.
He received his BS and MS degree
from the University of Science and
Technology of China. He received his
PhD degree from George Mason
University in 1999. His research
interests are in computer and network
security. Dr. Liu has published a book

and about 70 referred technical papers. Dr. Liu is the proceedings
chair of the 2003 and 2004 ACM Conference on Computer and
Communications Security. He is a program committee member of
many conferences (e.g., 2004 International Conference on World
Wide Web), and a referee for many journals (e.g., ACM
Transactions on Information and Systems Security). Dr. Liu is a

recipient of the United States DOE Early CAREER Award.

Jiwu Jing received his B.E.
degree from Tsinghua University and
his M.S. degree from the University of
Science and Technology of China. He
received his PhD degree from the
Chinese Academy of Sciences. He is
now the associate director of the
Chinese State Key Lab of Information
Security. His research interests are
in computer and network security.

