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Summary 
 
Cryptanalysis of ciphertext has gained considerable interest 
among the research community engaged in security studies. 
Optimisation heuristics are alternative candidates for brute 
force attack of ciphers. This paper demonstrates the 
applicability of two optimisation heuristics, simulated 
annealing (SA) and tabu search for the cryptanalysis of 
Simplified Data Encryption Standard (SDES). Results of 
preliminary studies on a comparison with genetic algorithms 
(GA) are also presented. 
 
1. INTRODUCTION 
 
Cryptanalysis is one of the major challenging areas of intense 
research in the discipline of security. It is a process of looking 
for weakness in the design of ciphers. A cryptosystem takes 
as input a plaintext and a known key and produces an 
encrypted version of the plaintext known as the ciphertext. An 
attack on a cipher can be of various types. One type of attack 
uses the ciphertext only and attempts to arrive at the secret 
key and thus the plaintext. This is the most difficult attack 
among the classes of attacks encountered in cryptanalysis and 
thus we consider this type of attack in this paper. 
 
In the brute force attack, the attacker tries every possible key 
on a piece of cipher text until an intelligible translation into 
plaintext is obtained. Cryptographic algorithms are almost 
designed to make a brute force attack of their solution space 
infeasible. The key space is large enough so that it is not 
possible for an attacker to try every possible key. 
Combinatorial optimisation techniques attempt to solve 
problems using techniques other than brute force. Exact and 
approximate algorithms can be used to solve problems from 
the combinatorial optimisation category. Approximate 
algorithms yield “good” solution to a problem. Such 
optimisation heuristics based on genetic algorithm [3], tabu 
search [2], and simulated annealing [5] have found good 
application in solving a large number of combinatorial 
optimisation problems. These techniques demonstrate good 

potential when applied to the domain of cryptanalysis and few 
relevant studies have been recently reported. 
 
Clark [1] has carried out interesting studies on the use of 
optimisation heuristics for the automated cryptanalysis of 
classical ciphers. Simple substitution and permutation ciphers 
are considered in this paper.  Spillman et al. [10] focus on the 
cryptanalysis of a simple substitution cipher. Genetic 
algorithm attack on the Chor -Rivest public key cryptosystem 
is studied by Yaseen et al. [12]. The paper by Spillman 
applies a genetic algorithm approach to a knapsack system [9]. 
 
Realising the lack of studies on the attack of practical 
cryptosystems using the optimisation heuristics mentioned 
above, we present in this paper our study on the cryptanalysis 
of Simplified Data Encryption Standard (SDES). Though it is 
a much-simplified version of DES, cryptanalysis of SDES 
using simulated annealing, genetic algorithm and tabu search 
will give better insight into the attack of DES and other 
ciphers. To the best of our knowledge, cryptanalysis of SDES 
using the above optimisation heuristics has not been reported 
earlier. 
 
The rest of the paper is organised as follows: Section 2 
presents a brief overview of the SDES algorithm. The basic 
principles of the relevant optimisation heuristics are presented 
in section 3.Experimental results are presented in section 
4.Conclusions of our study are presented in section 5. 
 
2. THE SDES ALGORITHM 
 
The SDES [8] encryption algorithm takes an 8-bit block of 
plaintext and a 10-bit key as input and produces an 8-bit 
block of ciphertext as output. The decryption algorithm takes 
an 8-bit block of ciphertext and the same 10-bit key used as 
input to produce the original 8-bit block of plaintext. The 
encryption algorithm involves five functions; an initial 
permutation (IP), a complex function called fK which involves 
both permutation and substitution operations and depends on 
a key input; a simple permutation function that switches (SW) 
the two halves of the data; the function fK again, and a 
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permutation function that is the inverse of the initial 
permutation (IP-1). 
 
The function fK takes as input the data passing through the 
encryption algorithm and an 8-bit key. Consider a 10-bit key 
from which two 8-bit subkeys are generated. In this case, the 
key is first subjected to a permutation P10= [3 5 2 7 4 10 1 9 
8 6], then a shift operation is performed. The numbers in the 
array represent the value of that bit in the original 10-bit key. 
The output of the shift operation then passes through a 
permutation function that produces an 8-bit output P8=[6 3 7 
4 8 5 10 9] for the first sub key (K1). The output of the shift 
operation also feeds into another shift and another instance of 
P8 to produce the second subkey K2.In all bit strings, the 
leftmost position corresponds to the first bit. 
 
The block schematic of the SDES algorithm is shown in Fig.1. 
 
 
 
      10-bit key  
 
 
   Encryption                                     Decryption 
8-bit plaintext              8-bit plaintext 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
8-bit ciphertext   8-bit ciphertext 
 

Fig. 1: Simplified DES Scheme 
 
 
Encryption involves the sequential application of five 
functions: 
 
1. Initial and final permutation (IP) 
 
The input to the algorithm is an 8-bit block of plaintext, 
which we first permute using the IP function 

IP= [2 6 3 1 4 8 5 7].This retains all 8-bits of the plaintext but 
mixes them up. At the end of the algorithm, the inverse 
permutation is applied; the inverse permutation is done by 
applying, IP-1 = [4 1 3 5 7 2 8 6] where we have IP-1(IP(X)) 
=X. 
2. The function fk, which is the complex component of SDES,  
consists of a combination of permutation and substitution 
functions. The functions are given as follows. 
Let L, R be the left 4-bits and right 4-bits of the input, then, 
fK (L, R) = (L XOR f(R, key), R) 
where XOR is the exclusive-OR operation and key is a sub -
key. Computation of f(R, key) is done as follows. 
1. Apply expansion/permutation E/P= [4 1 2 3 2 3 4 1] to   
    input 4-bits. 
2. Add the 8-bit key (XOR). 
3. Pass the left 4-bits through S-Box S0 and the right 4-bits   
    through S-Box S1. 
4. Apply permutation P4 = [2 4 3 1]. 
 
The two S-boxes are defined as follows: 
            S0      S1 
 
         1 0 3 2  0 1 2 3 
         3 2 1 0  2 0 1 3 
         0 2 1 3  3 0 1 0 
                      3 1 3 2  2 1 0 3 
  
The S-boxes operate as follows: The first and fourth input bits 
are treated as 2-bit numbers that specify a row of the S-box 
and the second and third input bits specify a column of the S-
box. The entry in that row and column in base 2 is the 2-bit 
output. 
 
3. Since the function fK allows only the leftmost 4-bits of the   
input, the switch function (SW) interchanges the left and right 
4-bits so that the second instance of fK operates on different 4-
bits. In this second instance, the E/P, S0, S1 and P4 functions 
are the same as above but the key input is K2. 
 
The appendix explains the computation steps of fk through an 
example. 
 
3. OPTIMIZATION HEURISTICS 
 
Often it is hard to use exact algorithms those yield the optimal 
solution, due to their time or memory complexity. For many 
engineering applications, approximate algorithms are used to 
find an adequate solution to the problem. Prominent among 
such techniques are, simulated annealing, genetic algorithm 
and tabu search. These methods have a high probability of 
locating the global solution optimally in a multimodal search 
landscape. The interest in heuristics search algorithms with 
their inspiration from natural and physical processes began in 
early 1970s when Holland [4] proposed the genetic 
algorithms. This interest was rekindled by Kirkpatrick et al. 
[5] who proposed the simulated annealing technique in 
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1983.Simulated annealing is derived from thermodynamic 
considerations with annealing interpreted as an optimisation 
procedure. The use of tabu search was pioneered by Glover 
[2] from 1985 onwards, wherein the search procedure is 
prevented from returning to a previously explored region of 
the solution space too quickly. A brief overview of these 
techniques is presented below. Before we present the 
techniques, the objective function or cost function 
computation is discussed briefly. 

A. Cost Function 
 
An appropriate step in the formulation of the optimisation 
heuristics is the choice of a suitable cost function. Though 
few options can be considered for our problem, a natural 
choice is to compare the candidate keys by comparing the n-
gram statistics of the decrypted message with those of the 
language, which are assumed to be known. Equation 1 is a 
general formula used to determine the cost function of a key 
(K), which in a way is the suitability assessment step for a 
key (K) [1]. 
 
CK = α ∑(i ε Ã)    K (i) u – D (i)

 u     +  

         β ∑(i, j ε Ã)   K (i, j) b – D (i, j)
 b    + 

        γ ∑(i, j, k ε Ã)  K (i, j, k) t – D (i, j, k)
 t       (1)     

 
In equation (1), Ã denotes the language alphabet i.e., {A, 
B…Z, _}, for English where _ represents the space symbol), 
K and D denote the known language statistics and decrypted 
message statistics respectively, and u, b, and t denote the 
unigram, digram and trigram statistics respectively; α, β and γ 
are the weights assigning different priorities to each of the 
three statistics where α+ β + γ = 1. When trigram statistics are 
used, the complexity of equation (1) is O (P3) where P is the 
alphabet size. In view of the computational complexity of 
trigram, only unigram and digram statistics are used. Equation 
(1) is used as the cost function for all our three heuristics 
related to the optimisation studies; minor modification of 
equation (1) needs to be done depending on whether the 
problem formulation is maximization or minimization. A 
minor variant of equation (1) is used as the fitness function 
for the genetic algorithm approach. All the following three 
algorithms used for cryptanalysis are presented very 
systematically by Clark [1]. The known language statistics are 
available in the literature [1] and on the web. 

B. Simulated Annealing 
 
Annealing is the process of slowly cooling a heated metal in 
order to attain a minimum energy state. The idea of 
mimicking the annealing process has been efficiently 
exploited by Kirkpatrick et al. [5] to solve combinatorial 

optimisation problems. The algorithm is initialised with a 
random solution to the problem being solved and a starting 
temperature T0.The temperature is slowly decreased and at 
each temperature, a number of attempts are made to perturb 
the current solution. At each perturbed temperature, a change 
in the cost function ΔE is determined. If ΔE<0, then the 
proposed perturbation is accepted; otherwise it is accepted 
with a probability indicated by the Metropolis equation given 
by, 
 

Probability (E1 E2) = e (-ΔE/T)          (2) 
 

where E1 and E2 are the cost functions, ΔE is the change in 
cost function and T is the current temperature. If the proposed 
change is accepted, then the current solution is updated. The 
temperature is reduced when a predefined number of attempts 
have been made to update the current solution. Possibilities of 
termination are when a certain minimum temperature is 
reached or a certain number of temperature reductions have 
occurred; or the current solution has not changed for a 
number of iterations. The algorithm is presented in Fig.2. 
 
1. Input: Intercepted ciphertext, the key size P, and the 
language statistics. 
2. Initialize the algorithm parameters: the maximum number 
of iterations MAX, the initial temperature T0, and the 
temperature reduction factor ALPHA. 
3. Set T=T0 and generate a random initial solution KCURR  and 
calculate the associated cost CCURR. 
4. For I=1… MAX do 
      a. Set NSUCC=0. 
      b. Repeat 100.P times 
 i. Choose n1, n2 ε[1, P], n1 ≠ n2 

 ii. Swap element n1 with element n2 in  
                  KCURR to produce KNEW. 
 iii. Calculate the cost CNEW of KNEW. Find the cost  
                   difference ΔE= CNEW- CCURR and use equation (2)  
                   to determine whether the proposed transition  
                   should be accepted. 
 iv. If the transition is accepted, set KCURR=KNEW and  
                  CCURR=CNEW and increment NSUCC.If NSUCC> 10.P, 
                  go to step 4d. 
      c. If NSUCC=0, go to step 5. 
      d. Reduce T (T=T*ALPHA). 
5. Output the current solution. 
 
Fig.2: Simulated Annealing Algorithm 
 

C. Tabu Search 
 
The tabu search [2] prevents the search from returning to a 
previously explored region of the solution space too quickly. 
This is achieved by retaining a list of possible solutions that 
have been previously encountered. These solutions are called 
‘tabu’; hence the name of the technique. The size of the tabu 
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list influences the performance of the algorithm. Tabu search 
is similar to simulated annealing with the added constraint of 
the tabu list. Two randomly chosen key elements are swapped 
to generate candidate solutions. In each iteration, the best new 
key formed replaces the worst existing one in the tabu list. 
The algorithm is presented in Fig.3. 
 
1. Input: Intercepted ciphertext, the key size P, and the 
language statistics. 
2. Initialise parameters: The size of the tabu list STABU, the 
size of the list of possibilities considered in each iteration 
SPOSS, and the maximum number of iterations MAX. 
3. Initialise the tabu list with random and distinct keys and 
calculate the cost for each key in the tabu list. 
4. For I =1,… , MAX do: 
   a. Find the best key with the lowest cost in the current tabu    
      list,   KBEST. 
   b. For j=1,…, SPOSS do: 
 i. apply the perturbation mechanism described in the  
                 simulated annealing attack to produce a new key  
                 KNEW. 

 ii. Check if KNEW is already in the list of possibilities  
                  generated for this iteration or the tabu list. If  
                  so, return to step 4(b) i. 
 iii. Add KNEW to the list of possibilities for this  
                    iteration. 
   c. From the list of possibilities for this iteration, find the key   
       with the lowest cost, PBEST. 
   d. From the tabu list, find the key with the highest  
      cost, TWORST. 

    e. While the cost of PBEST  is less than the cost of TWORST: 
 i. Replace TWORST  with PBEST. 
 ii. Find the new PBEST. 

 iii. Find the new TWORST. 
5. Output the best solution from the tabu list, KBEST(the one   
   with the least cost). 
 
 
Fig.3: Tabu Search Algorithm 
 

D. Genetic Algorithm 
 
Genetic algorithms are developed based on the idea of 
emulating the evolution of a species. A population of 
individuals is generated, typically randomly. Each of these 
individuals represents a possible candidate solution to the 
problem. The solutions are encoded as bit strings (i.e., binary 
encoding). The solution quality of each individual is 
evaluated by a fitness function. In our case, the population of 
individuals consists of different keys considered for 
cryptanalysis and the fitness function is typically given by 
equation (1). The natural evolution process is abstracted to 
three genetic operations; selection, crossover and mutation. In 
this step, the probability of an individual to be selected is 
directly proportional to its fitness value. After this, the second 
operator, crossover, is used to create a new child out of the 

two selected parents by breaking up the parents’ bit strings at 
a random position and mutually interchanging one bit string 
with the other. Finally, mutation is used where a randomly 
chosen bit in the string is flipped. Details on genetic 
algorithms and their application to optimisation problems are 
extensively treated by Goldberg [3] and Srinivas et al. [11]. 
An algorithmic presentation of genetic algorithm used for our 
study is shown in Fig.4. Keys in cryptanalysis studies are 
represented as a string of bits in the chromosome and genetic 
operators process this bit string [1], [6], [9], [10], [12]. 
  
1. Input: Intercepted ciphertext, and the language statistics. 
2. Initialise the algorithm parameters: the solution pool size M 
and the maximum number of iterations MAX. 
3. Randomly generate an initial pool of solutions PCURR, and 
calculate the cost of each of the solutions in the pool using 
equation (1). 
4. For I =1… MAX do: 

a. Select M/2 pairs of keys from PCURR to be the  
                 parents of the new generation. 
 b. Perform the mating operation on each of the pairs  
                 of parents to produce a new pool of solutions PNEW. 

 c. For each of the M children, perform a mutation  
                  operation. 
 d. Calculate the cost associated with each of the    
                 keys in the new solution pool PNEW. 
 e. Sort PNEW from the most suitable (the least cost) to  
                 the least suitable (the most cost). 
 f. Merge PCURR with PNEW to give a list of sorted  
                 solutions (discard duplicates). Choose the best M  
                 keys to become the new current pool PCURR. 
5. Output the best solution from PCURR. 
 
Fig. 4: Genetic Algorithm for Cryptanalysis 
 
The mutation operation in the algorithm of Fig.4 is identical 
to the solution perturbation method used in simulated 
annealing attack discussed earlier. That is, randomly select 
two elements in the child and swap those elements. 
 
4.    EXPERIMENTAL RESULTS 
 
We have carried out extensive experimentation to arrive at the 
key and thus the plaintext, given the ciphertext. The attack 
studies have been carried out with three different types of text. 
1. A typical English novel text (maximum of 3000 characters 
long). 
2. A typical technical text. 
3. An E-commerce type of text for fund transfer. 
 
The experiments were conducted on a P4 system using 
Matlab version 7.1.For the cost function given in equation (1), 
it was noticed that the benefit of trigrams over digrams was 
small. 
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Our objective in this paper is to compare the results obtained 
from simulated annealing and tabu search attacks with those 
obtained using genetic algorithms. The results of our study on 
cryptanalysis of SDES using genetic algorithms are presented 
in a paper by Nalini et al. [7]. Due to space constraints, the 
details of the underlying experiments, results and discussions 
for the genetic algorithm-based cryptanalysis are not 
presented here and these can be found in the paper by          
Nalini et al. [7]. 
 
For the 50 cases tested, in about 48 cases the keys were 
obtained within 5 iterations for the tabu search attacks. 
However, the computation time and the corresponding 
number of iterations varied for different cases under 
consideration. Out of the three optimisation heuristics 
considered, the tabu search emerged to be the most effective 
one in terms of the percentage of successful key retrievals and 
the number of iterations taken. For the tabu search technique, 
the size of the tabu list influences the performance of the 
algorithm. It was noticed that a tabu list size of 15 was a good 
choice guaranteeing key retrieval for all the cases considered. 
Table 1 shows the effect of the tabu list size on the number of 
bits matched, out of the 10 bits in the key. 
 
 

TABLE 1:EFFECT OF TABU LIST SIZE 
 
 
 
 
 
 
 
 
 
 
For the simulated annealing attack, it was noticed that in case 
of successful retrieval of the key, this attack was faster 
compared to tabu search and genetic algorithm attacks; in 
most cases, the simulated annealing attack retrieved the key in 
about 15 minutes, whereas the genetic algorithm and tabu 
search took about 20 and 10 minutes respectively. However, 
the simulated annealing attack needs tuning of certain 
parameters. 
 
In case of simulated annealing attack, the initial temperature 
and the rate of temperature decrease are important parameters 
influencing convergence to the correct result. It was observed 
that as the initial temperature was increased, the number of 
bits matched in the key decreased. Thus a high initial 
temperature is not desirable. 
 
For the temperature profile, we considered linear and 
exponential decay of the profile. For a linear profile, the 
temperature at iteration K is given by, 
 

TK=TK-1 – ((T0-T∞)/MAX) 
 

where T0 is the initial temperature, T∞ is the final temperature 
and MAX determines how much the temperature is reduced at 
each step. For an exponential decay of temperature, we have, 
TK= δTK-1. 

 
We have studied the performance of both these temperature 
reduction schemes and it is concluded that the exponential 
decay gives better results. Initial temperature T0 in the range 
0.4-1 and δ in the range 0.02-0.1, yield good results. 
 
For genetic algorithm attack, the key was retrieved on an 
average in 5 generations, each generation takes 5 minutes; 
thus on an average it takes about 20-25 minutes with a 
population size of 50 for each generation. The search space 
thus has a dimension of 250 compared to 1024 in the brute 
force case. Thus in case of genetic algorithm, the search space 
reduction is by a factor 1024/250≈4.For a comparison of the 
execution times of genetic algorithm, tabu search, and 
simulated annealing attacks with the execution time of the 
brute-force method, we notice that in the worst case the brute- 
force attack takes about 35-40 minutes. 
 
 
Table 2 shows a snapshot of some typical parameter value 
combinations for which the key was successfully retrieved 
among the many experiments carried out by us. Many such 
combinations yielded success. 
 
 
 

TABLE 2: TYPICAL PARAMETERS YIELDING CONVERGENCE USING GA 
 

Sl.
no

α, β,γ Selection 
method 

Crossover 
fraction 

Mutation 
 rate 

Popul
ation 
size 

1 0.2,0.4,
0.4 

Roulette 0.8 0.05 100 

2 0.2,0.5,
0.3 

Stochastic 0.5 0.05 100 

3 0.2,0.4,
0.4 

Tournament 0.8 0.03 50 

 
To obtain the performance measures, each of the attacks was 
tried a large number of times with different combinations of 
the parameters. The average value obtained over fifty 
messages is used as the performance metric. This was done 
primarily due to the random nature of the algorithms. We 
believe that averaging of results of a large number of attacks 
will yield a reasonably representative result of the 
performance statistics under consideration. 
 
We broadly notice that all the three algorithms do not 
significantly differ as far as the eventual success of the attack 
is concerned. However, it is noticed that as the amount of 
known ciphertext is increased, the tabu search attack performs 
better than the other two attacks based on simulated annealing 

Sl. 
no 

Tabu list size No.of bits 
matched 

1 15 10 
2 20 10 
3 12 09 
4 08 06 
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and genetic algorithm. This is evident from the mean and 
standard deviation of the number of key bits successfully 
obtained, as an average over fifty runs. Tabu search shows a 
higher mean value with lower standard deviation (variance). 
Table 3 shows some relevant data based on which these 
inferences have been drawn. 
 
We next consider the complexity of the algorithms viewed 
from the perspective of number of keys involved in a 
successful attack and the time required by the algorithms for 
different percentages of key elements of the key retrieved. 
From such an observation, it is noticed that simulated 
annealing performs better than the genetic algorithm. 
However from these studies it can be inferred that the 
simulated annealing algorithm considers more number of 
solutions than the genetic algorithm and in lesser time, for a 
successful retrieval of the key. From a consideration of the 
above two aspects of characterising complexity of the 
algorithms, the tabu search is more efficient than the other 
two methods. 
 
TABLE 3:STATISTICAL DATA ON PERCENTAGE OF SUCCESSFUL 
ATTACKS (μ: MEAN, σ: STANDARD DEVIATION) 
 

 Amount of   
 Cipher text 
 
   200 
   500 
  1000 

      SA 
μ          σ 
 
7.5 2.3 
8.4      2.0 
9.2      1.9 
 

      GA 
μ           σ 
 
7.4       2.8 
8.1       2.5 
9.1       2.2 

Tabu Search 
μ          σ 
 
8.1      2.7 
9.2      2.2 
10       1.8 

 
5.CONCLUSIONS 

 
The paper has demonstrated that optimisation heuristics such 
as genetic algorithm, tabu search and simulated annealing are 
ideally suited for the cryptanalysis of Simplified Data 
Encryption Standard. Thus these techniques offer a lot of 
promise for attacks of other ciphers. Though SDES is a 
simple cipher, its building blocks are also used in other 
ciphers. Experimental results demonstrate good performance 
for tabu search and simulated annealing; few parameters need 
to be tuned for the best possible performance. If these 
parameters are tuned properly, one may get much better 
performance for these two methods. 
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APPENDIX 

Computation of Function fk  

Plaintext: 10100101, Apply IP: 01110100 

Compute fk (01110100) for K=00101111 

fk   (01110100)=((0111) XOR f (0100,K), 0100) 

To compute f (0100, K) 1.Apply E/P: 00101000 

2.Add K: 00101111   Sum: 00000111 

3. Pass 0000 to S0, 0111 to S1 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006 
 
 

246 

S0: Read row 0,column 0: 1=(01) 2and S1: Read row1, column 
3:3=(11) 2   Output of S-boxes: 0111  

4.  Apply P4 =1110 

. . . fk = ((0111) XOR (1110), 0100)) 

         = 01110100 

 

 
  Nalini.N, received her B.E 
degree from University BDT 
College of 
Engineering,Davanagere,Kuvem
pu University,India in the year 
1996,her M.S(Software 
Systems) degree from 
BITS,Pilani,Rajasthan,India in 

the year 1999.She is curently persuing her Ph.D 
from Visvesvaraya Technological 
University,Belgaum,India.Also she is working as 
an Assistant Professor in the department of 
CSE,Siddaganga Institute of 
Technology,Tumkur,India.She has presented more 
than six papers at various National and 
International Conferences.Her research interests are  
in the areas of Cryptography and Optimisation 
Heuristics. 

 
Dr.G.RaghavendraRao, 

Completed his BE, ME & Ph.D 
from University of Mysore, 
Indian Institute of Science, 
Bangalore & University of 
Mysore, respectively.Has been 
teaching Computer Science for 
the last 23 years.  Presently the 

Principal and also Head of the Department of 
Computer Science & Engg. at National Institute of 
Engineering, Mysore, India.He Has more than 25 
papers  in International and National Journals and 
Conferences.His Areas of interest include Genetic 
Algorithms, Cryptography, Data mining, 
Webcommerce  and Artificial Intelligence.He is 
also the member of IEEE & ISTE. 


