
IJCSNS International Journal of  Computer Science and Network Security, VOL.6 No.2A, February 2006 
 
 

 

52 

Manuscript revised  January 2006. 

 

 

 
Multi-population Genetic Algorithms with Space Partition for 

Multi-objective Optimization Problems 
 

Dun-wei Gong and Yong Zhou 
   

School of Information and Electrical Engineering, China University of Mining and Technology, 
Xuzhou, 221008 P. R. China 

Summary 
It is difficult for the existing multi-population genetic algorithms 
with space partition to be successfully applied to multi-objective 
optimization problems. Multi-population genetic algorithms with 
space partition for multi-objective optimization problems are 
designed in this paper in allusion to the characteristics of 
multi-objective optimization problems. A complicated 
optimization problem is converted into several simple 
optimization problems. Crossover operator for an 
intra-population evolution has a direction by using information 
from the super individual archive. The frequency of updating the 
super individual archive decreases via pre-selecting optimal 
solutions submitted to the super individual archive. The search 
scope of a population is expanded via an inter-population 
evolution. It is shown from analysis that the computational 
complexity of the algorithm in this paper decreases evidently. 
The efficiency of the algorithm in this paper is validated through 
a complicated benchmark multi-objective optimization problem. 
Key words: 
Genetic algorithms, Multi-population, Space partition, 
Multi-objective optimization problems. 

1. Introduction 

Genetic algorithms are stochastic, population-based 
optimization methods inspired notions of biological 
evolution and mechanisms of heredity and mutation. But a 
canonical genetic algorithm can only obtain local optima 
of the problems for its premature convergence. Hence 
many scholars improve it from several aspects and a 
multi-population genetic algorithm is a typical and 
important improving direction. 

The multi-population genetic algorithms proposed in 
[1] and [2] generate and evolve multiple populations in a 
search space, and the significance in biology of population 
partition is not evident for not considering regionality of a 
population’s living. Hence the efficiency of the algorithms 
should be further improved. 

Genetic algorithms with space partition based on the 
regionality of a population’s living have vivid biological 
characteristics. The multi-population genetic algorithms 
with region partition were presented in [3] to [5]. In 
general, these algorithms belong to hierarchical genetic 

algorithms, which generate different populations in 
different subspaces of a search space respectively. There 
are two kinds of evolutions, namely an intra-population 
evolution and an inter-population evolution. An 
inter-population evolution refers that genetic operators 
perform on the individuals that come from the same 
population, whereas an intra-population evolution refers 
that genetic operators perform on the individuals that come 
from different populations. The genetic operation of an 
intra-population evolution and an inter-population 
evolution, the method of conserving the best individual of 
each population and the approach to generating a new 
population were given in the above literature which 
applied them to many problems, such as neural network 
evolutionary design, optimization of TSP and complicated 
multi-modal functions. 

Multi-objective optimization problems exist 
everywhere, such as multi-package optimization, 
multi-robot harmony path planning, route selection in 
communication and so on. Hence it is very important in 
both theory and practice to study multi-objective 
optimization problems. It began in the middle of the 1980s 
to solve multi-objective optimization problems with 
genetic algorithms, and these methods were well 
developed in the middle of the 1990s. They are new 
approaches to studying multi-objective optimization 
problems. In general, they include two aspects. The one is 
converting a multi-objective optimization problem into a 
weighted single objective optimization problem and then 
adopting genetic algorithms to optimize the single 
objective optimization problem. But this approach has 
fated weakness in that the selection of the weight of each 
objective is subjective and different weighted values 
correspond to different solutions. The other is studying the 
Pareto optimization problems, which adopts genetic 
algorithms to search the Pareto front and the Pareto 
optimal solutions of being optimized problem [6]. It is 
difficult for the multi-population genetic algorithms with 
region partition presented in [3] to [5] to be successfully 
applied to multi-objective optimization problems, for not 
considering the characteristics of the Pareto fronts and the 
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Pareto optimal solutions of multi-objective optimization 
problems. 

Multi-population genetic algorithms with space 
partition are designed in this paper in allusion to the 
characteristics of multi-objective optimization problems. 
Methodology of the algorithm, a method of partitioning a 
search space and designing genetic operators, a strategy 
for generating and updating the super individual archive 
and an approach to generating a new population are 
presented. The computational complexity of the algorithm 
is analyzed. The algorithm is applied to a benchmark 
multi-objective optimization problem and its validity is 
shown. 
 
2. Multi-population Genetic Algorithms with 
Space Partition for Multi-objective 
Optimization Problems 
 
2.1 Methodology of Algorithms 
 
A search space is partitioned into several subspaces, and 
each subspace is assigned to one population to evolve. 
Different genetic algorithms are applied to an 
intra-population evolution and an inter-population 
evolution respectively to generate a new population or new 
individuals so as to cover new subspaces. A new method 
of submitting the Pareto optimal solutions and a new 
strategy for generating and updating the super individual 
archive are adopted to guarantee finding the Pareto 
optimal solutions efficiently that satisfy better distribution, 
approach and extension. 
 
2.2 Partition of Search Space 
 
A search space is partitioned into a number of subspaces 
according to the dimension and range of the problem to be 
optimized. To a search space, such partition should be 
complete and each subspace should be separate [4], 
namely, if nPPP ,,, 21 L  denotes a kind of partition of a 

search space P, then φ=≤≤∀=
=

ji

n

i
i PPnjiPP IU ,,1;

1

 is 

satisfied. 
 
2.3 Design of Intra-population Evolution Genetic 
Algorithms 
 
In order to reduce the length of coding and the workload 
resulting from encoding and decoding, real coding is 
adopted to encode decision variables in this paper. Without 
loss of generality, a problem to be considered here 
assumes minimization of a function with m objectives in a 
d-dimensional decision space. 

A number of initial populations are generated in some 
subspaces of a search space and each subspace is assigned 

to one population to evolve. Because real coding is 
adopted, a subspace that an individual belongs to can be 
directly determined according to the coding form of the 
individual and the range of the subspace, and then a 
population that the individual belongs to is thus 
determined. 

Pareto optimal individuals are conserved to the next 
generation at every evolutionary generation. Pareto 
optimal individuals are submitted to the Pareto optimal 
solution set of its own population according to a certain 
criterion in every population evolutionary period, and it is 
also submitted to the super individual archive that decides 
whether accepts it or not according to the criterion given in 
2.4. 

For an individual being real coding, arithmetic 
crossover operator is adopted. The closed crossover 
avoidance strategy with real coding is adopted in crossover 
operator, and information of super individual is 
sufficiently used so that offspring have better distribution 
and approach, hence increasing the efficiency of crossover 
operator. 

Let’s discuss according to the following 2 cases: 
(i) If there is no individual in the super individual archive 

)(tS  belonging to 
kP , then choose two parents 

21 , kk xx  in
kP , which satisfy:  
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and generate two offspring '2'1 , kk xx via: 
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where ⋅  denotes a kind of norm and )1,0(, 21 ∈kk αα . 

(ii) If there is an individual Isxs
k ∈,  in )(tS  belonging 

to
kP , where I is the set of the individuals’ index in 

)(tS  belonging to
kP , then generate offspring ''1

kx from 
parent 1

kx  via: 
 

s
kkkkk xxx )1( 313''1 αα −+=              (3) 

 
where )1,0(3 ∈kα . Further, if 1>I , then generate 

several offspring '''1
kx s via: 

  
( ) Issxxxx s

k
s
kkkkkk ∈−−+= 21

414'''1 ,)1( 21βαα       (4) 
 

where )1,0(,4 ∈kk βα .  
Individuals of an intra-population evolution adopt 

Gauss mutation that was expounded in detail in [7].   
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An intra-population evolution in 
kP  is terminated 

when it is mature and unsatisfied with deleting condition. 
 
2.4 Generation and Update of Super Individual 
Archive 
 
Let )(tSk  be the Pareto optimal solutions set generated 
via an intra-population evolution in 

kP at the t-th 
generation. )(, 21 tSxx kkk ∈∀ , if: 
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then delete 1

kx  or 2
kx  from )(tSk , which makes the 

Pareto optimal solutions in )(tSk  have better distribution 
and not overcrowded so as to reduce the frequency of 
updating the super individual archive, where ），（ 10∈kγ  is a 
crowded coefficient. 

Let the capacity of the super individual archive 
satisfy

sizeStS ≤)( . )(tSx kk ∈∀ , the relationship between kx  

and )(tS  has 3 kinds, namely, kx  dominates an individual 
x in )(tS , an individual x in )(tS  dominates kx , and kx  
non-dominates any individual x in )(tS  and vice versa. 

Let’s discuss them respectively as follows [8]: 
(i) If kx  dominates an individual x in )(tS , that is to say 

kxxtSx <∋∈∃ ),( , then delete x from )(tS  and accept 

kx . 
(ii) If an individual x in )(tS  dominates kx , namely, 

xxtSx k <∋∈∃ ),( , then not submit kx  to )(tS . 
(iii) If kx  non-dominates any individual x in )(tS  and 

vice versa and
sizeStS <)( , then accept kx . Otherwise, 

choose an individual )(0 tSx ∈  satisfying: 
 

xxxx ktSxk −=−
∈ )(0 min              (6) 

 
then delete 0x  from )(tS  and accept kx . 

 
2.5 Design of Inter-population Evolution Genetic 
Algorithms 
 
If there exists a subspace { }nkPPk ,,2,1, L∈⊂  without any 
evolution population in it or the population size in it is less 
than

0M , then perform an inter-population evolution one 
generation to generate a population in

kP  after performing 
an intra-population evolution a number of generations. 
Here two subspaces { }njiPP ji ,,2,1,,, L∈  closest to 

kP  are 

selected to perform an inter-population evolution. 
Non-mutation genetic algorithms are applied to an 
inter-population evolution.  

In order to guarantee offspring generated via an 
inter-population evolution distributing as much as in 

kP  
and improve the efficiency of crossover operator, the 
probability of an individual being selected is in inverse 
ratio with the distance between it and 

kP  when selecting 
individuals in 

ji PP , , namely, 
i

l
i Px ∈∀ , the probability of 

l
ix  being selected is:  
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where k

l
i Px − denotes the distance between l

ix  and 
kP . 

For individuals being selected jjii PxPx ∈∈ , , generate 
new individuals via: 
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where λ  is a parameter whose value is different in 
different cases. Individuals in 

kP  are generated via 
adjusting λ  dynamically till the population size in 

kP  is 
larger than a given value. 
 
2.6 Generation of New Population 
 
There are 2 approaches to generate a new population. One 
is via an inter-population evolution that is a main approach 
to generate new population individuals, the other is via 
mutation operator of other intra-population evolution and 
individuals generated via this approach are very limited. 
The new generated population is called young population 
[3]. No matter what approach is adopted, an 
inter-population evolution performs only when its 
population size is not less than 0M . 
 
2.7 Steps of Algorithms 
 
(i) Partition a search space into n subspaces according to 

the dimension and range of the problem to be 
optimized. 

(ii) Let t=0, select )(tng  subspaces and generate initial 
populations in them, let the population size be M , 
hence the whole population size in the search space is 

Mtng ⋅)( . 
(iii) Assign values to the parameters of genetic operators, 
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including probabilities of intra-population crossover, 
intra-population mutation and inter-population 
crossover and population evolution period T. Set the 
super individual archive empty. 

(iv) Perform an intra-population evolution T generations 
on the population in each subspace of the )(tng  
subspaces. 

(v) Update the super individual archive according to the 
criterion in 2.4. 

(vi) Judge whether the termination condition is satisfied or 
not, if yes, then go to (viii). 

(vii) Select a number of subspaces in )(tnn g−  not searched 
spaces and some populations satisfying given 
condition in 2.5, and generate new populations via 
inter-population evolutions until their size is M , go to 
(iv). 

(viii) Submit the Pareto optimal solutions of the super 
individual archive and end the algorithms. 

 
3. Computational Complexity Analysis of 
Algorithms 
 
It has been proven by Deb that the computational 
complexity of NSGA-II is )( 2NmO ×  [9]. The 
computational complexity of the algorithm in this paper is 
analyzed as follows.    

For 
iP , ni ,,2,1 K= , the computational complexity of 

the algorithm is )( 2NmO × . In the worst case, the whole 
computational complexity of the algorithm is: )( 2NmnO ×× .   

For 
iP , ni ,,2,1 K= , in order to increase the 

distribution of the solutions, the distance between each 
pair of optimal solutions need compute. The computational 
complexity resulting from it is:  

 

)
2

()
2

)1(()1)2()1((
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=
−××

=××−×−× L . 

 
Then the computational complexity of n subspaces 

resulting from the computation of the distances 
is: )

2
(

2NmnO ×× . 

For the process of updating the super individual 
archive, the Pareto optimal solutions in each subspace 
need compare with the solutions in the super individual 
archive. In the worst case, the computational complexity 
resulting from updating the super individual archive is 

)( sizeSNmnO ××× . Hence the computational complexity of 
the algorithm in this paper is: 

 )()
2

()(
2

2
sizeSNmnONmnONmnO ×××+

××
×× ＋ .  

For sizeS  is small and updating the super individual 
set does not perform at every generation, the 

computational complexity resulting from it can be 
neglected compared with that of each subspace. Hence the 
computational complexity of the algorithm in this paper is 
approximate to: )

2
()(

2
2 NmnONmnO ××

×× ＋ . 

Compared with NSGA-II, in the case of the two 
algorithms having same population size, the ratio of the 
computational complexity of the algorithm in this paper to 
that of NSGA-II is:  
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It can be shown from formula (9) that when the 

number of subspaces is 3, the efficiency of the algorithm 
in this paper improves 50% compared with that of 
NSGA-II. Hence the algorithm in this paper can improve 
computational efficiency notably. 
 
4. Application in Optimization of Numerical 
Functions 
 
The following multi-objective optimization problem is 
considered. 

Minimization: 
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ixxg   , 6,,2,1,10 L=≤≤ ixi
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In order to analyze computational results 
quantitatively, C-measure and SP-measure are used [11]. 
C-measure compares domination of the two different 
Pareto optimal solution sets. ),( 21 xxC  denotes the rate of 
the number of the Pareto optimal solutions of 2x  
dominated by 1x  to the number of the Pareto optimal 
solutions of 2x . The larger ),( 21 xxC , the better the 
domination of 1x  to 2x  is. SP-measure denotes the 
distribution of the Pareto optimal solution set in an 
objective space. The smaller SP, the better the distribution 
is. 
 
4.1 Parameters Setting 
 
The parameters setting is listed in Table 1. Let 3.0=i

kα , 
where 4,3,2,1=i , nk ,,2,1 L= , 3.0=kβ .  
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Table 1: Parameters setting 

Parameter Value 
No. of space partition 12 
sub-population size 50 

cp  1 

mp  0.01 

kγ  0.005 
T 10 

sizeS  50 
 
 
4.2 Influence of Number of Space Partition on Pareto 
Front 
 
When the whole population size is 600 and the other 
parameters are same, Pareto fronts in 3 kinds of different 
space partition numbers are shown as Fig. 1. Table 2 are 
C-measures in those cases, where px  denotes the Pareto 
optimal solution set when a decision space is partitioned 
into p subspaces and qx  denotes the Pareto optimal 
solution set when a decision space is partitioned into q 
subspaces. It is shown from Table 2 that the more the 
number of space partition numbers, the better the approach 
property of the Pareto optimal solution set is. 
 

Table 2:Influence of number of space partition on C-measure 

p q ),( qp xxC  ),( pq xxC  
12 1 0.9565 0 
6 1 0.9565 0.0769 
12 6 0.4872 0 

 
 

 
Fig.1.  Influence of number of space partition on Pareto front, where •, o 
and + denote no search space partition, search space is partitioned into 6 

and 12 subspaces respectively. 
 

 
4.3 Influence of Intra-population Evolutions on 
Pareto Front 
 
For crossover operator of the algorithm in this paper takes 
information of the Pareto optimal solutions into 
consideration so as to guarantee the direction of crossover, 
and hence the offspring resulting from crossover approach 
to the true Pareto optimal solution set is good. It is shown 
from Fig. 2 that the Pareto front obtained by not applying 
strategy in subsection 2.3 is not good and the Pareto front 
obtained by applying such strategy is better evidently. 
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(a) Pareto front obtained by not applying strategy in subsection 2.3. 
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(b) Pareto front obtained by applying strategy in subsection 2.3. 

 
Fig. 2.  Influence of intra-population evolutions on Pareto front. 

 
 
4.4 Influence of Generating and Updating Super 
Individual Archive on Pareto Front 
 
The influence of updating the super individual archive on 
the Pareto front is shown as Fig. 3. The influence of 
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updating the super individual archive on C-measures and 
SP-measures at different generations are listed in Table 3, 
where SP1 is the SP-measure updating the super individual 
archive, SP2 is the SP-measure not updating the super 
individual archive, ps denotes the Pareto optimal solution 
set generated by updating the super individual archive, and 
p denotes the Pareto optimal solution set generated by not 
updating the super individual archive. It is shown from 
Table 3 that updating the super individual archive 
improves not only the approach property but also the 
distribution of the Pareto front. 
 
Table 3: Influence of updating super individual archive on C-measure and 

SP-measure 

Generation SP1 SP2 C(ps,p) C(p,ps)

200 0.0004 0.0044 0.7021 0.1087
300 0.0006 0.0063 0.9400 0.0400
400 0.0047 0.0172 0.5800 0.0400

 
 

 
Fig. 3.  Influence of updating super individual archive on Pareto front, 

where + and o denote Pareto front generated by updating super individual 
archive and by not updating super individual archive respectively. 

 
 
5. Conclusion 
 
Multi-population genetic algorithms with space partition 
are designed in allusion to the characteristics of 
multi-objective optimization problems. By using the 
algorithm proposed in this paper, a complicated problem 
can be converted into several simple problems. The 
efficiency of crossover operator for an intra-population 
evolution proposed in this paper improves. The frequency 
of updating the super individual archive decreases. Besides, 
the search scope of a population is expanded. It is shown 
from analysis that the computational complexity of the 
algorithm proposed in this paper decreases evidently. The 
efficiency of the algorithm proposed in this paper is 
validated through a complicated benchmark 

multi-objective optimization problem. The problem to be 
further studied is to apply adaptive genetic algorithms to 
intra-population evolutions so as to improve the efficiency 
of the algorithm. 
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