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Summary 
In this paper, we propose five architectures for self-healing 
databases under malicious attacks. While traditional secure 
database systems rely on prevention controls, a self-healing 
database system can autonomically estimate, locate, isolate, 
contain, and repair damage caused by attacks in such a way that 
the database can “heal” itself on-the-fly and continue delivering 
essential services in the face of attacks. With a focus on attacks by 
malicious transactions, Architecture I can detect intrusions, and 
locate and repair the damage caused by the intrusions. 
Architecture II enhances Architecture I with the ability to isolate 
attacks so that the database can be immunized from the damage 
caused by a lot of attacks. Architecture III enhances Architecture I 
with the ability to dynamically contain the damage in such a way 
that no damage will leak out during the attack recovery process. 
Architecture IV enhances Architectures II and III with the ability 
to adapt the self-healing controls to the changing environment so 
that a stabilized level of healthiness can be maintained. 
Architecture V enhances Architecture IV with the ability to 
deliver differential, quantitative QoIA services to customers. 
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1. Introduction 

As society increasingly relies on database systems to store, 
manage, and access information digitally (e.g., database 
products are today a multi-billion dollar industry; database 
systems motivated 32% of the hardware server volume in 
1995 [44], and 39% of the server volume in 2000), 
maintaining the integrity, availability, and confidentiality 
of databases is crucial. Many large-scale database systems 
critical to businesses are expected to be available 
continuously and can only be stopped for repair at great cost. 
However, fraudulent transactions can contaminate such 
databases and necessitate repairs, and traditional 
prevention-centric database security is very limited in 
tackling this problem. A self-healing database system 
would guarantee that under sustained malicious transaction 
attacks, the database is continuously accessible; the 
contamination or “wound” (on the data) is autonomically 
located, contained or isolated, and healed, without stopping 
the system; and the database’s healthiness is carefully 

maintained in such a way that self-healing will not prevent 
(most) essential services from being provided correctly. 
The ITDB (Intrusion Tolerant Data Base) framework, 
which we will present shortly, combines a family of new 
database survivability or intrusion tolerance techniques to 
build self healing databases. 
 
1.1 Technologies for Self-Healing Database Systems 
 
A database is a set of data objects. The database state at 
time t is determined by the values of these data objects at 
that time. A data object x is contaminated, damaged or 
corrupted if its value is changed to a wrong value due to an 
attack (or a mistake). At this situation, the data integrity of x 
is jeopardized or degraded. A database is damaged if some 
data objects are damaged. A damaged data object x is 
repaired or healed if its value is restored to a correct value. 

Self-healing does not always require on-the-fly repair. 
Self-healing systems can choose to do self healing either 
offline or online, based on the application’s requirements 
and the overall cost-effectiveness. When the application 
does not have strict real-time constraints and is insensitive 
to short period of down time, a more cost-effective 
self-healing could be to autonomically select the best time 
to shut down the service, do the repair, then resume the 
service. Nevertheless, since many large-scale database 
systems critical to businesses are expected to be available 
continuously and can only be stopped for repair at great cost 
(i.e., they basically cannot tolerate any down time), in this 
paper we focus on online self-healing technologies. 

Besides the ability to autonomically locate and repair 
the damage on-the-fly, online self-healing requires the 
system to be able to maintain its own healthiness or at least 
curable fitness, because if a self-healing system could not 
ensure that it is always curable, in some cases it cannot heal 
itself. Intuitively, a database is healthy when most of its 
data objects are not damaged. Similar to a human body, 
sometimes a system has too bad “health” to heal up. 
Curability means that every damaged data object can be 
“ultimately” repaired. 
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Existing database security mechanisms are very 
limited in maintaining healthiness. In particular, 
authentication and access control cannot prevent all attacks; 
integrity constraints are weak at prohibiting plausible but 
incorrect data; concurrency control and recovery 
mechanisms cannot distinguish legitimate transactions 
from malicious ones; and automatic replication facilities 
and active database triggers can even serve to spread the 
damage. 

Besides curability, online self-healing also requires 
availability, that is, the database should be always useful 
and the system should always be able to deliver correct 
services. It should be noticed that being useful and being 
accessible are different. A totally contaminated database 
(i.e., every data object is damaged) can still be 100% 
accessible (e.g., it can still process transactions smoothly), 
but the database is no longer useful at all. 

Moreover, note that curability and availability are not 
identical. Being useful implies making the database 
accessible as well as maintaining a certain level of data 
integrity of the current database state. In contrast, even if 
the current database state is seriously contaminated, the 
database may still be curable if the latest clean version of 
every damaged data object is kept in the log files (e.g., the 
redo log, the checkpoint files, etc.) intact and can be 
precisely located. Hence, availability has typically stronger 
data integrity requirements on current data versions than 
curability. On the other hand, note that when the database 
audits are seriously contaminated, even if the database is 
quite useful, it may not be curable. 

Finally, since better healthiness in general not only 
implies easier and quicker self-healing with lower cost, but 
also implies better usability, maintaining good fitness of the 
system in the presence of attacks should be a crucial aspect 
of self healing database system development. 
 
1.1.1 A Multi-Layer Approach to Self-Healing Databases 
 
Building an attack resistant or self-healing database 
requires in general a multi-layer approach, since attacks 
could come from any of the following layers: hardware, OS, 
DBMS, and transactions (or applications). A multi-layer 
approach can be developed along two directions: (a) from 
scratch or (b) using “off-the-shelf” components. 

Along the from-scratch direction, tamper-resistant 
processor environments, and trusted OS or trusted 
DBMS loaders have been applied to close the door on 
hardware attacks and OS bugs; programming security 
technologies such as certified programs (e.g., [36]), 
bug-guarding compilers (e.g., [9]), and bug finding (e.g., 
[11]) can be applied to close the door on many DBMS bugs; 
and signed checksums (and a small amount of 
tamper-resistant storage to keep the signing key) have been 
used to detect OS-level data corruption [30]. Note that 
when the transaction logs are securely maintained, the 

corresponding OS-level repair can be efficiently done either 
online or offline.  

Based on “off-the-shelf” components, OS-level attacks 
have been addressed by several efforts. In 
[5], (signed) checksums are smartly used to detect data 
corruption. In [33], a technique is proposed to detect 
storage jamming, malicious modification of data, using a 
set of special detect objects which are indistinguishable to 
the jammer from normal objects. Modification of detect 
objects indicates a storage jamming attack. 

Although the above techniques may effectively handle 
DBMS, OS, and hardware level intrusions, they cannot 
handle authorized but malicious transactions. For example, 
neither trusted OS nor signed checksums can detect or 
repair the data corruption caused by a malicious transaction 
issued by an attacker assuming the identity of an authorized 
user. The goal of this paper is to explore the self-healing 
database architectures that can handle fraudulent 
transactions. 
 
1.1.2 Intrusion Detection Technologies 
 
One critical step towards self-healing databases under 
attacks is intrusion detection, which has attracted many 
researchers. The existing methods of intrusion detection 
can be roughly classed as signature-based detection (e.g., 
[16]), anomaly detection based on profiles (e.g., [21]), or 
specification-based detection (e.g., [42]). Intrusion 
detection can supplement protection of network and 
information systems by rejecting the future access of 
detected attackers and by providing useful hints on how to 
strengthen the defense. However, intrusion detection has an 
inherent limitation in doing self-healing: Intrusion 
detection makes the system attack-aware but not 
attack-resistant, that is, intrusion detection itself cannot 
maintain integrity and availability of the database in the 
face of attacks. As a result, although intrusion detection and 
checkpoints can be used together to heal the database after 
an attack is detected, such self-healing requires the database 
to roll back its state to a clean checkpoint before the attack 
happens, is very difficult to be processed online, and will 
make all the good work done after the attack invalid. 
 
1.1.3 Fault Tolerance Technologies 
 
When the causes for self-healing are faults and failures, the 
corresponding self-healing technologies belong to the field 
of fault tolerance. However, when the causes for 
self-healing are malicious attacks, the corresponding 
self-healing technologies can be quite different from fault 
tolerance technologies, due to several fundamental 
differences between fault tolerance and intrusion tolerance. 
To illustrate, first, in fault tolerance, failures randomly 
happen; but in security, attacks are typically intentional and 
do not randomly happen. Moreover, attacks are more active 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006 
 
 

 

206 

 

than failures, so more proactive techniques are needed for 
intrusion tolerance. Second, intrusion detection is typically 
more challenging and complicated than failure detection. 
Third, in traditional fault tolerance under fail stop fault 
model, being accessible means correct/quality services (i.e., 
being useful), but this is not true in online self-healing 
under attacks. 

Accordingly, traditional database recovery 
mechanisms are fairly limited in healing the database under 
attacks. They do not address this problem, except for 
complete rollbacks, which undo the work of benign 
transactions as well as malicious ones, and compensating 
transactions, whose utility depends on application 
semantics. More important, they cannot maintain database 
healthiness under attacks in such a way that both the 
curability and usability requirements can be satisfied. 

Nevertheless, fault tolerance technologies build a solid 
foundation for developing intrusion tolerant systems. Some 
specific fault tolerance technologies, such as Byzantine 
fault tolerance [7], have been found crucial in developing 
several types of intrusion tolerant systems. 
 
1.1.4 Intrusion Tolerance Technologies 
 
From the healthiness maintenance perspective, self-healing 
systems are indeed an intrusion tolerant system. We can 
classify existing intrusion tolerance technologies into two 
categories: intrusion masking and defense-in-depth. 

Intrusion Masking The goal of intrusion masking is to 
creatively use enough redundancy (and maybe data 
fragmentation and distribution) to ensure that the system 
can function correctly even if part of it is hacked. In this 
sense, we say such systems can mask intrusions. 
Techniques in this category focus on how to enhance the 
inherent resilience of the system, and their effectiveness is 
typically much less sensitive to the agility and accuracy of 
intrusion detection than pragmatic intrusion response 
techniques. General principles in developing intrusion 
masking systems include but are not limited to (a) 
redundancy & replication; (b) diversity; (c) randomization; 
(d) fragmentation& threshold cryptography; and (e) 
increased layers of indirections. Techniques in this category 
include but are not limited to Byzantine intrusion masking 
techniques (e.g., [31]) and threshold-cryptography-based 
survivable systems (e.g., [50]). 

Nevertheless, although Byzantine fault tolerance and 
threshold-cryptography-based survivability can be very 
effective when a group of replicated processing or storage 
servers are infected by outside attacks, they are very limited 
in surviving malicious user activities such as fraudulent 
transactions. In particular, these two technologies cannot 
exploit redundancy to distinguish a malicious transaction 
submitted by an attacker assuming the identity of a trusted 
user from a legitimate transaction submitted by the trusted 

user, and as a result, the system must treat them similarly, 
and this intrusion cannot be modeled as Byzantine faults. 
Defense-in-depth The goal of defense-in-depth 
technologies is to arm the system with a set of intrusion 
response facilities which, with the help of intrusion 
detection, can respond to intrusions in such a way that the 
system can operate through attacks. Technologies in this 
category include (a) boundary controllers such as firewalls 
and access control; (b) intrusion detection; and (c) intrusion 
response. Boundary controllers cannot prevent every attack. 
Intrusion detection is already discussed. Intrusion response 
technologies can be classified into three categories: 
o Reactive response. Facilities in this category are 

activated only when an intrusion is identified and their 
effectiveness is highly dependent on the accuracy and 
latency of intrusion detection. 

o Proactive response. Facilities in this category are 
activated in a proactive manner based on suspicious 
activities (or signs) before an intrusion is confirmed. 
Although proactive response may consume more 
resources, it may immunize the system from the 
damage caused by many attacks. 

o Adaptive response. Feedback based adaptation is a nice 
feature of many survivable systems, where the defense 
posture (i.e., security mechanism configurations) of 
the system is dynamically adjusted based on the 
changing environment. 

Compared with intrusion masking technologies, where 
many attacks may be masked without causing any system 
security (e.g., integrity and availability) degradation, 
defense-in-depth technologies usually would introduce 
certain level of security degradation. On the other hand, the 
advantages of defense-in-depth technologies are that (a) 
they can be directly applied to legacy systems, (b) they may 
effectively handle malicious user activities, and (c) their 
overhead (or cost) can be much smaller than intrusion 
masking technologies. For example, defense-in-depth 
systems usually need much less redundancy. The key issues 
in defense-in-depth include but are not limited to: How to 
quickly contain/isolate the intrusions so that their infection 
will not be too serious to operate through? How to quickly 
distinguish the damaged part from the undamaged part of 
the system? How to quickly repair the contaminated part of 
the system without bringing it offline? How to handle the 
impact of false alarms, undetected intrusions, and detection 
latency? How to make the intrusion response facilities 
adaptive and proactive? 
 
1.2 Overview of the ITDB Framework 
 
The ITDB framework, which is composed of five 
architectures, as shown in Figures 1, 2, 3, 4 and 5, 
respectively, combines a family of novel defense-in-depth 
techniques to achieve database self-healing under attacks. 
In particular, Architecture I detects intrusions, and locates 
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and repairs the damage caused by intrusions. Architecture II 
enhances Architecture I with the ability to isolate attacks so 
that the database can be immunized from the damage 
caused by a lot of intrusions. Architecture III enhances 
Architecture I with the ability to dynamically contain the 
damage in such a way that no damage will leak out during 
the attack recovery process. Architecture IV enhances 
Architectures II and III with the ability to adapt the self 
healing controls to the changing environment so that a 
stabilized level of healthiness can be maintained. 
Architecture V enhances Architecture IV with the ability to 
deliver differential, quantitative QoIA services to 
customers. 

The ITDB framework focuses on transaction-level 
intrusion tolerance, which, based on the fact that most 
attacks are from insiders [6], should be a major aspect of 
self-healing database systems. Although using 
“off-the-shelf” components, ITDB cannot (directly) defend 
against processor, OS, or DBMS-level attacks, when the 
lower-level attacks are not so serious and when most attacks 
are via malicious transactions, ITDB can still be very 
effective. Moreover, existing lower-level self-healing 
mechanisms, such as those proposed in [30, 5, 33], can be 
easily integrated into ITDB architectures to build a 
multi-layer, self-healing database system. 

The remainder of the paper is organized as follows. 
Section 2 discusses some related work. In Sections 3, 4, 5, 6, 
and 7, we present five self-healing database system 
architectures. Section 8 concludes the paper. 
 
2. Related Work 
 
Database security concerns the confidentiality, integrity, 
and availability of data stored in a database. A broad span of 
research from authorization [15, 39, 18], to inference 
control [1], to multilevel secure databases [49, 41], and to 
multilevel secure transaction processing [4], addresses 
primarily how to protect the security of a database, 
especially its confidentiality. Intrusion tolerance, however, 
is seldom addressed. 

One critical step towards intrusion-tolerant database 
systems is intrusion detection (ID), which has attracted 
many researchers [29, 35]. The existing methodology of ID 
can be roughly classed as anomaly detection [19, 40, 21, 
43] or misuse detection [12, 17]. However, current ID 
research focuses on identifying attacks on OS and computer 
networks. Although there has been some work on database 
ID [8, 45], these methods are neither application aware nor 
at the transaction-level. 

The need for intrusion tolerance has been recognized 
by many researchers in such contexts as information 
warfare [14]. Recently, extensive research has been done in 
general principles of survivability [20, 48, 13], survivability 
of networks [34], survivable storage systems [51], 
survivable application development via middleware [37], 

persistent objects [32], and survivable document editing 
systems [46]. 

Some research has also been done in database intrusion 
tolerance. In [3], a fault tolerant approach is taken to 
survive database attacks where (a) several useful 
survivability phases are suggested, though no concrete 
mechanisms are proposed for these phases; (b) a color 
scheme for marking damage (and repair) and a notion of 
integrity suitable for partially damaged databases are used 
to develop a mechanism by which databases under attack 
could still be safely used. 

Some of the architectures presented in this paper are 
directly or indirectly proposed, investigated (using detailed 
system and algorithm designs), and evaluated (using 
prototypes) by our previous research. In particular, 
Architecture I is addressed in [2, 27]; Architecture II is 
addressed in [25, 23]; and Architecture III is proposed in 
[24, 26]. 
 
3. Scheme I 
 
Since the property of database atomicity indicates that only 
committed transactions can really change the database, it is 
theoretically true that if we can detect every malicious 
transaction before it commits, then we can roll back the 
transaction before it causes any damage. However, this 
“perfect” solution is not practical for two reasons. First, 
transaction execution is, in general, much quicker than 
detection, and slowing down transaction execution can 
cause very serious denial-of-service. For example, the 
Microsoft SQL Server can execute over 1000 (TPC-C) 
transactions within one second (see www.oracle.com), 
while the average anomaly detection latency is typically in 
the scale of minutes or seconds. Detection is much slower 
since: (1) in many cases detection needs human 
intervention; (2) to reduce false alarms, in many cases a 
sequence of actions should be analyzed. For example, [21] 
shows that when using system call trails to identify 
sendmail attacks, synthesizing the anomaly scores of a 
sequence of system calls (longer than 5) can achieve much 
better accuracy than based on single system calls. 

Second, some authorized but malicious transactions 
are very difficult to detect. They look and behave just like 
other legitimate transactions. Anomaly detection based on 
the semantics of transactions (and the application) may be 
the only effective way to identify such attacks, however, it 
is very difficult, if not impossible, for an anomaly detector 
to have a 100% detection rate with reasonable false alarm 
rate and detection latency. 

Hence, a practical goal should be: “After the database 
is damaged, locate the damaged part and repair it as soon as 
possible, so that the database can continue being useful in 
the face of attacks.” In other words, we want the database 
system to operate through attacks. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006 
 
 

 

208 

 

Architecture I, as shown in Figure 1, combines 
intrusion detection and attack recovery to achieve this goal. 
In particular, the Intrusion Detector monitors and analyzes 
the trails of database sessions and transactions in a 
real-time manner to identify malicious transactions as soon 
as possible. Alarms of malicious transactions, when raised, 
will be instantly sent to the Repair Manager, which will 
locate the damage caused by the attack and repair the 
damage. During the whole intrusion detection and attack 
recovery process, the database continues executing new 
transactions. 

 
Fig. 1 Architecture I 

 
Although there are lots of anomaly detection 

algorithms (for host or network based intrusion detection), 
they usually cannot be directly applied in malicious 
transaction detection, which faces the following unique 
challenges: 
o Application semantics must be captured and used. For 

example, for a school salary management application, 
a $3000 raise is normal, but a $10000 raise is very 
abnormal. Application semantics based intrusion 
detection is application aware. Since different 
applications can have very different semantics, general 
application-aware database intrusion detection systems 
must support dynamic integration of application 
semantics. Since different anomaly detection 
algorithms may be good for different application 
semantics, a general application-aware database 
intrusion detection system must adapt itself to 
application semantics. 

o Multi-layer intrusion detection is usually necessary for 
detection accuracy. First, proofs from application layer, 
session layer, transaction layer, process layer, and 
system call layer should be synthesized to do intrusion 
detection. Lower level proofs can help identify higher 
level anomalies. Second, OS-level and 
transaction-level intrusion detection should be coupled 
with each other. 

We suggest a flexible cartridge-like detector to address 
these challenges. The detector is a cartridge which should 
be general enough to plug in a variety of (a) anomaly 
detection algorithms such as [8] and [45], (b) application 
semantics extraction algorithms, and (c) application 
semantics based adaptation policies. The user should be 

able to prepare some of these algorithms and policies. The 
detector should provide the interfaces for the user to pick 
existing and provide new bullets, and the detector should 
not be required to rebuild itself again and again to support 
each new bullet. (Here each bullet indicates an algorithm or 
a policy that the detector wants to plug in.) In this way, one 
detector can be used to meet the intrusion detection needs of 
multiple applications. Flexibility and expressiveness are the 
key challenges for developing such a detector. 

Malicious transactions can seriously corrupt a database 
through a vulnerability denoted as damage spreading. In a 
database, the results of one transaction can affect the 
execution of other transactions. When a transaction Ti reads 
a data object x updated by another transaction Tj, Ti is 
directly affected by Tj . If a third transaction Tk is affected 
by Ti, but not directly affected by Tj , Tk is indirectly 
affected by Tj . It is easy to see that when a (relatively old) 
transaction Bi that updates x is identified as malicious, the 
damage to x can spread to every object updated by a good 
transaction that is affected by Bi, directly or indirectly. In a 
word, the read-from dependency among transactions forms 
the traces along which damage spreads. 

The job of attack recovery is two-fold: damage 
assessment and repair. In particular, the job of the Damage 
Assessor is to locate each affected good transaction, i.e., the 
damage spreading traces; and the job of the Damage 
Repairer is to recover the database from the damage caused 
on the objects updated along the traces. In particular, when 
an affected transaction T is located, the Damage Repairer 
builds a specific cleaning transaction to clean each object 
updated by T (and not cleaned yet). Cleaning an object is 
simply done by restoring the value of the object to its latest 
undamaged version. 

Temporarily stopping the database will certainly make 
the attack recovery job simpler since the damage will no 
longer spread and the repair can be done backwardly after 
the assessment is done, that is, we can repair the database 
by simply undoing the malicious as well as affected 
transactions in the reverse order of their commit order. An 
even simpler approach is to roll back the database (state) to 
a check-point taken before the attack [22], though all 
(legitimate) work done after the checkpointing time will be 
lost. However, since many critical database servers need to 
be 24*7 available and temporarily making the database shut 
down can be the real goal of the attacker, on-the-fly attack 
recovery which never stops the database is necessary in 
many cases. 

On-the-fly attack recovery faces several unique 
challenges. First, we need to do repair forwardly since the 
assessment process may never stop. Second, cleaned data 
objects could be re-damaged during attack recovery. 
Finally, the attack recovery process may never terminate. 
Since as the damaged objects are identified and cleaned 
new transactions can spread damage if they read a damaged 
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but still unidentified object, so we face two critical 
questions. (a) Will the attack recovery process terminate? 
(b) If the attack recovery process terminates, can we detect 
the termination? 

To tackle challenge 1, we must ensure that a later on 
cleaning transaction will not accidentally damage an object 
cleaned by a previous cleaning transaction. To tackle 
challenge 2, we must not mistake a cleaned object as 
damaged, and we must not mistake a re-damaged object as 
already cleaned. To tackle challenge 3, our study in [2] 
shows that when the damage spreading speed is quicker 
than the repair speed, the repair may never terminate. 
Otherwise, the repair process will terminate, and under the 
following three conditions we can ensure that the repair 
terminates: (1) every malicious transaction is cleaned; (2) 
every identified damaged object is cleaned; (3) further 
(assessment) scans will not identify any new damage (if no 
new attack comes). 

From a state-transition angle, the job of attack recovery 
is to get a state of the database, which is determined by the 
values of the data objects, where (a) no effects of the 
malicious transactions are there and (b) the work of good 
transactions should be retained as much as possible. In 
particular, transactions transform the database from one 
state to another. Good transactions transform a good 
database state to another good state, but malicious 
transactions can transform a good state to a damaged one. 
Moreover, both malicious and affected (good) transactions 
can make an already damaged state even worse. We say a 
database state S1 is better than another one S2 if S1 has 
fewer corrupted objects. The goal of on-the-fly attack 
recovery is to get the state better and better, although during 
the repair process new attacks and damage spreading could 
(temporarily) make the state even worse. (A state-oriented 
object-by-object attack recovery scheme is proposed in 
[38].) 

Architecture I has the following properties: (1) It builds 
itself on top of an “off-the-shelf” DBMS. It does not require 
the DBMS kernel to be changed. It has almost no impact on 
the performance of the database server except that the 
Mediator can cause some service delay and the cleaning 
transactions can make the server busier. (2) The 
self-healing processes are all on-the-fly. (3) During attack 
recovery, the data integrity level can vary from time to time. 
When the attacks are intense, damage spreading can be very 
serious, and the integrity level can be dramatically lowered. 
In this situation, asking the Mediator to slow down the 
execution of new transactions can help stabilize the data 
integrity level, although this can cause some availability 
loss. This indicates that integrity and availability can be two 
conflicting goals in self-healing. (4) More availability loss 
can be caused when (a) the Intrusion Detector raises false 
alarms; or (b) a corrupted object is located (It will not be 
accessible until it is cleaned. Making damaged parts of the 
database available to new transactions can seriously spread 

the damage). (5) Inaccuracy of intrusion detection can 
cause some damage to not be located or repaired. (6) 
Architecture I is not designed to and cannot handle physical 
world attack recovery, which usually requires many 
additional activities. Logically repairing a database does 
not always indicate that the corresponding physical world 
damage can be recovered. 

A major concern people may have is whether 
Architecture I can achieve better survivability when the 
Intrusion Detector is limited and whether the gained 
survivability, if any, is worth the corresponding 
performance degradation. To justify the cost-effectiveness 
of Architecture I, we have implemented a prototype of 
Architecture I on top of an Oracle database server. Our 
evaluation results suggest that when the performance of the 
Intrusion Detector is reasonable, Architecture I can 
effectively locate and repair damage on-the-fly with a 
reasonable amount of performance degradation (around 
30%) [47]. 
 
4. Scheme II 
 
One problem of Architecture I is that during the detection 
latency of a malicious transaction B, i.e., the duration from 
the time B commits to the time B is detected, damage can 
seriously spread. The reason is that during the detection 
latency many innocent transactions could be executed and 
affected. For example, if the detection latency is 2 seconds, 
then Microsoft SQL Server can execute over 2000 
transactions during the latency on a single system, and they 
can access the objects damaged by B freely (since we do 
not know which objects are damaged by B during the 
latency). 

Quicker intrusion detection can mitigate this problem, 
however, reducing detection latency without sacrificing the 
false alarm rate or the detection rate is very difficult, if not 
impossible. When the detection rate is decreased, more 
damage is left unrepaired. When the false alarm rate is 
increased, more denial-of-service will be caused. These two 
outcomes contradict the goal of Architecture I. 

Architecture II, as shown in Figure 2, integrates a novel 
isolation technique to tackle this problem. In particular, first, 
the Intrusion Detector will raise two levels of alarms: when 
the (synthesized) anomaly of a transaction (or session) is 
above Level 1 anomaly threshold THm, the transaction is 
reported malicious; when the anomaly is above Level 2 
anomaly threshold THs (but below THm), the transaction is 
reported suspicious. (The values of THm and THs are 
determined primarily based on the statistics about previous 
attacks). Suspicious transactions should have a significant 
probability that they are an attack. Second, when 
a malicious transaction is reported, the system works in the 
same way as Architecture I. When a suspicious transaction 
Ts is reported, the Mediator, with the help of the Isolation 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006 
 
 

 

210 

 

Manager, will redirect Ts (and the following transactions 
submitted by the user that submits Ts) to a virtually 
separated database environment where the user will be 
isolated. Later on, if the user is proven malicious, the 
Isolation Manager will discard the effects of the user; if the 
user is shown innocent, the Isolation Manager will merge 
the effects of the user back into the main database. In this 
way, damage spreading can be dramatically reduced 
without sacrificing the detection rate or losing the 
availability to good transactions. 
 

 
Fig. 2 Architecture II 

We enforce isolation on an user-by-user basis because 
the transactions submitted by the same user (during the 
same session) should be able to see the effects of each other. 
And the framework should be able to isolate multiple users 
simultaneously. Isolating a group of users within the same 
virtual database can help tackle collusive attacks, however, 
a lot of availability may be lost when only some but not all 
members of the group are malicious. Using a completely 
replicated database to isolate a user has two drawbacks: (1) 
it is too expensive; (2) new updates of unisolated users are 
not visible to isolated users. In Architecture II, we use data 
versions to virtually build isolating databases. In particular, 
a data object x always has a unique trustworthy version, 
denoted x[main]. And only if x is updated by an isolated 
user can x have an extra suspicious version. In this way, the 
total number of suspicious versions will be much less than 
the number of main versions. 

The isolation algorithm has two key parts: (1) how to 
perform the read and write operations of isolated users 
(Note that unisolated users can access only the main 
database); and (2) how to do merging after an isolated user 
is proven innocent. For part 1, we can enforce one-way 
isolation where isolated users can read main versions if they 
do not have the corresponding suspicious versions, and all 
writes of isolated users must be performed on suspicious 
versions. In this way, the data freshness to isolated users is 
maximized without harming the main database. 

The key challenge in part 2 is the inconsistency 
between main versions and suspicious versions. If a 
trustworthy user and an isolated user update the same object 
x independently, x[main] and the suspicious version will 

become inconsistent, and one update has to be backed out in 
order to do consistent merging. In addition, [25] shows that 
(1) even if they do not update the same object, 
inconsistency could still be caused; and (2) the merging of 
the effects of one isolated user could make another still 
being isolated history invalid. These inconsistencies must 
be resolved during a merging (e.g., [25] proposes a 
precedence-graph based approach that can identify and 
resolve all the inconsistencies). 

Architecture II has the following set of properties. (1) 
Isolation is, to large extent, transparent to suspicious users. 
(2) The extra storage cost for isolation is extremely low. (3) 
The data consistency is kept before isolation and after 
merging. (4) During a merge, if there are some 
inconsistencies, some isolated or unisolated transactions 
have to be backed out to resolve these inconsistencies. This 
is the main cost of Architecture II. Fortunately, the 
simulation study done in [10] shows that the back-out cost 
is only about 5%. After the inconsistencies are resolved, the 
merging can be easily done by forwarding the left updates 
of the isolated user to the main database. (5) Architecture II 
has almost no impact on the performance of the database 
server except that during each merging process (a) the 
isolated user cannot execute new transactions; and (b) the 
main database tables involved in the update forwarding 
process will be temporarily locked. 

We have been implementing an isolation subsystem 
prototype to further justify the cost-effectiveness of 
Architecture II. In order to transparently isolate a 
transaction on top of a commercial single-version DBMS 
such as Oracle, we need to (a) use extra tables to simulate 
multiple versions and (b) rewrite the SQL statements 
involved in this transaction in such a way that the one-way 
isolation policy can be achieved. Note that query rewriting 
could cause some service delay to isolated users but not to 
unisolated users. 
 
5. Scheme III 
 
Another problem of Architecture I is that its damage 
containment may not be effective. Architecture I contains 
the damage by disallowing transactions to read the set of 
data objects that are identified (by the Damage Assessor) as 
corrupted. This one-phase damage containment approach 
has a serious drawback, that is, it cannot prevent the 
damage caused on the objects that are corrupted but not yet 
located from spreading. Assessing the damage caused by a 
malicious transaction B can take a substantial amount of 
time, especially when there are a lot of transactions 
executed during the detection latency of B. During the 
assessment latency, the damage caused during the detection 
latency can spread too many other objects before being 
contained. 

Architecture III, as shown in Figure 3, integrates a 
novel multi-phase damage containment technique to tackle 
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this problem. In particular, the damage containment process 
has one containing phase, which instantly contains the 
damage that might have been caused (or spread) by the 
intrusion as soon as the intrusion is detected and one or 
more later on uncontaining phases to uncontain the objects 
that are mistakenly contained during the containing phase, 
and the objects that are cleaned. In Architecture III, the 
Damage Container will enforce the containing phase (as 
soon as a malicious transaction is reported) by sending 
some containing instructions to the Containment Executor. 
The Uncontainer, with the help from the Damage Assessor, 
will enforce the uncontaining phases by sending some 
uncontaining instructions to the Containment Executor. The 
Containment Executor controls the access of the user 
transactions to the database according to these instructions. 

 

 
Fig. 3 Architecture III 

When a malicious transaction B is detected, the 
containing phase must ensure that the damage caused 
directly or indirectly by B will be contained. In addition, the 
containing phase must be quick enough because otherwise 
either a lot of damage can leak out during the phase, or 
substantial availability can be lost. Time stamps can be 
exploited to achieve this goal. The containing phase can be 
done by just adding an access control rule to the 
Containment Executor, which denies access to the set of 
objects updated during the period of time from the time B 
commits to the time the containing phase starts. This period 
of time is called the containing-time-window. When the 
containing phase starts, every active transaction should be 
aborted because they could spread damage. New 
transactions can be executed only after the containing phase 
ends. 

It is clear that the containing phase overcontains the 
damage in most cases. Many objects updated within the 
containing time window can be undamaged. And we must 
uncontain them as soon as possible to reduce the 
corresponding availability loss. Accurate uncontainment 
can be done based on the reports from the Damage Assessor, 
which could be too slow due to the assessment latency. [24] 
shows that transaction types can be exploited to do much 
quicker uncontainment. In particular, assuming that (a) 
each transaction Ti belongs to a transaction type type(Ti) 
and (b) the profile for type(Ti) is known, the read set 

template and write set template can be extracted from 
type(Ti)’s profile. The templates specify the kind of objects 
that transactions of type(Ti) can read or write. As a result, 
the approximate read-from dependency among a history of 
transactions can be quickly captured by identifying the 
read-from dependency among the types of these 
transactions. Moreover, the type-based approach can be 
made more accurate by materializing the templates of 
transactions using their inputs before analyzing the 
read-from dependency among the types. 

Architecture III has the following set of properties. (1) 
It can ensure that after the containing phase no damage 
(caused by the malicious transaction) leaks out. (2) As a 
result, the attack recovery process needs only to repair the 
damage caused by the transactions that commit during the 
containing time window, and the termination problem 
addressed in Architecture I does not exist any longer. (3) 
One phase containment and multi-phase containment are 
the two extremes of the spectrum of damage containment 
methods. In particular, one-phase containment has 
maximum damage leakage (so minimum integrity) but 
maximum availability, while multi-phase containment has 
zero damage leakage (so maximum integrity) but minimum 
availability. In the middle of the spectrum, there could be a 
variety of approximate damage containment methods that 
allow some damage leakage. 

Architectures II and III share the same goal, that is, to 
reduce the extent of damage spreading, while they take two 
very different approaches. We are pleased to find that these 
two architectures are actually complementary to each other 
and can be easily integrated into one architecture, as 
illustrated in Figure 4.  

Finally, in [3], a color scheme for marking damage and 
a notion of integrity suitable for partially damaged 
databases are used to develop a mechanism by which 
databases under attack could still be safely used. This 
mechanism can be viewed as a containment mechanism, 
however, it assumes that each object has an (accurate) 
initial damage mark, but Architecture III does not. In fact, 
Architecture III focuses on how to mark (and contain) the 
damage and how to deal with the impact of inaccurate 
damage marks. 
 
6. Scheme IV 
 
The self-healing components introduced in Architectures I, 
II, and III can behave in many different ways. At one point 
of time, the resilience or healthiness of a self-healing 
database system is primarily affected by four factors: (a) the 
current attacks; (b) the current workload; (c) the current 
system state; and (d) the current defense behavior of the 
system. It is clear that based on the same system state, 
attack pattern, and workload, two self-healing database 
systems (of the same Architecture) with different behaviors 
can yield very different levels of resilience. This suggests 
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that one defense behavior is only good for a limited set of 
environments, which are determined by factors (a), (b), and 
(c). To achieve the maximum amount of resilience, 
intrusion tolerant systems must adapt their behaviors to the 
environment. 

Architecture IV, as shown in Figure 4, integrates a 
reconfiguration framework to handle this challenge. In 
particular, the Adaptor is deployed to monitor the 
environment changes and adjust the behaviors of the 
self-healing components in such a way that the adjusted 
system behavior is more (cost) effective than the old system 
behavior in the changed environment. 

 

 
Fig. 4 Architecture IV 

In Architectures I, II, and III, almost every self-healing 
component is reconfigurable and the behavior of each such 
component is controlled by a set of a parameters. For 
example, the major control parameters for the Intrusion 
Detector are THm and THs. The major control parameter for 
the Damage Container is the amount of allowed damage 
leakage, denoted DL. When DL = 0, multi-phase 
containment is enforced; when there is no restriction on DL, 
one-phase containment is enforced. The major control 
parameter for the Mediator is the transaction delay time, 
denoted DT. When DT = 0, transactions are executed in full 
speed; when DT is not zero, transaction executions are 
slowed down. At time t, we call the set of control 
parameters (and the associated values) for an intrusion 
tolerance component Ci, the configuration (vector) of Ci at 
time t, and the set of the configurations for all the 
self-healing components, the configuration of the 
self-healing system at time t. In Architecture IV, each 
reconfiguration is done by adjusting the system from one 
configuration to another configuration. 

The goal of Architecture IV is to improve the 
healthiness or resilience of the system, which has three 
major aspects: (1) how well the level of data integrity is 
maintained in the face of attacks; (2) how well the level of 
data and system availability is maintained in the face of 
attacks; and (3) how well the level of cost effectiveness is 
maintained in the face of attacks. 

To do optimal reconfiguration, we want to find the best 
configuration (vector) for each (new) environment. 
However, this is very difficult, if not impossible, since the 
adaptation space of Architecture IV systems contains an 
exponential number of configurations. To illustrate, the 
simplest configuration of an Architecture IV system could 
be [THm, THs,DL,DT], then the size of the adaptation 
space is domain(THm) × domain(THs) × domain(DL) × 
domain(DT), which is actually huge. Moreover, we face 
conflicting reconfiguration criteria, that is, healthiness and 
cost conflict with each other, and integrity and availability 
conflict with each other. Therefore, we envision the 
problem of finding the best system configuration under 
multiple conflicting criteria a NP-hard problem. 

Architecture IV focuses on near optimal heuristic 
adaptation algorithms which can have much less 
complexity. For example, a data integrity favored heuristic 
can work as follows: when the level of data integrity, i.e., LI, 
is below a specific warning threshold Iw, (a) switch the 
system to multi-phase containment, i.e., let DL = 0; (b) 
slow down the execution of new transactions by DT = DT + 
α(Iw − LI); and (c) lower the anomaly levels required for 
alarm raising, that is, THm = THm − β(Iw − LI), and 
THs = THs − γ(Iw − LI). In this way, we reject and isolate 
more transactions. Here the values of α, β, and γ are 
determined based on previous experiences. Note that it is 
very possible that different (value) combinations of (α, β, 
γ) are optimal for different environments. Hence it is 
worthy to have multiple such heuristics with different 
combinations of (α, β, γ). 

It is clear that under different environments different 
heuristics are the most effective. For example, in some 
cases integrity favored heuristics can be better, but in some 
other cases availability favored heuristics can be better. 
Architecture IV systems should have a mechanism to guide 
the system to pick the right heuristic (for the current 
environment). For example, a rule-based mechanism such 
as [28] can be used for this purpose. 
 
7. Scheme V 
 
The resilience achieved by Architecture IV is state-oriented 
survivability, that is, the amount of resilience or healthiness 
achieved by Architecture IV is specified, measured, and 
delivered in terms of the database state. For example, at 
time t, an integrity level of 0.92 achieved by an self-healing 
database system that protects a database of 10,000 data 
objects can simply mean that 800 objects are corrupted, and 
an availability level of 0.98 can simply mean that only 200 
objects are not accessible. Note than Architecture IV does 
not differentiate between data objects. 

Unfortunately, state-oriented self-healing database 
systems have one serious drawback, that is, they are in 
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general not cost-effective in handling people’s self-healing 
requirements in the real world. In the real world, different 
users usually have different healthiness or usability 
requirements on the shared database system. For example, 
in a bank, customer Alice could be able to tolerate much 
less fraud loss on her accounts than Bob on his. In other 
words, Alice has a much higher integrity level requirement 
than Bob. In this situation, to satisfy both Alice and Bob, 
Architecture IV has to achieve (and maintain) the integrity 
level required by Alice across the whole database, and as a 
result Architecture IV can waste substantial resources to 
protect Bob’s accounts. 

The drawback of state-oriented survivability motivates 
the idea of service-oriented survivability where users’ 
intrusion-tolerant requirements are associated with each 
(transaction processing) service, and the database system’s 
goal is to make sure that the amount of resilience 
requirement associated with a service is satisfied when the 
service is delivered. In particular, we call a service 
associated with a specific level of assurance a Quality of 
Information Assurance (QoIA) service. And from the 
viewpoint of users, the goal of a self-healing database 
system is enabling people to get the QoIA services that they 
have subscribed for even in the face of attacks. To illustrate, 
in the above example a QoIA balance inquiry service 
delivered to Alice could be associated with either one of the 
following two healthiness levels: (1) above 90% accounts 
involved in this service are not corrupted; (2) for each 
account involved in this inquiry, the balance reported is at 
least 90% of the correct balance. 

It should be noticed that state-oriented survivability 
and service-oriented survivability are closely related to 
each other. Their relationship can be captured by the 
notions of state trustworthiness or healthiness, which is 
dependent on the extent to which the data objects can be 
corrupted or made unavailable and service trustworthiness 
or healthiness, which is dependent on the extent to which a 
service can be distorted by the attacker. If we assume that 
the DBMS and all transaction codes are trusted, then it is 
not difficult to see that the QoIA requirements associated 
with a service can be equivalently mapped to a set of state 
healthiness requirements since each service can be modeled 
as a function of the database state on which the service is 
executed. 

Architecture V, as shown in Figure 5, extends 
state-oriented self-healing database systems to service 
oriented self-healing database systems. In particular, the 
QoIA Reservation Console enables users to subscribe for 
QoIA services. The Observer monitors (and measures) the 
trustworthiness or healthiness of the database state. The 
Trustworthiness Assessor uses the observed healthiness 
measurements to infer the “real” healthiness of the database 
state. The QoIA Adaptor enhances the Architecture IV 
Adaptor with the ability to map QoIA requirements 
associated with services to a set of state trustworthiness 

requirements and the ability to maintain differential state 
trustworthiness. The adaptation operations performed by 
the QoIA Adaptor are determined based on the difference 
between the inferred set of state trustworthiness 
measurements and the set of state trustworthiness 
requirements mapped from user QoIA requirements. 

To develop an Architecture V system, we face several 
key challenges. First, although the QoIA requirements 
associated with a service can be straightforwardly specified 
based on the results and outputs of the service, delivering a 
set of QoIA services in a differential way is challenging. 
Our idea is to indirectly deliver QoIA services through 
differential state trustworthiness maintenance via the 
mapping from QoIA requirements to state trustworthiness 
requirements. Although it is not very difficult to map one 
service’s QoIA requirements to a set of state 
trustworthiness requirements based on the “function” 
performed by the service, it could be difficult to resolve the 
inconsistencies among the set of different state 
trustworthiness requirements that the set of QoIA services 
have on a shared data object. Second, how can we maintain 
differential state trustworthiness? Our idea is to apply 
different self-healing controls on different parts of the 
database. To make this idea feasible, we need to make sure 
that one set of self-healing controls does not influence 
another set of self-healing controls. Third, how do we 
ensure that the (mapped) state trustworthiness requirements 
on a part of the database can be satisfied in the face of 
attacks? Our idea is through QoIA-aware adaptations where 
the set of self-healing controls enforced on a part of the 
database can adapt to the changing environment in such a 
way that the set of state trustworthiness requirements can be 
satisfied with minimum cost. To make this idea feasible, we 
need to be able to accurately measure state trustworthiness. 
However, this is not an easy job. The measurements 
observed by the Observer are usually incomplete and could 
even be misleading due to false negatives, false positives, 
and detection delays. New techniques are needed to infer 
the “real” trustworthiness of the database state based on the 
observed measurements. For example, a statistics based 
approach could work for this purpose. 

 

 
Fig. 5 Architecture V 

 
8. Conclusion 
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In this paper, we have presented five self-healing database 
system architectures which can be built on top of COTS 
components. These architectures indicate that: (1) a 
multi-layer, defense-in-depth approach, as summarized in 
Figure 6, is usually more cost-effective than having the 
system’s survivability depend on the effectiveness of one or 
two mechanisms such as intrusion detection; (2) adaptive 
intrusion-tolerant mechanisms are usually more 
cost-effective than pre-programmed intrusion tolerant 
mechanisms; (3) service-oriented, intrusion-tolerant 
database systems are usually more cost-effective than 
state-oriented, intrusion-tolerant database systems. Finally, 
we would like to restate that OS-level and transaction-level 
self-healing mechanisms should be seamlessly integrated to 
build multi-layer, self-healing database systems. This 
integration requires careful study of the relationships 
between these two layers of mechanisms. For example, 
although OS-level data corruptions cannot be detected 
using transaction-level approaches, transaction-level 
approaches can be very useful to recover from these 
corruptions. 
 

 
Fig. 6 Intrusion Tolerance in Depth 

Finally, we would like to mention a couple of exciting 
future research directions that should be able to further 
improve the proposed architectures: 
o Malicious transactions may be able to be masked by a 

set of partially replicated database servers where each 
server executes only a group of but not all transactions. 
The key challenge for such a masking framework 
should be the tradeoff between security and data 
consistency. 

o It is in general true that the accuracy and latency of the 
Intrusion Detector can have a big impact on the overall 
cost-effectiveness of an intrusion-tolerant (database) 
system. Hence it is very desirable to know how “good” 
a detector needs to be (in terms of false positive rate, 
false negative rate, and detection latency) in order to 
make an intrusion tolerant database system (of 
Architectures I, II, III, IV, or V) that deploys the 
detector, cost-effective. 

o OS-level and transaction-level intrusion-tolerance 
mechanisms should be seamlessly integrated to build 
multi-layer, intrusion-tolerant database systems. This 
integration requires careful study of the relationships 
between these two layers of mechanisms. For example, 

although OS-level data corruptions cannot be detected 
using transaction-level approaches, transaction-level 
approaches can be very useful to recover from these 
corruptions. 
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