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Summary 
This paper presents a simulation model of plant flower. 
Based on the integration of L-systems representing flower 
topology with Bezier surfaces depicting flower geometry, 
a plant flower image generation algorithm is given. The 
proposed technique is illustrated using the apple flower. 
The realistic image result reproduces the visual beauty of 
nature. It is especially suitable for game，entertainment, 
education and so on. 
Key words: 
L-systems, Bezier surfaces, flower,  realistic image 
synthesis 

1. Introduction 

Virtual plants are computer models that recreate the 
structure and simulate the development of plants. In 1968, 
Aristid Lindenmayer introduced a formalism for modeling 
and simulating the development of multicellular organisms 
[1], subsequently named L-systems. As a general 
framework for plant modeling, this formalism immediately 
attracted the interest of computer scientists, botanists and 
mathematicians. They developed many methods and 
models for generating plant images, such as the various 
enhanced L-systems [2], IFS [3], reference axis technique 
[4], fractal method [5], particle systems for forest scenes 
simulation [6] and dual-scale automation model [7]. 
Flower is an important part of plant, so flower simulation 
plays an important role and also poses an interesting and 
important challenge in plant modeling. It has a great 
number of components, such as calyxes, petals, stems, and 
stamens, which take on highly varied three dimensional 
shapes and which are connected with intricate structures. 
The geometric and topologic complexity makes this a 
difficult and time-consuming task. Realistic plant flower 
simulation, same as true flower in the nature, has the 
captivating appeal of reproducing the visual beauty of 
nature. But, general L-systems only represent plant 
topology. Realistic effect of plant simulation can not be 
obtained without plant geometry. Prusinkiewicz developed 
a method using predefined surfaces [2] to simulate plant 
organs and got the satisfying results. Based on this method, 

this paper presents a model for simulating plant flower 
integrating L-systems with Bezier surfaces. 

2. Extensions to L-systems 

L-systems are string-rewriting systems. An L-system 
consists of an alphabet, V, an axiom, ω, and a set of 
productions, P, defined over V. Each production in P 
replaces one or more letters of V with zero or more letters 
in V. A word, x, in the system is a sequence of letters in V. 
The system’s current state is represented by a word. The 
axiom, ω, is a special word, which represents the 
system’s initial state. At each time step, the production 
rules are applied in parallel to each of the letters in the 
current word to produce a new word. But general L-
systems were introduced to represent plant topology and 
only presented two dimensional graphic. To express the 
form manifested by such properties as the orientation and 
the length of flower components, the strings must be 
assigned a geometric interpretation in three dimensions. A 
LOGO-style turtle interpretation is employed to extend the 
general L-systems [2] for realistic plant flower simulation. 
The turtle is represented by its state, which consists of 
turtle position and orientation in the Cartesian coordinate 
system, as well as additional attributes, such as current line 
width. The position is defined by a vector P, and the 
orientation is defined by three vectors H, L, and U, 
indicating the turtle's heading and the directions to the left 
and up (Figure 1). These vectors have unit length, are 
perpendicular to each other, and satisfy the equation H×L 
= U. Consequently, rotations of the turtle can be expressed 
by the equation:  
[Ｈ′Ｌ′Ｕ′] = [Ｈ Ｌ Ｕ] Ｒ    (1.1) 
where R is a 3×3 rotation matrix. Specifically, rotations 
by angle αabout vectors U ,  L and H are represented by 
the matrices: 
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The turtle is initially located at the origin of a Cartesian 
coordinate system, with the heading vector H pointing in 
the positive direction of the y axis, and the left vector L 
pointing in the negative direction of the x axis. The turtle's 
actions and changes to its state are caused by 
interpretation of specific symbols, each of which may be 
followed by parameters. If one or more parameters are 
present, the value of the first parameter affects the turtle's 
state. If the symbol is not followed by any parameter, 
default values specified outside the L-system are used. 
The following list species the basic set of symbols 
interpreted by the turtle for realistic plant flower modeling 
in the paper. 

 

Fig. 1  Controlling the turtle in three dimensions. 

F(s):  Move forward a step of length s and draw a line 
segment from the original to the new position of the 
turtle. 

f(s):  Move forward a step of length s without drawing a 
line. 

+(α):  Turn left by angleαaround the U axis. The 
rotation matrix is RU(α). 

-(α):  Turn right by angleαaround the U axis. The 
rotation matrix is RU(-α). 

&(α): Pitch down by angleαaround the L axis. The 
rotation matrix is RL(α). 

^(α):  Pitch up by angleαaround the L axis. The 
rotation matrix is RL(-α). 

/(α):  Roll left by angleαaround the H axis. The rotation 
matrix is RH(α). 

\(α):  Roll right by angleαaround the H axis. The 
rotation matrix is RH(-α). 

[:  Push the current state of the turtle (position, 
orientation and drawing attributes) onto a 
pushdown stack. 

]: Pop a state from the stack and make it the current 

state of the turtle. No line is drawn, although in 
general the position and orientation of the turtle are 
changed. 

~ X(s): Draw the surface identified by symbol X, scaled 
by s, at the turtle's current location and orientation. 

#(w): Set line width to w, or increase the value of the 
current line width by the default width increment if 
no parameter is given. 

!(w): Set line width to w, or decrease the value of the 
current line width by the default width decrement if 
no parameter is given. 

3. Representation of plant flower using L-
systems 

The method for various flowers simulation using L-
systems is alike, while different plant flowers have 
different structures. The example in this paper refers to 
apple flower simulation. The following working steps 
must be carried out for recreating apple flower.  
(1) Observe the structure and development of apple flower 
and get the abstraction of the structure and development; 
In the beginning, flower is composed of bud and stem, and 
then bud turns into blossom which contains several same 
segments. A calyx, a petal and a stamen constitute a 
segment.  
(2) Represent the structure and development in symbols; 
According to the analysis in step (1), L-system (1) is given 
below: 
ω: AB 
p1: B → DDDDDD    (1) 
p2: D → CPS  
axiom ω: Flower contains stem A and bud B. 
production p1: Bud B is composed of six same segments 
D. 
production p2: Segment D contains calyx C, petal P and 
stamen S. 
(3) Explain the whole symbols of apple flower using turtle 
interpretation and simulate flower in three dimensions in 
computer. 
L-systems (1) represent the topologic information of apple 
flower without length, line width, relative position and so 
on. Based on L-system (1), L-system (2) is given below: 
initial line width = 20 
line width increment = 5 
lenA = 500 
ω: /(154) &(72)#A!B 
p1: B → D/(60)D/(60)D/(60)D/(60)D/(60)D  (2) 
p2: D → [C][P][S] 
axiom ω : Symbols /(154) and &(72) are set for 
observation with an appropriate angle at the compute 
screen. Symbol # increases the value of the current line 
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width by the default width increment and symbol ! 
decreases the value of the current line width by the default 
width increment.  
production p1: Symbol /(60) means every two segments is 
separated by 60 degree. 
production p2: Symbol [ and ] mean pushing the current 
state of the turtle onto a pushdown stack and popping a 
state from the stack. 
L-systems (2) do not include the geometric information of 
stem A, calyx C, petal P and stamen S. L-systems (3) are 
given below: 
initial line width = 20 
line width increment = 5 
lenA = 500 
lenF = 100 
ω:/(154) &(72) #A!B 
p1:B → D/(60)D/(60)D/(60)D/(60)D/(60)D 
p2:D → [C][P][S] 
p3:A → F(lenA)     (3) 
p4:C → ~c 
p5:P → ~p 
p6:S → F(lenF)[-(18)F(lenF)][＋(18)F(lenF)] 
production p3: Stem A is expressed as F(lenA) (i.e. a line 
segment with length lenA).  
production p4: Calyx C is interpreted as drawing the 
surface identified by symbol c(see detailed discussion in 
section 4) 
production p5: Petal P is interpreted as drawing the 
surface identified by symbol p(see detailed discussion in 
section 4) 
production p6: Stamen S is seen as a combination of 
F(lenF) and [-(18)F(lenF)][＋(18)F(lenF)] with the length 
lenF. 

4. Sepal and petal simulation based on Bezier 
surfaces 

The standard computer graphics method for defining 
arbitrary surfaces makes use of  bicubic patches. A patch 
is defined by three polynomials of third degree with 
respect to parameters u and w. The following equation 
defines the x coordinate of a point on the patch: 
x(u,w) = a33u3w3 + a32u3w2 + a31u3w + a30u3 

+ a23u2w3 + a22u2w2 + a21u2w + a20u2 
+ a13uw3 + a12uw2 + a11uw + a10u 
+ a03w3 + a02w2 + a01w + a00   (4.1) 

Analogous equations define y(u, w) and z(u, w). Complex 
surfaces are composed of several patches. 
Bezier-form bicubic patches [8] are employed in this paper. 
Let Pij(i=0,1,2,3; j=0,1,2,3) be 4×4 points in space, then a 
Bezier-form bicubic patch is defined as: 
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where Bi,m(u) and Bj,n(w) are Bernstein basis functions. A 
Bezier surface is denoted in matrix form as: 
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Fig. 2  Caylx 

Calyx C (Figure 2) of apple flower is composed of two 
Bezier-form bicubic surfaces (S1(u,w) (Figure 3) and 
S2(u,w) (Figure 4)) joined with C0 continuity. 

 

Fig. 3  S1 (u,w). 
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Fig. 4  S2(u,w). 

Petal P (Figure 5) is denoted as a Bezier surface. 

 

Fig. 5  S2(u,w). 

Finally, an apple flower (Figure 6) forms using a 
combination of a stem, six calyxes, six petals with six 
stamens. 

 

Fig. 6  Apple flower 

5. Conclusions 

L-systems are good at representing the topologic 
information of plant flower, while Bezier surfaces excel at 
depicting geometric information of flower. So the paper 
puts forward a model for plant flower simulation 
integrating L-systems with Bezier surfaces. Based on this 
model, a satisfying realistic image is obtained. This 
method is not only suitable for plant flower, but also for 
other plant organs. It is valuable for game, education, 
advertisement, horticulture et al. However, further 
research needs to be carried out to develop the method. 
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