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Summary 
An innovative soft-computing system is proposed in this paper to 
assuage the paradox of curse of dimensionality (COD) and yet to 
preserve the property of completeness. Although the supreme 
merits of a fuzzy inference system (FIS) are in its simplicity, 
understandability of fuzzy rules and model-free approach, it 
suffers with the problem of COD. The COD problem can be 
happened easily if the number of either input variables or 
partitions of each input universe increases greatly. This 
drawback of COD causes serious situation especially for 
hardware realization that computational resources will be sucked 
exhaustively. An event-triggering based neuro-fuzzy system 
(NFS) is presented to alleviate the COD problem and to reduce 
wasting computational resources. The proposed soft-computing 
system can save the computational resources effectively without 
missing the property of completeness. The input to the proposed 
NFS is considered as an event. Because the incoming input event 
H(t) decides the position in the input space around which fuzzy 
sets with membership degree beyond a threshold are detected 
and are used to construct the fuzzy rules closely to the H(t), the 
fuzzy rules involved in the knowledge base can be very compact. 
The event-triggering based knowledge base is effective, in which 
there are no redundant fuzzy rules and only the needed rules are 
in the proposed system for the H(t). Moreover, the proposed soft-
computing system, whose structure is time-varying and is 
dependent on the incoming input event, possesses the property of 
event-tracking structure. The knowledge base of the proposed 
NFS is triggered off by the event, and only few rules are fired 
locally around the event. It is suitable for large-scale system 
operation. An example is demonstrated for the proposed 
approach. 
Key words: 
Fuzzy inference system (FIS), neural-fuzzy system (NFS), curse 
of dimensionality (COD), COD-completeness paradox, soft-
computing system. 

1. Introduction 

Fuzzy inference systems [8][9] have been powerful tool 
for real-world applications such as automatic control, data 
classification, decision analysis, expert systems, robotics,  
pattern recognition, and many others. Among the 
applications the most fruitful research area is in control 
systems [10][11][13], in which expertise, engineering 
experience and judgment can be integrated into the design 
of knowledge base for the fuzzy inference system (FIS)  

[17][20][21][22]. The supreme merits of an FIS [8][9] are 
in its simplicity, understandability of fuzzy rules, and 
model-free approach by which a plant is viewed as a black 
box, whose output is observable to the FIS, serving as a 
controller. The partitioning of the input space is critical to 
the design of an FIS no matter what application purpose. 
There are three main types of partitioning commonly used 
in the design of an FIS, which are grid-type, tree-type, and 
cluster-type. For most types of partitioning for an FIS such 
as grid-type and tree-type, the problem of curse of 
dimensionality (COD) [5] arises that the amount of fuzzy 
rules increases exponentially if input variables and fuzzy 
partitions of each input universe are increased. For the 
cluster-type partitioning [6], the COD problem is 
dependent on the amount of clusters in the input space of 
an FIS for each cluster corresponds to a fuzzy rule. 
Although the COD problem is not that serious with the 
partitions of cluster-type, it is a compromise amid the 
fineness of partition, the completeness of the rule base and 
the size of rule base in an FIS. In other words, the fewer 
the fuzzy rules with the cluster-type partitioning, the 
coarser the partitions and the worse the incompleteness to 
cover the input space of the FIS, and vice versa. For the 
tree-type partitioning, it usually does not correspond to 
good linguistic meanings to understand, and it is more 
complex than the grid-type partitioning in topological 
distribution of fuzzy regions and more membership 
functions may be needed. For design simplicity, the grid-
type partitioning of the input space for an FIS is most used. 
The grid-type of fuzzy partition possesses the property of 
partition completeness and meaningful linguistic 
description and understanding, but suffers with the COD 
problem. The COD problem of an FIS will cause 
drawbacks in hardware realization and implementation 
such as in an FPGA, an ASIC or a DSP-processor. 
It may be interesting to think about the paradox between 
the COD problem and the completeness property of 
knowledge base, the so-called COD-Completeness 
Paradox, that an FIS possesses excellent property of 
completeness for the rule base to cover the input space and 
yet avoids the COD problem to speed up the necessary 
calculation of fuzzy inference [4][7] and to save 
computational resource. An event-triggering based (or 
called event-based) neuro-fuzzy system is proposed in the  
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paper to overcome the COD problem and to preserve the 
completeness property for the system to cover the entire 
the input space. The neuro-fuzzy system (NFS) 
[1][14][18] is realized by fusing both an FIS and a neural 
net [15], exhibiting excellent reasoning and learning 
abilities to cope with complex and ill-defined systems. The 
rule base of the event-triggering based NFS is fictitiously 
algorithmed, but is not really firmly setup. When event is 
happened that input to the NFS is gauged, an event-
triggering based rule base is visualized, in which only few 
fuzzy rules closely and locally related to the event are 
really constructed. The event-triggering based rule base is 
only a small fraction compared to the entire rule base of 
the NFS, and it becomes the real rule base with the fuzzy 
rules closely related to the event. Because an event to the 
NFS is varied with time, the event-based rule base of the 
NFS is varied with the event and time. In other words, the 
fuzzy rules in the event-based rule base always keep good 
track with the event and the event-based rule base 
possesses time-varying structure. With the time-varying 
structure of the event-triggering based rule base, the 
proposed NFS can both overcome the COD paradox and 
preserve the completeness of the NFS. 
The paper is organized as follows. A conventional fuzzy 
inference system is overviewed in Section 2. The event-
triggering based neuro-fuzzy system is proposed in 
Section 3. An example demonstration is given in Section 4 
to illustrate the proposed soft computing system. Finally, 
discussion and conclusion are given in Sections 5 and 6, 
respectively. 

2. Mathematical Description of a Fuzzy 
Inference System 

The supreme merits of a fuzzy inference system (FIS) are 
in its simplicity, understandability of fuzzy rules, and 
expertise-oriented approach. An FIS can use expertise, 
engineering experience and judgment into the design of 
the knowledge base. In an FIS, there are many methods to 
decide the number of rules, which is determined by input 
space partitioning. Among the types of partitioning, the 
grid-type partitioning is frequently used because of its 
completeness, simplicity, and good linguistic meanings for 
understanding. Although the grid partitioning is simple 
and complete in design of the knowledge base of an FIS, 
the problem of curse of dimensionality is always occur 
with the partitioning for an FIS as discussed in the 
previous section. In this section the input-output behavior 
of an FIS with grid-type partitioning for input space is 
specified. Philosophy of fuzzy partitioning for an FIS is 
related with the concept of divide-and-conquer for all  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Input space partitioning of a grid-type fuzzy inference system. 

situations of input to the FIS such that every input 
condition to the FIS can be reacted by the FIS. Each 
partition in the input space corresponds to an antecedent of 
a fuzzy rule, and the consequent describes the reaction 
behavior for the fuzzy region. Partitioning of the input 
space comes out with a number of fuzzy regions, 
interpreted as the construction of the corresponding fuzzy 
rules. A typical grid partitioning in a two-dimensional 
input space of an FIS is shown in Fig. 1, in which fuzzy 
regions are overlapped with transient boundaries and are 
lined up such that the design of fuzzy sets for the fuzzy 
regions is simple and easy to understand with few 
meaningful linguistic terms. The input space is covered 
everywhere with the fuzzy grid partitions so that the 
property of completeness is always satisfied for the FIS.  
Suppose that there are M crisp input variables to an FIS 
and they are the base variables hj(t), j=1,2,…,M. The input 
variables are collected together to form an input crisp 
vector H(t), 
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Associated with each crisp variable hj(t), there is a 
corresponding linguistic variable xj. Let X denote the set of 
M linguistic variables, that is X=(x1, x2, …, xM). Each 
universe of discourse of each linguistic element of X can 
be partitioned into several regions that overlap each other. 
And each partition is labeled with a linguistic term, such 
as “positive large”, “positive”, or “negative”. Thus the M 
linguistic variables have M corresponding linguistic term 
sets, Tj, j=1,2,…,M. In each term set, there is a collection 
of linguistic values. The cardinalities, cj, j=1,2,…,M, for 
the M input linguistic variables are collected to form the 
cardinality vector C given as follows. 
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The number of if-then rules in the knowledge base for an 
FIS with grid partitioning of its input space is determined 
as follows.  
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The fuzzy rules in the paper use the method of Takagi and 
Sugeno [16] that the consequent is a linear combination of 
the components of H(t). A fuzzy if-then rule is given as 

Rule i:   
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where ))(( ths j

i
j  is the fuzzy set for the j-th linguistic 

input variable in the i-th fuzzy rule, for  i=1,2,…,K and 
j=1,2,…,M, and hj(t) is the j-th crisp input at time t to the 
FIS. Each rule of the FIS may have multiple outputs 

)(ti
kσ , k=1,2,…,Q. The coefficients, i

lka , , i=1,2,…,K, 
l=0,1,2,…,M, k=1,2,…,Q, will become appropriate values 
via either design or learning [3][12][19]. Let the following 
data types be defined. 
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The constant ϕ can be set to unity if constant terms in the 
consequents of fuzzy rules are involved in the inference 
process, otherwise it is set to zero. Let the rule actions 

)(ti
kσ , k=1,2,…,Q, from the i-th rule be collected 

together to form the rule action vector, given as 
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 With the data types defined in Eqs.(5) and (6), a fuzzy if-
then rule can be expressed in compact form, given as 

IF ( ))(( tHSisX i ), THEN )()()( tHtAt a
ii =Σ    (7) 

for i=1,2,…,K. Let μi(H(t)) be the set of membership 
degrees of the crisp input variables in the i-th fuzzy rule, 
given as 
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M
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where ))(( th j
i
jμ is the membership degree evaluated with 

hj(t) at time t for j=1,2,…,M, in the i-th fuzzy rule. The 
firing strength β i(t) of the i-th rule is obtained with  

β  i(t)=∧(μ i(H(t))),                    (9) 

where ∧(μi(H(t))) is the fuzzy-and operation over all 
elements in the set μi(H(t)). Usually the fuzzy-and 
operation is calculated using t-norm operator. 
The fuzzy inference results, zk(t), k=1,2,…,Q, are obtained 
by combining all individual fired rule actions, given as 
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for k=1,2,…,Q and i=1,2,…,K. All normalized firing 
strengths λi(t), i=1,2,…,K, are collected together to form 
the normalized firing strength vector λ(t), given as 
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Let all rule action vectors defined in Eq. (16) be collected 
together to have the following matrix. 

Σ ( t)=[Σ 1( t)   Σ 2( t)  …ΣK( t)]          (13) 
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which is called the rule action matrix for the FIS. The 
output of the FIS at time t is expressed as the product of 
the rule action matrix and the normalized firing strength 
vector, given as 
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Alternatively, the FIS output Z(t) can be expressed 
explicitly in terms of the crisp inputs, given as 

Z(t)= [ Σ 1 ( t ) Σ 2 ( t ) … Σ K ( t ) ]
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By the equation above, the relation between the input 
vector H(t) and the output vector Z(t) for the FIS is 
established, which is a highly nonlinear mapping function. 
Because of the highly nonlinear mapping between input 
and output, the FIS is easily able to handle with nonlinear 
real-world problems. Note that the mathematical 
derivation of the input-output relation given above for an 
FIS is for the grid-type FIS. It can also be applied to the 
other types of FIS, with some modification. Although the 
FIS is with excellent nonlinear mapping ability, it suffers 
with the problem of curse of dimensionality, especially for 
the grid-type partitioning of input space. IF the system 
scale of an FIS or the cardinalities of the term sets Tj(xj), 
j=1,2,…,M, get larger and larger, the COD problem for the 
FIS gets worse. For instance, a grid-type FIS with 3 input 
variables and 10 linguistic values for each term set will get 
103 fuzzy if-then rules, which is unusually large for the 
given system scale and cardinalities of the FIS.  

3. Event-Triggering Based Soft-Computing 
System 

In the section an event-triggering based neuro-fuzzy 
system (NFS) is proposed to overcome the paradox of 
dimensionality curse for a fuzzy inference system (FIS). 
The approach is based on the idea that input to the NFS is 
regarded as an event to trigger off the knowledge base of 
the NFS. The input event fires on the fuzzy rules locally 
around the event so that only few rules are triggered at 
each time. This idea may be performed with the 

distributed structure of neural network. Not like the 
structure of FIS whose knowledge base is established 
firmly, the knowledge base of the proposed NFS is 
pseudo-set up, whose structure is time-varying and is 
dependent on the incoming input event. In the proposed 
approach, no matter what size of the knowledge base of an 
FIS, it is triggered off by event and only few rules are 
fired locally around the event. In such a way, the COD 
problem can be overcome. In the following, the proposed 
neuro-fuzzy approach is specified in detail. As an input 
event is occurred and gauged, the event is mapped to the 
corresponding universes of discourse so that the fuzzy sets 
around the event are fired.   
For each of the M linguistic variables, there is a linguistic 
term set. Each linguistic value can be defined with a fuzzy 
set. Let the membership function set for the j-th input 
linguistic variable be denoted by 
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for j=1,2,…,M, where μj,k(hj(t)) is the k-th membership 
function of fuzzy set for the j-th linguistic input variable. 
The membership function sets of M input variables are 
collected together to form the membership function basis 
set of all linguistic variables, given as 

μ(H(t))={ μ1(h1(t)), μ2(h2(t)), …, μM(hM(t))} (17) 
 

The membership function basis set provides with all 
necessary information needed to set up an FIS. When an 
input event is occurred and gauged, the membership 
degrees are calculated for fuzzy sets in all input universe 
of discourse. That is, the membership degrees of all fuzzy 
sets are processed for that input event at this moment in all 
universes of discourse. Note that up to this point the 
knowledge base is not set up and the rules are not 
participated in these calculations yet. For the input event at 
the moment, the fuzzy sets corresponding to the 
membership degrees beyond a threshold are detected and 
then qualified to participate in the structure setup of 
knowledge base and inference process of the FIS. In other 
words, there is no real fuzzy rules setup until the input 
event is occurred and measured. This is the main idea of 
the proposed approach to deal with the COD problem. In 
such a way, the structure of the proposed FIS can be very 
compact, and fuzzy rules involved in inference process are 
only tiny fraction to the original knowledge base of 
conventional setup. 
A detector is used to detect the fuzzy sets to which the 
membership degrees are beyond a threshold ε for an 
incoming input vector H(t) in each corresponding  
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universe of discourse Uj for j=1,2,…,M. H(t) is viewed as 
an event occurred at time t. In each input universe, these 
fuzzy sets detected with membership degree greater than ε 
are qualified to participate in the setup of the FIS.  
Assume that the information of the qualified fuzzy sets by 
the detector for the j-th linguistic variable is included in 
the vector Nj(t), given as 
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for j=1,2,…,M, where )(' tc j  denotes the cardinality of 

the Nj(t), that is the number of qualified fuzzy sets 
detected in the j-th input universe, and nj,k is the k-th 
element of Nj(t) whose value is the corresponding 
sequential number of fuzzy set in the universe. Note that 
the cardinality )(' tc j  is dependent on the j-th component 

of the input vector H(t) at time t. 
The cardinalities )(' tc j , j=1,2,…,M, are collected 

together to form the cardinality vector )(' tC , given as 
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which is called the event-triggering cardinality based 
vector of fuzzy sets for the proposed approach.  
For a proposed approach, the number of fuzzy rules at 
time t in the grid-type knowledge base is determined as  
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To determine the fuzzy rules triggered by an incoming 
event at time t, the procedure of rule construction for a 
rule is specified as follows. The rule constructor is define 
as 
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for i=1,2,…, )(' tK , where i
jj

n
γ,

 is from one of the 

components of Nj(t) for j=1,2,…,M. Note that each Nj(t) 
provides only one element to the G i. The i

jγ , j=1,2,…,M, 
are calculated using the following equations. 
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For i=1,2,…, )(' tK , each G i will correspond to a fuzzy 
rule with a rule number denoted as R(i), which is 
calculated using the following equations. 
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By the proposed event-triggering approach, the fuzzy 
inference results, zk(t), k=1,2,…,Q, when the event H(t) is 
occurred, are obtained as follows. 
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and 
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for k=1,2,…,Q and i=1,2,…, )(' tK . All normalized firing 

strengths λR(i)(t), i=1,2,…, )(' tK , are collected together 
to form the normalized firing strength vector λH(t), given 
as 
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  (26) 
The rule actions )()( tiR

kσ , i=1,2,…, )(' tK  and 
k=1,2,…,Q can be collected together to form the rule 
action vector, given as 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006 
 
 

 

26 

ΣR(i)(t) 
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where AR(i) andΣR(i)(t) are defined using Eqs.(5) and (6). 
All rule action vectors ΣR(i), i=1,2,…, )(' tK , are collected 
together to have the following matrix 

Σ H ( t ) =[ΣR(1)(t)  ΣR(2)(t) …ΣR( )(' tK )(t)]       (28) 
The output of the proposed FIS at time t is expressed as 
the product of the rule action matrix Σ H ( t ) and the 
normalized firing strength vector λH(t), given as 
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Alternatively, the FIS output Z(t) can be expressed 
explicitly in terms of the crisp inputs, given as 
ZH(t)=[ Σ R ( 1 ) ( t ) Σ R ( 2 ) ( t ) … Σ R( )(' tK )( t ) ]  × 
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(30) 
Note that, compared Eq.(30) to Eq.(15), the dimensions of 
the matrix Σ H ( t )  and the normalized firing strength 
vector λH(t) are much less than those of Σ ( t )  and λ(t), 
because the )(' tK  is much smaller than K. This indicates 
that much computational resource is saved and that the 
size of the knowledge base of the proposed system is 
much less than that of the conventional FIS. The 
knowledge bas of the proposed system is realized around 
the input event H(t), whose size and structure both are 
compact and best-fit for the incoming event H(t). 

Neuro-Fuzzy Structure to Implement the Proposed 
Event-triggering Based NFS 

The layered structure of neuro-fuzzy system is suitable to 
implement the proposed idea of event-triggering based FIS 
because initially there is no rule constructed  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Event-triggering based neuro-fuzzy system (NFS) with two inputs. 

physically, and the layered structure provides excellent 
specification for how the proposed system is realized. 
There are six layers used in the neruo-fuzzy system shown 
in Fig.2. The explanation for each layer of the proposed 
event-triggering based NFS is given as follows. 
Layer 0: 
The nodes in the layer receive the components of the event 
input vector H(t) and then directly send them to the 
corresponding nodes in layer 1. A linear function is used 
as activation function. The net inputs and node outputs are 
given as follows. 

)(0 thn ii =  

iiii nnfO 0000 )( ==  

for i=1,2,…,M, where )(0 ⋅if  indicates the activation 

function for the i-th node of layer 0, in0  the net input, 

and iO0  the output of the i-th node. 
Layer 1: 
The fuzzy matching process is performed in the layer. The 
nodes in the layer receive corresponding outputs of nodes 
from layer 0 to calculate the membership degrees of the 
fuzzy sets in the input space for the incoming input event 
H(t). The node outputs are membership degrees, as given 
in Eqs.(16) and (17). The valuations of the membership 
degrees greater than a threshold ε are detected for the 
qualified fuzzy sets to participate in the construction of the 
proposed neuro-fuzzy system, as specified in Eq.(18). The 
event-triggering based cardinality vector, as shown in 
Eq.(19), for the qualified fuzzy sets are to be used to the 
event-triggering based knowledge base. Only the nodes of 
qualified fuzzy sets are allowed to send the node outputs 
to next layer. The net inputs and node outputs of the layer 
are given as follows. 
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1 )(  and 

s(i)=1,2,…,ci, where )(1 ⋅jf  is the activation function for 

the i-th node of layer 0 and is a membership function. 
Layer 2: 
The construction of the event-triggering based knowledge 
base is begun in the layer. Based on the qualified fuzzy 
sets detected in each universe, the fuzzy rules are 
constructed. Each input linguistic variable provides only 
one qualified fuzzy set to a rule formation, by which the 
antecedent of the rule is set up. The process of rules 
creation is a permutation of the qualified fuzzy sets, as 
shown in Eqs. (21) to (23). The node outputs are firing 
strengths of fuzzy rules. The net inputs and node outputs 
of the layer are given as follows. 
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for k=1,2,…, )(' tK , where jk ,
2α  is the j-th input from 

layer 1 to the k-th nodes of layer 2 and ∧ is a t-norm 
operator to perform “fuzzy-and” operation. 
 
Layer 3: 
The normalized firing strengths of the event-based fuzzy 
rules are performed in the layer, as shown in Eqs. (25) and 
(26). The number of rules involved in the fuzzy inference 
is dependent on the incoming input event H(t), as shown 
in Eq.(20). The net inputs and node outputs of the layer 
are given as follows. 
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for l=1,2,…, )(' tK . 
Layer 4: 
The normalized consequents of the event-based fuzzy 
rules are performed in the layer. The Takagi and Sugeno 
method is used to quantify a fuzzy control rule, whose 
consequent is a polynomial function of the components of 
the incoming input event H(t). Defuzzification process is 
not necessary. Each node in this layer receives an output 
from a corresponding node in layer 3 and the outputs of all 
nodes in layer 0. The nodes in this layer must be capable 
of representing M-input-Q-output fuzzy rules, as given in 
Eq.(4). To cope with Q outputs, Q reception sub-functions 
with Q corresponding activation sub-functions are 

integrated into nodes in the layer, called super nodes. Each 
sub-net-input of a super node given below is a set of two 
terms, a normalized firing strength and a linear 
combination of hj(t), j=1,2,…,M.  
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for i=1,2,…, )(' tK  and k=1,2,…,Q, where kin4  is the 
sub-net-input of the k-th activation sub-function in the i-th 
super node of layer 4, wkij the connection strength from the 
j-th node of layer 0 to the i-th super node of layer 4 for the 
k-th reception sub-function, and wki0 a weight for an extra 
input to the k-th reception sub-function. Compared with 
the coefficients of the consequent i

jka ,  in Eq.(4), the 

weights are given by i
jkkij aw ,= . A product function is 

used as activation function for the super nodes. The node 
sub-output from the i-th activation sub-function of the j-th 
super node is given by 
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for i=1,2,…, )(' tK  and k=1,2,…,Q. 
Layer 5: 
The outputs of the event-triggering based NFS are 
summarized in the layer, as shown in Eq. (30). The net-
inputs and outputs of nodes in the layer are given as 
follows. 
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for i=1,2,…,Q. 

4. Example Demonstration for the Proposed 
Soft-Computing System 

In this section, an example is used to demonstrate how the 
proposed event-triggering based NFS functions. A two-
input-one-output event-triggering based NFS is given for 
demonstration purpose, although the proposed NFS can be 
extended to be an M-input-Q-output system. Assume that 
the two input universes of discourse are partitioned into 
six and five intervals overlapping each other, respectively. 
The corresponding cardinality vector for the two input 
linguistic variables is denoted as follows. 
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Note that for a conventional FIS the number of fuzzy rules 
will be thirty in the knowledge base, but for the proposed 
system the rules needed will be reduced significantly. 
With the definition in Eq.(16), suppose that the 
membership function sets of the two input variables for 
the incoming event H(t)=[h1(t) h2(t)]T=[0.89 1.37]T at time 
t, shown in Fig. 3, are given as follows. 
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As defined in Eqs.(18) and (19), the qualified fuzzy sets 
detected with the threshold ε=0.1 and the event-triggering 
cardinality vector C’(t) are given as follows. 
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What this means is that only 4 fuzzy rules are involved in 
construction of the grid-type NFS, )(' tK = )('1 tc × 

)('2 tc =4, and that the second and third fuzzy sets in the 
first input universe and the fourth and fifth fuzzy sets in 
the second input universe are qualified. Up to this point, 
the calculation corresponds to the operation of layer 1 of 
the event-triggering based NFS.  
With the definition of rule constructor G i defined in 
Eqs.(21) to (22), the four rule constructors are calculated 
as follows. 
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These rule constructors define the antecedents of the four 
event-triggering based fuzzy rules, as shown in Fig. 4. The 
c o r r e s p o n d i n g  n o d e  n u m b e r s  i n  l a y e r  2  a r e  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Calculation of membership degree sets for the two input universe 
of discourse when the incoming event H(t)=[0.89 1.37]T. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Four event-triggering based fuzzy rules for the proposed soft-
computing system. 

determined using Eq.(23) and they are calculated as 
follows. 

R(1)=17, R(2)=18, R(3)=22, and R(4)=23 
which are the numbers of event-triggering based rules 
when the event H(t) is inputted at time t. The four fuzzy 
rules are corresponding to nodes 17, 18, 22, and 23 in 
layer 2. If the min operator is used for t-norm operation, 
then the outputs of the four nodes, as the firing strengths 
of the rules, are calculated as 

β 17(t)=min(0.76, 0.8)=0.76,  
β 18(t)=min(0.76, 0.3)=0.3 
β 22(t)=min(0.23, 0.8)=0.23,  
and  
β 23(t)=min(0.23, 0.3)=0.23. 
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The normalized firing strength vector defined in Eq.(26) 
λH(t) is obtained as follows. 
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This calculation is corresponding to the operation of layer 
3 of the NFS. The outputs of nodes 17, 18, 22, and 23 are 
interpreted as the normalized firing strengths for the event-
triggering based fuzzy rules. 
Assume that the coefficients of the consequents of the four 
rules, defined in Eq.(5), are given as follows. 
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1
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0 aaa =[7 8 9],  

and  
A23= [ ]23

2
23
1

23
0 aaa =[10 11 12], 

With Eqs.(27) and (29), the corresponding four rule 
actions are expressed as follows.  

Σ17(t) =A17 Ha(t)=[1 2 3]
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The outputs of the four rules are corresponding to the 
operation of layer 4 of the NFS. Each rule output is 
calculated by its corresponding node in layer 4, in which a 
normalized firing strength from layer 3 and a rule action 
from its net input information are multiplied together. The 
four rule outputs are obtained as follows. 

u17(t)=Σ17(t)λ17(t)=6.89×0.5=3.445,  
u18(t)=Σ18(t)λ18(t)=18.829×0.1973=3.715, 
u22(t)=Σ22(t)λ22(t)=×0.1513=4.492,  
and 

u23(t)=Σ23(t)λ23(t)=40.546×0.1513=6.135. 
The output of event-triggering based NFS, defined in 
Eq.(30), is calculated as follows. 

ZH(t)=[Σ 17(t) Σ 18(t) Σ 22(t) Σ 23(t)]
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=17.787 
This calculation for the output of the proposed two-input-
one-output soft-computing system is summarized in layer 
5 of the NFS. 
The event-triggering based NFS of the example 
demonstration is shown in Fig. 2, with which the idea of 
the proposed event-triggering based soft-computing 
system is illustrated very clearly. As one can observe in 
Fig. 4, the 4 rules constructed for the proposed NFS are 
closely around the incoming input event H(t). The 
knowledge base of the event-triggering based NFS is 
much smaller than that of the corresponding conventional 
grid-type FIS, and is always related to the event H(t). 

5. Discussions 

In this section, several properties for the proposed soft-
computing system are discussed, which are the reduction 
of computational resource, the maximal size of knowledge 
base, the event-tracking and compact structure of the 
system, the preservation of completeness property, the 
suitability for large-scale system operation, and the 
overcoming of curse of dimensionality. These properties 
are coupling together.  
As discussed in the section of example demonstration, the 
proposed soft-computing system needs much less 
computational resource than the corresponding 
conventional FIS. In the example given, the conventional 
FIS needs the computation operations of 209 additions, 
150 multiplications, 61 divisions, and 210 comparisons to 
finish the fuzzy inference, while the proposed soft-
computing system with 4 rules fired needs only 30 
additions, 12 multiplications, 12 divisions, and 32 
comparisons. More comparisons of computation 
operations are summarized in Tables 1 and 2.  
The size of knowledge base of the proposed soft-
computing system is dependent on both the incoming 
input event H(t) and the overlapping of fuzzy sets. The 
overlapping of fuzzy sets in an input universe may decide  
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the maximum number of qualified fuzzy sets for that 
corresponding linguistic variable to participate in 
construction of knowledge base, while the incoming event 
H(t) decides the position at which membership degrees are 
calculated in the corresponding input universe. For a grid 
type partitioning of the input space, the number of event-
triggering based fuzzy rules are determined using Eq.(20). 
Because the incoming input event H(t) decides the 
position in the input space around which fuzzy sets with 
membership degree beyond a threshold are detected and 
are used to construct the fuzzy rules closely to the H(t), the 
fuzzy rules involved in the knowledge base can be very 
compact. In other words, the event-triggering based 
knowledge base is effective, in which there are no 
redundant fuzzy rules and only the needed rules are in the 
proposed system for the H(t). Moreover, the proposed 
soft-computing system possesses the property of event-
tracking structure. Thanks to the properties specified, the 
proposed soft-computing system is suitable for large-scale 
system operation. 
The property of completeness for the proposed soft-
computing system is always preserved as long as the 
corresponding conventional FIS possesses the property 
that the partitions cover everywhere in all input universes 
and all input conditions are cared with. The property of 
completeness is inherently dependent on the partitions of 
input space. The proposed soft-computing system 
preserves the excellent property of completeness, and yet 
avoids the curse of dimensionality, for the knowledge base 
is compact and is constructed around the event H(t) only. 
The proposed soft-computing system has the structure of 
event-tracking knowledge base and time-varying property. 

6. Conclusions 

An event-triggering based soft computing system is 
proposed in the paper to alleviate the paradox of the 
problem of curse of dimensionality (COD) and to preserve 
the completeness property. The proposed soft computing 
system has been specified in detail. An example is given 
for demonstration of the proposed approach. The proposed 
soft-computing system possesses the properties of the 
reduction of computational resource, the event-tracking 
and compact structure of knowledge base, the preservation 
of completeness property, the suitability for large-scale 
system operation, and alleviation of COD paradox, 
although these properties are coupling together. 
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Table 1: Comparison of computation for the proposed soft-computing 
system and the corresponding conventional FIS (2 inputs and 1 output). 

 FIS Proposed event-triggering based 
NFS 

Fuzzy Rules in 
Operation 30 

4 
(c1’=2 and 

c2’=2) 

2 
(c1’=2 and 

c2’=1) 

1  
(c1’=1 and 

c2’=1) 
Comparison 210 32 30 29 

Addition 209 30 23 18 

Multiplication 150 12 6 3 

Division 61 12 10 8 
* System with input cardinalities of fuzzy sets 

c1=6 and c2=5. 

Table 2: Comparison of computation for the proposed soft-computing 
system and the corresponding conventional FIS (3 inputs and 1 output). 

 FIS Proposed event-triggering based 
NFS 

Fuzzy Rules in 
Operation 150 

8 
(c1’=2, 

c2’=2 and 
c3’=2) 

4 
(c1’=2, 

c2’=1 and 
c3’=2) 

2 
(c1’=2, 

c2’=1 and 
c3’=1) 

Comparison 1500 46 42 40 

Addition 1499 52 36 28 

Multiplication 1050 24 12 6 

Division 451 19 15 13 
* System with input cardinalities of fuzzy sets c1=6, 

c2=5 and c3=5. 
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