
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

240

Cryptanalysis of Simplified Data Encryption Standard via
Optimisation Heuristics

Nalini N1, G Raghavendra Rao2

1Department of Computer Science and Engineering
Siddaganga Institute of Technology, Tumkur-572103

Karnataka, India.

2National Institute of Engineering, Mysore-570008
Karnataka, India.

Summary

Cryptanalysis of ciphertext has gained considerable interest
among the research community engaged in security studies.
Optimisation heuristics are alternative candidates for brute
force attack of ciphers. This paper demonstrates the
applicability of two optimisation heuristics, simulated
annealing (SA) and tabu search for the cryptanalysis of
Simplified Data Encryption Standard (SDES). Results of
preliminary studies on a comparison with genetic algorithms
(GA) are also presented.

1. INTRODUCTION

Cryptanalysis is one of the major challenging areas of intense
research in the discipline of security. It is a process of looking
for weakness in the design of ciphers. A cryptosystem takes
as input a plaintext and a known key and produces an
encrypted version of the plaintext known as the ciphertext. An
attack on a cipher can be of various types. One type of attack
uses the ciphertext only and attempts to arrive at the secret
key and thus the plaintext. This is the most difficult attack
among the classes of attacks encountered in cryptanalysis and
thus we consider this type of attack in this paper.

In the brute force attack, the attacker tries every possible key
on a piece of cipher text until an intelligible translation into
plaintext is obtained. Cryptographic algorithms are almost
designed to make a brute force attack of their solution space
infeasible. The key space is large enough so that it is not
possible for an attacker to try every possible key.
Combinatorial optimisation techniques attempt to solve
problems using techniques other than brute force. Exact and
approximate algorithms can be used to solve problems from
the combinatorial optimisation category. Approximate
algorithms yield “good” solution to a problem. Such
optimisation heuristics based on genetic algorithm [3], tabu
search [2], and simulated annealing [5] have found good
application in solving a large number of combinatorial
optimisation problems. These techniques demonstrate good

potential when applied to the domain of cryptanalysis and few
relevant studies have been recently reported.

Clark [1] has carried out interesting studies on the use of
optimisation heuristics for the automated cryptanalysis of
classical ciphers. Simple substitution and permutation ciphers
are considered in this paper. Spillman et al. [10] focus on the
cryptanalysis of a simple substitution cipher. Genetic
algorithm attack on the Chor -Rivest public key cryptosystem
is studied by Yaseen et al. [12]. The paper by Spillman
applies a genetic algorithm approach to a knapsack system [9].

Realising the lack of studies on the attack of practical
cryptosystems using the optimisation heuristics mentioned
above, we present in this paper our study on the cryptanalysis
of Simplified Data Encryption Standard (SDES). Though it is
a much-simplified version of DES, cryptanalysis of SDES
using simulated annealing, genetic algorithm and tabu search
will give better insight into the attack of DES and other
ciphers. To the best of our knowledge, cryptanalysis of SDES
using the above optimisation heuristics has not been reported
earlier.

The rest of the paper is organised as follows: Section 2
presents a brief overview of the SDES algorithm. The basic
principles of the relevant optimisation heuristics are presented
in section 3.Experimental results are presented in section
4.Conclusions of our study are presented in section 5.

2. THE SDES ALGORITHM

The SDES [8] encryption algorithm takes an 8-bit block of
plaintext and a 10-bit key as input and produces an 8-bit
block of ciphertext as output. The decryption algorithm takes
an 8-bit block of ciphertext and the same 10-bit key used as
input to produce the original 8-bit block of plaintext. The
encryption algorithm involves five functions; an initial
permutation (IP), a complex function called fK which involves
both permutation and substitution operations and depends on
a key input; a simple permutation function that switches (SW)
the two halves of the data; the function fK again, and a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

241

permutation function that is the inverse of the initial
permutation (IP-1).

The function fK takes as input the data passing through the
encryption algorithm and an 8-bit key. Consider a 10-bit key
from which two 8-bit subkeys are generated. In this case, the
key is first subjected to a permutation P10= [3 5 2 7 4 10 1 9
8 6], then a shift operation is performed. The numbers in the
array represent the value of that bit in the original 10-bit key.
The output of the shift operation then passes through a
permutation function that produces an 8-bit output P8=[6 3 7
4 8 5 10 9] for the first sub key (K1). The output of the shift
operation also feeds into another shift and another instance of
P8 to produce the second subkey K2.In all bit strings, the
leftmost position corresponds to the first bit.

The block schematic of the SDES algorithm is shown in Fig.1.

 10-bit key

 Encryption Decryption
8-bit plaintext 8-bit plaintext

8-bit ciphertext 8-bit ciphertext

Fig. 1: Simplified DES Scheme

Encryption involves the sequential application of five
functions:

1. Initial and final permutation (IP)

The input to the algorithm is an 8-bit block of plaintext,
which we first permute using the IP function

IP= [2 6 3 1 4 8 5 7].This retains all 8-bits of the plaintext but
mixes them up. At the end of the algorithm, the inverse
permutation is applied; the inverse permutation is done by
applying, IP-1 = [4 1 3 5 7 2 8 6] where we have IP-1(IP(X))
=X.
2. The function fk, which is the complex component of SDES,
consists of a combination of permutation and substitution
functions. The functions are given as follows.
Let L, R be the left 4-bits and right 4-bits of the input, then,
fK (L, R) = (L XOR f(R, key), R)
where XOR is the exclusive-OR operation and key is a sub -
key. Computation of f(R, key) is done as follows.
1. Apply expansion/permutation E/P= [4 1 2 3 2 3 4 1] to
 input 4-bits.
2. Add the 8-bit key (XOR).
3. Pass the left 4-bits through S-Box S0 and the right 4-bits
 through S-Box S1.
4. Apply permutation P4 = [2 4 3 1].

The two S-boxes are defined as follows:
 S0 S1

 1 0 3 2 0 1 2 3
 3 2 1 0 2 0 1 3
 0 2 1 3 3 0 1 0
 3 1 3 2 2 1 0 3

The S-boxes operate as follows: The first and fourth input bits
are treated as 2-bit numbers that specify a row of the S-box
and the second and third input bits specify a column of the S-
box. The entry in that row and column in base 2 is the 2-bit
output.

3. Since the function fK allows only the leftmost 4-bits of the
input, the switch function (SW) interchanges the left and right
4-bits so that the second instance of fK operates on different 4-
bits. In this second instance, the E/P, S0, S1 and P4 functions
are the same as above but the key input is K2.

The appendix explains the computation steps of fk through an
example.

3. OPTIMIZATION HEURISTICS

Often it is hard to use exact algorithms those yield the optimal
solution, due to their time or memory complexity. For many
engineering applications, approximate algorithms are used to
find an adequate solution to the problem. Prominent among
such techniques are, simulated annealing, genetic algorithm
and tabu search. These methods have a high probability of
locating the global solution optimally in a multimodal search
landscape. The interest in heuristics search algorithms with
their inspiration from natural and physical processes began in
early 1970s when Holland [4] proposed the genetic
algorithms. This interest was rekindled by Kirkpatrick et al.
[5] who proposed the simulated annealing technique in

IP

fK

SW

fK

IP-1

IP-1

fK

SW

fK

IP

P10

Shift

P8

Shift

P8

K1

K2 K2

K1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

242

1983.Simulated annealing is derived from thermodynamic
considerations with annealing interpreted as an optimisation
procedure. The use of tabu search was pioneered by Glover
[2] from 1985 onwards, wherein the search procedure is
prevented from returning to a previously explored region of
the solution space too quickly. A brief overview of these
techniques is presented below. Before we present the
techniques, the objective function or cost function
computation is discussed briefly.

A. Cost Function

An appropriate step in the formulation of the optimisation
heuristics is the choice of a suitable cost function. Though
few options can be considered for our problem, a natural
choice is to compare the candidate keys by comparing the n-
gram statistics of the decrypted message with those of the
language, which are assumed to be known. Equation 1 is a
general formula used to determine the cost function of a key
(K), which in a way is the suitability assessment step for a
key (K) [1].

CK = α ∑(i ε Ã) K (i) u – D (i)

 u +

 β ∑(i, j ε Ã) K (i, j) b – D (i, j)
 b +

 γ ∑(i, j, k ε Ã) K (i, j, k) t – D (i, j, k)
 t (1)

In equation (1), Ã denotes the language alphabet i.e., {A,
B…Z, _}, for English where _ represents the space symbol),
K and D denote the known language statistics and decrypted
message statistics respectively, and u, b, and t denote the
unigram, digram and trigram statistics respectively; α, β and γ
are the weights assigning different priorities to each of the
three statistics where α+ β + γ = 1. When trigram statistics are
used, the complexity of equation (1) is O (P3) where P is the
alphabet size. In view of the computational complexity of
trigram, only unigram and digram statistics are used. Equation
(1) is used as the cost function for all our three heuristics
related to the optimisation studies; minor modification of
equation (1) needs to be done depending on whether the
problem formulation is maximization or minimization. A
minor variant of equation (1) is used as the fitness function
for the genetic algorithm approach. All the following three
algorithms used for cryptanalysis are presented very
systematically by Clark [1]. The known language statistics are
available in the literature [1] and on the web.

B. Simulated Annealing

Annealing is the process of slowly cooling a heated metal in
order to attain a minimum energy state. The idea of
mimicking the annealing process has been efficiently
exploited by Kirkpatrick et al. [5] to solve combinatorial

optimisation problems. The algorithm is initialised with a
random solution to the problem being solved and a starting
temperature T0.The temperature is slowly decreased and at
each temperature, a number of attempts are made to perturb
the current solution. At each perturbed temperature, a change
in the cost function ΔE is determined. If ΔE<0, then the
proposed perturbation is accepted; otherwise it is accepted
with a probability indicated by the Metropolis equation given
by,

Probability (E1 E2) = e (-ΔE/T) (2)

where E1 and E2 are the cost functions, ΔE is the change in
cost function and T is the current temperature. If the proposed
change is accepted, then the current solution is updated. The
temperature is reduced when a predefined number of attempts
have been made to update the current solution. Possibilities of
termination are when a certain minimum temperature is
reached or a certain number of temperature reductions have
occurred; or the current solution has not changed for a
number of iterations. The algorithm is presented in Fig.2.

1. Input: Intercepted ciphertext, the key size P, and the
language statistics.
2. Initialize the algorithm parameters: the maximum number
of iterations MAX, the initial temperature T0, and the
temperature reduction factor ALPHA.
3. Set T=T0 and generate a random initial solution KCURR and
calculate the associated cost CCURR.
4. For I=1… MAX do
 a. Set NSUCC=0.
 b. Repeat 100.P times
 i. Choose n1, n2 ε[1, P], n1 ≠ n2

 ii. Swap element n1 with element n2 in
 KCURR to produce KNEW.
 iii. Calculate the cost CNEW of KNEW. Find the cost
 difference ΔE= CNEW- CCURR and use equation (2)
 to determine whether the proposed transition
 should be accepted.
 iv. If the transition is accepted, set KCURR=KNEW and
 CCURR=CNEW and increment NSUCC.If NSUCC> 10.P,
 go to step 4d.
 c. If NSUCC=0, go to step 5.
 d. Reduce T (T=T*ALPHA).
5. Output the current solution.

Fig.2: Simulated Annealing Algorithm

C. Tabu Search

The tabu search [2] prevents the search from returning to a
previously explored region of the solution space too quickly.
This is achieved by retaining a list of possible solutions that
have been previously encountered. These solutions are called
‘tabu’; hence the name of the technique. The size of the tabu

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

243

list influences the performance of the algorithm. Tabu search
is similar to simulated annealing with the added constraint of
the tabu list. Two randomly chosen key elements are swapped
to generate candidate solutions. In each iteration, the best new
key formed replaces the worst existing one in the tabu list.
The algorithm is presented in Fig.3.

1. Input: Intercepted ciphertext, the key size P, and the
language statistics.
2. Initialise parameters: The size of the tabu list STABU, the
size of the list of possibilities considered in each iteration
SPOSS, and the maximum number of iterations MAX.
3. Initialise the tabu list with random and distinct keys and
calculate the cost for each key in the tabu list.
4. For I =1,… , MAX do:
 a. Find the best key with the lowest cost in the current tabu
 list, KBEST.
 b. For j=1,…, SPOSS do:
 i. apply the perturbation mechanism described in the
 simulated annealing attack to produce a new key
 KNEW.

 ii. Check if KNEW is already in the list of possibilities
 generated for this iteration or the tabu list. If
 so, return to step 4(b) i.
 iii. Add KNEW to the list of possibilities for this
 iteration.
 c. From the list of possibilities for this iteration, find the key
 with the lowest cost, PBEST.
 d. From the tabu list, find the key with the highest
 cost, TWORST.

 e. While the cost of PBEST is less than the cost of TWORST:
 i. Replace TWORST with PBEST.
 ii. Find the new PBEST.

 iii. Find the new TWORST.
5. Output the best solution from the tabu list, KBEST(the one
 with the least cost).

Fig.3: Tabu Search Algorithm

D. Genetic Algorithm

Genetic algorithms are developed based on the idea of
emulating the evolution of a species. A population of
individuals is generated, typically randomly. Each of these
individuals represents a possible candidate solution to the
problem. The solutions are encoded as bit strings (i.e., binary
encoding). The solution quality of each individual is
evaluated by a fitness function. In our case, the population of
individuals consists of different keys considered for
cryptanalysis and the fitness function is typically given by
equation (1). The natural evolution process is abstracted to
three genetic operations; selection, crossover and mutation. In
this step, the probability of an individual to be selected is
directly proportional to its fitness value. After this, the second
operator, crossover, is used to create a new child out of the

two selected parents by breaking up the parents’ bit strings at
a random position and mutually interchanging one bit string
with the other. Finally, mutation is used where a randomly
chosen bit in the string is flipped. Details on genetic
algorithms and their application to optimisation problems are
extensively treated by Goldberg [3] and Srinivas et al. [11].
An algorithmic presentation of genetic algorithm used for our
study is shown in Fig.4. Keys in cryptanalysis studies are
represented as a string of bits in the chromosome and genetic
operators process this bit string [1], [6], [9], [10], [12].

1. Input: Intercepted ciphertext, and the language statistics.
2. Initialise the algorithm parameters: the solution pool size M
and the maximum number of iterations MAX.
3. Randomly generate an initial pool of solutions PCURR, and
calculate the cost of each of the solutions in the pool using
equation (1).
4. For I =1… MAX do:

a. Select M/2 pairs of keys from PCURR to be the
 parents of the new generation.
 b. Perform the mating operation on each of the pairs
 of parents to produce a new pool of solutions PNEW.

 c. For each of the M children, perform a mutation
 operation.
 d. Calculate the cost associated with each of the
 keys in the new solution pool PNEW.
 e. Sort PNEW from the most suitable (the least cost) to
 the least suitable (the most cost).
 f. Merge PCURR with PNEW to give a list of sorted
 solutions (discard duplicates). Choose the best M
 keys to become the new current pool PCURR.
5. Output the best solution from PCURR.

Fig. 4: Genetic Algorithm for Cryptanalysis

The mutation operation in the algorithm of Fig.4 is identical
to the solution perturbation method used in simulated
annealing attack discussed earlier. That is, randomly select
two elements in the child and swap those elements.

4. EXPERIMENTAL RESULTS

We have carried out extensive experimentation to arrive at the
key and thus the plaintext, given the ciphertext. The attack
studies have been carried out with three different types of text.
1. A typical English novel text (maximum of 3000 characters
long).
2. A typical technical text.
3. An E-commerce type of text for fund transfer.

The experiments were conducted on a P4 system using
Matlab version 7.1.For the cost function given in equation (1),
it was noticed that the benefit of trigrams over digrams was
small.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

244

Our objective in this paper is to compare the results obtained
from simulated annealing and tabu search attacks with those
obtained using genetic algorithms. The results of our study on
cryptanalysis of SDES using genetic algorithms are presented
in a paper by Nalini et al. [7]. Due to space constraints, the
details of the underlying experiments, results and discussions
for the genetic algorithm-based cryptanalysis are not
presented here and these can be found in the paper by
Nalini et al. [7].

For the 50 cases tested, in about 48 cases the keys were
obtained within 5 iterations for the tabu search attacks.
However, the computation time and the corresponding
number of iterations varied for different cases under
consideration. Out of the three optimisation heuristics
considered, the tabu search emerged to be the most effective
one in terms of the percentage of successful key retrievals and
the number of iterations taken. For the tabu search technique,
the size of the tabu list influences the performance of the
algorithm. It was noticed that a tabu list size of 15 was a good
choice guaranteeing key retrieval for all the cases considered.
Table 1 shows the effect of the tabu list size on the number of
bits matched, out of the 10 bits in the key.

TABLE 1:EFFECT OF TABU LIST SIZE

For the simulated annealing attack, it was noticed that in case
of successful retrieval of the key, this attack was faster
compared to tabu search and genetic algorithm attacks; in
most cases, the simulated annealing attack retrieved the key in
about 15 minutes, whereas the genetic algorithm and tabu
search took about 20 and 10 minutes respectively. However,
the simulated annealing attack needs tuning of certain
parameters.

In case of simulated annealing attack, the initial temperature
and the rate of temperature decrease are important parameters
influencing convergence to the correct result. It was observed
that as the initial temperature was increased, the number of
bits matched in the key decreased. Thus a high initial
temperature is not desirable.

For the temperature profile, we considered linear and
exponential decay of the profile. For a linear profile, the
temperature at iteration K is given by,

TK=TK-1 – ((T0-T∞)/MAX)

where T0 is the initial temperature, T∞ is the final temperature
and MAX determines how much the temperature is reduced at
each step. For an exponential decay of temperature, we have,
TK= δTK-1.

We have studied the performance of both these temperature
reduction schemes and it is concluded that the exponential
decay gives better results. Initial temperature T0 in the range
0.4-1 and δ in the range 0.02-0.1, yield good results.

For genetic algorithm attack, the key was retrieved on an
average in 5 generations, each generation takes 5 minutes;
thus on an average it takes about 20-25 minutes with a
population size of 50 for each generation. The search space
thus has a dimension of 250 compared to 1024 in the brute
force case. Thus in case of genetic algorithm, the search space
reduction is by a factor 1024/250≈4.For a comparison of the
execution times of genetic algorithm, tabu search, and
simulated annealing attacks with the execution time of the
brute-force method, we notice that in the worst case the brute-
force attack takes about 35-40 minutes.

Table 2 shows a snapshot of some typical parameter value
combinations for which the key was successfully retrieved
among the many experiments carried out by us. Many such
combinations yielded success.

TABLE 2: TYPICAL PARAMETERS YIELDING CONVERGENCE USING GA

Sl.
no

α, β,γ Selection
method

Crossover
fraction

Mutation
 rate

Popul
ation
size

1 0.2,0.4,
0.4

Roulette 0.8 0.05 100

2 0.2,0.5,
0.3

Stochastic 0.5 0.05 100

3 0.2,0.4,
0.4

Tournament 0.8 0.03 50

To obtain the performance measures, each of the attacks was
tried a large number of times with different combinations of
the parameters. The average value obtained over fifty
messages is used as the performance metric. This was done
primarily due to the random nature of the algorithms. We
believe that averaging of results of a large number of attacks
will yield a reasonably representative result of the
performance statistics under consideration.

We broadly notice that all the three algorithms do not
significantly differ as far as the eventual success of the attack
is concerned. However, it is noticed that as the amount of
known ciphertext is increased, the tabu search attack performs
better than the other two attacks based on simulated annealing

Sl.
no

Tabu list size No.of bits
matched

1 15 10
2 20 10
3 12 09
4 08 06

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

245

and genetic algorithm. This is evident from the mean and
standard deviation of the number of key bits successfully
obtained, as an average over fifty runs. Tabu search shows a
higher mean value with lower standard deviation (variance).
Table 3 shows some relevant data based on which these
inferences have been drawn.

We next consider the complexity of the algorithms viewed
from the perspective of number of keys involved in a
successful attack and the time required by the algorithms for
different percentages of key elements of the key retrieved.
From such an observation, it is noticed that simulated
annealing performs better than the genetic algorithm.
However from these studies it can be inferred that the
simulated annealing algorithm considers more number of
solutions than the genetic algorithm and in lesser time, for a
successful retrieval of the key. From a consideration of the
above two aspects of characterising complexity of the
algorithms, the tabu search is more efficient than the other
two methods.

TABLE 3:STATISTICAL DATA ON PERCENTAGE OF SUCCESSFUL
ATTACKS (μ: MEAN, σ: STANDARD DEVIATION)

 Amount of
 Cipher text

 200
 500
 1000

 SA
μ σ

7.5 2.3
8.4 2.0
9.2 1.9

 GA
μ σ

7.4 2.8
8.1 2.5
9.1 2.2

Tabu Search
μ σ

8.1 2.7
9.2 2.2
10 1.8

5.CONCLUSIONS

The paper has demonstrated that optimisation heuristics such
as genetic algorithm, tabu search and simulated annealing are
ideally suited for the cryptanalysis of Simplified Data
Encryption Standard. Thus these techniques offer a lot of
promise for attacks of other ciphers. Though SDES is a
simple cipher, its building blocks are also used in other
ciphers. Experimental results demonstrate good performance
for tabu search and simulated annealing; few parameters need
to be tuned for the best possible performance. If these
parameters are tuned properly, one may get much better
performance for these two methods.

REFERENCES

[1] Clark A and Dawson Ed, “Optimization Heuristics for the
Automated Cryptanalysis of Classical Ciphers”, Journal of
Combinatorial Mathematics and Combinatorial Computing, Vol.
28,pp. 63-86, 1998.

2] Glover Fred, Taillard Eric and Werra Dominique de, ”A User’s
Guide to Tabu Search” Annals of Operations Research, Vol. 41,pp.
3-28,1993.

[3] Goldberg D.E, “Genetic Algorithms in Search, Optimisation and
Machine Learning”, Boston, Addison-Wesly, 1989.

[4] Holland John H, “Adaptation in Natural and Artificial Systems”,
Ann Arbour MI, University of Michigan Press, 1975.

[5] Kirkpatrick S, C .D. Gelatt. Jr. and Vecchi M. P, ” Optimisation
by Simulated Annealing”, Science, Vol. 220, No. 4598, pp. 671-
680,1983.

[6] Nalini N and Raghavendra Rao G,”A New Encryption,
Decryption and Message Digest Algorithm Combining The Features
of Genetic Algorithm and Cryptography”, In the Proceedings of
EUROGEN 2005, Munich, Germany, Sept 12-14, 2005.

[7] Nalini. N and Raghavendra Rao G, ”Cryptanalysis of Simplified
Data Encryption Standard (SDES) using Genetic Algorithm”,
submitted to International Journal of Information and Computer
Security (IJICS), Inderscience Publishers.

[8] Schaefer E, “A Simplified Data Encryption Standard
Algorithm”, Cryptologia, Vol .20, No.1, pp. 77-84, 1996.

[9] Spillman R,”Cryptanalysis of Knapsack Ciphers using Genetic
Algorithms”, Cryptologia, Vol.17, No.4, pp. 367-377, 1993.

[10] Spillman R, Janssen M, Nelson B and Kepner M, “Use of
Genetic Algorithm in the Cryptanalysis of Simple Substitution
Ciphers”, Cryptologia, Vol. 17, No.1, pp. 30-44.1993.

[11] Srinivas M and Patnaik L.M, ”Genetic Algorithms: A Survey”,
IEEE Computer, pp.17-26, 1994.

[12] Yaseen I F T and Sahasrabudde H V,”A Genetic Algorithm for
the Cryptanalysis of Chor-Rivest Knapsack Public-key
Cryptosystem”, Proceedings of Third International Conference on
Computational Intelligence and Multimedia Applications, pp. 81-85,
1999.

APPENDIX

Computation of Function fk

Plaintext: 10100101, Apply IP: 01110100

Compute fk (01110100) for K=00101111

fk (01110100)=((0111) XOR f (0100,K), 0100)

To compute f (0100, K) 1.Apply E/P: 00101000

2.Add K: 00101111 Sum: 00000111

3. Pass 0000 to S0, 0111 to S1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.1B, January 2006

246

S0: Read row 0,column 0: 1=(01) 2and S1: Read row1, column
3:3=(11) 2 Output of S-boxes: 0111

4. Apply P4 =1110

. . . fk = ((0111) XOR (1110), 0100))

 = 01110100

 Nalini.N, received her B.E
degree from University BDT
College of
Engineering,Davanagere,Kuvem
pu University,India in the year
1996,her M.S(Software
Systems) degree from
BITS,Pilani,Rajasthan,India in

the year 1999.She is curently persuing her Ph.D
from Visvesvaraya Technological
University,Belgaum,India.Also she is working as
an Assistant Professor in the department of
CSE,Siddaganga Institute of
Technology,Tumkur,India.She has presented more
than six papers at various National and
International Conferences.Her research interests are
in the areas of Cryptography and Optimisation
Heuristics.

Dr.G.RaghavendraRao,

Completed his BE, ME & Ph.D
from University of Mysore,
Indian Institute of Science,
Bangalore & University of
Mysore, respectively.Has been
teaching Computer Science for
the last 23 years. Presently the

Principal and also Head of the Department of
Computer Science & Engg. at National Institute of
Engineering, Mysore, India.He Has more than 25
papers in International and National Journals and
Conferences.His Areas of interest include Genetic
Algorithms, Cryptography, Data mining,
Webcommerce and Artificial Intelligence.He is
also the member of IEEE & ISTE.

