
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

83

Manuscript received February 25, 2006.
Manuscript revised February 28 , 2006.

A Mapping Model for Transforming Nested XML Documents

Gang Qian,† and Yisheng Dong††,

Department of Computer Science and Engineering, Southeast University, Nanjing, China

Summary
XML has been extensively adopted in many modern data sharing
applications. Following the relational setting, we might expect to
directly use XQuery expressions to describe semantic mappings
between schemas for transforming nested XML documents. Yet
we observe that such an undecorated mapping representation is
becoming one of the sources that complicate the ubiquitous tasks
such as constructing, maintaining, and refining schema mappings.
In this paper we propose a model, called mapping & correlation
(Macor), to represent nested schema mappings. With Macor, a
full mapping is modeled as a number of simple, partial atomic
ones that are correlated with correlations. As a result, the full
mapping can be modeled incrementally in a piecemeal fashion,
and when refining or maintaining the mappings, Macor makes it
possible to locate modifications to few atomic mappings and
related correlations, and reuse other parts of the full mapping.
Key words:
Schema mapping, Data Transformation, XQuery, XML.

Introduction

Nowdays, there is a rapid growth of requirements for
integrating, exchanging and transforming data stored in
different autonomous sources. To achieve interoperability,
modern data-sharing architectures use schema mappings to
specify how data instances over one schema are trans-
formed to data instances over another. In data integration,
for example, schema mappings are used to unfold or
rewrite a user query over the global mediated schema into
sub-queries over the source schemas [9]; in data exchange,
the mappings are used to translate data from the sources
into the target databases [1]. To enable data sharing, the
user or the system manager has to first construct the
semantic mappings between the target and the source
schemas. Also, as the application requirements or the
schemas change, the user has to maintain and modify the
early constructed mappings.

A number of tools have recently been developed to
assist the user in such processes by increasing the
abstraction level [2, 13], semi-automatically discovering
mappings [15, 17, 3] or preserving their semantics as
schemas evolve [22, 26]. However, in practice it is still
inevitable for the user to manually construct and maintain
the mappings. Currently, schema mappings are mainly
represented as undecorated expressions such as SQL or
XQuery queries. Besides the structural and semantic
discrepancies existing in different schemas, such naive

representation can be another source that complicates the
above processes. Worse of all, this problem is becoming
more acute with the pervasive adoption of XML model in
data sharing applications, where a mapping may be very
large, because it computes nested XML documents and,
therefore, is as complex as the target schema [21]. To
motivate our work, we begin with the following situations
mostly encountered in practice.
Mapping Refinement. Due to subtle semantics hidden in
the schemas, the user often needs to continuously refine a
mapping to obtain the final desired one [25]. On the other
hand, each refinement essentially is a semantically fine
tuning over the mappings, e.g., changing a join from an
inner join to an outer join, modifying a correspondence
between the target and source elements, or appending
some sub-mappings, etc. Mapping expression provides no
mechanism for facilitating the action of refinement. On the
contrary, a locally semantic adjustment may lead to a
drastically, and then tediously syntactic modification on
the expression.
Schema Evolution. As application changes, schemas may
change their structure and even semantics, then the
initially obtained mappings have to be updated or adapted
to the new contexts. Besides the tedious modification on
the mappings, here another necessary task for the user (or
tools, e.g., [22]) is to locate sub-mappings that may be
affected potentially by the change of the schemas or the
application requirements. Since there are no explicit sub-
mappings in an expression (e.g., they may correlate each
other), such task also is intractable in general, especially in
dynamic environment like the web, where both the target
and source schemas may change frequently.
Complex Application. Large, complex schemas now are
becoming prevalent on the web. For example, many public
DTDs have up to several hundred elements and several
thousand attributes. An effective strategy for solving
complex problems, e.g., creating mapping between such
schemas, is to divide it into simple sub-problems and then
conquer them sequentially. Yet most of the available
mapping languages only provide id-based merging
mechanism to stitch up partial mappings. We believe
richer language facilities would make a more flexible
division of the problem.

In light of the above observations, we propose a model,
called mapping & correlation (Macor), to represent
schema mappings between nested schemas. In Macor, a
full mapping consists of a number of simple, partial

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

84

atomic mappings, which are correlated using explicit
correlations. To some extent, atomic mappings define
local views of each single schema element and
correlations denote semantic relationships between the
atomic mappings. In contrast with an undecorated
representation, Macor structurally models a mapping as a
Macor tree. Except the explicit correlations, in a Macor
tree there are no other relationships between the atomic
mappings. As a result, to construct a full mapping for the
whole target schema, the user can first independently
construct atomic mappings for each single target schema
element, and then incrementally correlate them using the
correlations. Such flexibility in mapping construction
makes Macor adapt well to complex applications. On the
other hand, in maintaining or refining mappings, Macor
makes it possible to locate modifications to sub-mappings
(instead of the full mapping), i.e., certain local atomic
mappings and related correlations, and remain and reuse
the other parts of the mappings.

A preliminary work has been reported in [18]. In this
paper we precisely define the Macor model formally and
present a case study about the usage of Macor. The rest of
the paper is organized as follows. An overview of Macor
and its intuition are first given in Section 2. Then the
detailed model is presented in Section 3. Section 4
presents a case study, and Section 5 discusses related work.
Finally, Section 6 concludes.

2. An Overview

We provide an overview of Macor by means of a user
scenario. Figure 1 shows portions of three nested schemas
(e.g., DTD) T, S1 and S2. The schema T depicts a user
interface for accessing an online bookshop, and S1 and
S2 indicate formats of the books and reviews information
stored in different sources, respectively. For instance, in
the source (of) S1, books are grouped by year, and then
categorized by styles such as novel. For expository
reasons, we assume that each book is identified by its title
value, and author is by name. Note that the element
author2 is complex type, while author1 is atomic type
and denotes author’s name. Element occurrence frequency

(i.e., ?, *, +, ε) is associated with the corresponding edges.
Throughout the paper we use the schemas T, S1 and S2 to
discuss schema-to-schema mappings. Though these
schemas are much simpler than in practice, they are
enough to illustrate the usefulness of a flexible,
maintainable mapping representation model.

Given a (set of) source schema(s) SS and a target
schema ST, a mapping M between SS and ST is a query
that, given an input of instances conforming to SS, could
always compute semantic-valid and application-specific
target instances, that is, the transformed instances should
conform to the target schema ST, as well as the application
requirements, e.g., for the above scenario, the favorites of
the bookshop. To illustrate the intuition behind Macor, we
regard a schema as a pair of <elems, cons>, where elems
denotes a finite set of single schema elements with
different names and cons are constraints over elems.
Specifically, our discussions consider simplified XML
schemas that have tree structures like in Figure 1. For such
a schema tree, elems includes empty, tag and text types of
schema elements. For example, the elements such as book
and tile are tag type; those like name_txt are text type
(not shown in Fig. 1 for readability). Further, cons may be
defined by the constraints such as child, next-sibling,
cardinality and reference, which respectively model
nesting structure, element sequence, element occurrence
frequency, and referential relationship [5]. Instances of a
schema element can be empty, tagged or text data nodes,
and if the instances of the schema elements in elems
satisfy all the constraints in cons, then they form instances
(e.g., DOM trees) over the corresponding schema. Note
that the empty data nodes have intuitive semantics, i.e.,
they can be safely removed from a data tree.

Following the above observations, one single schema
element can be regarded as the simplest schema without
any constraints. Instead of directly expressing a mapping
through a unique complex transformation (e.g., an XQuery
query), to model the full mapping between the schemas in
Figure 1, Macor first models mappings between the source
schemas (i.e., S1 and S2) and the single schema elements
in the target schema (i.e., T). Such mappings are referred
to as atomic mappings. Employing XQuery, we illustrate
sample atomic mappings as follows.

Figure 1. Example of nested schemas

shop

book

name intro

*

coun

review title

who comm

Schema T

+ *

year cate author

? ?

reviews

book

title reviewrating

*
Schema S2

*

novel

books

title author1

*

+

library

authors

year

name

author2

intro

Schema S1
* *

*

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

85

Ambook()_1: for $n1 in doc(“S1”)//novel return <book/>
Amtitle()_1: for $n2 in doc(“S1”)//novel, $t1 in $n2/title return <title/>
Amtitle_txt_1: for $t2 in doc(“S1”)//novel/title return $t2/text()

When applied to data, atomic mappings transform single
nodes into nodes (instead of subtrees into subtrees). Macor
provides another language facility (called correlation,
including Nest, Join, and Merge) to state how these data
pieces must be glued together to obtain the target data
trees. For example, the Nest correlation can state that the
title nodes computed by Amtitle()_1 should be nested within
the book nodes computed by Ambook()_1. Further, by
correlating the atomic mapping Amtitle_txt_1, the text values
can be assigned to the corresponding title nodes. As will
be seen in the sequel, the correlations can also be used to
constrain data instances computed by the atomic mappings.
This ability is useful to model application-specific
requirements. With correlations, atomic mappings are
organized into a tree (called Macor tree), where each node
contains atomic mappings and each edge is labeled with a
type of correlation that correlates the atomic mappings
contained in the parent-child nodes. Figure 2 shows
examples of Macor trees that model mappings for our
scenario. Note that for legibility Figure 2 uses a single
atomic mapping Amtitle_1 instead of a correlation of
Amtitle()_1 and Amtitle_txt_1 to copy the title nodes together
with the related text nodes from the source.

As a result, the task of constructing the full mapping is
to construct the corresponding Macor tree, which can be
done step by step. Consider the Macor tree Mt1. For

example, one can fist correlate the atomic mappings
Amauthor()_1 and Amname_1, and then connect them to
Ambook()_1 and others. The correlations can be assigned by
the user, or suggested by a discoverer like Clio [3]. After
obtaining the Macor tree, how does the user know that it
transforms instances as expected? Often, a schema only
can depict partial semantics of the domain. Though, to
some extent, a discoverer as presented in [15, 17] can
semi-automatically suggest semantic-valid mappings, to
get the desired, application-specific schema mappings, the
user usually needs to further explore the semantics hidden
in the schemas [25], and refine, execute (as motivated in
[14]), and even debug the initially obtained mappings.
With Macor, a complex mapping is partitioned into related
simple atomic mappings. We believe such a piecemeal
fashion would facilitate the tasks such as specifying,
refining, and modifying schema mappings. After
presenting the semantics of Macor, we shall provide a case
study in Section 4 to illustrate the usage of the model.

3. Mapping Model

The goal of Macor is to provide mechanisms for modeling
mappings and then obtaining maintainability. Having
illustrated the intuition, we present Macor in detail in this
section. Specifically, we focus on the language facilities
provided by Macor for transforming data instances from
the sources into the target. Checking whether the mapping
is consistent or not is beyond the scope of the paper. Thus,

Figure 2. Examples of Macor trees that model mappings between the schemas in Figure 1: at first Mt1 is
created incrementally; then Mt2 and Mt3 are derived in sequence by modifying Mt1 partially.

(1) (2)

(3) (4)

Ambook()_1

Amauthor()_1 Amtitle_1

Amname_1 Amintro_1

Macor tree Mt1

(1) (Nest, $n1 =n $n2)
(2) (Join, $n1/author1 =v $a1/name)
(3) (Nest, $a1 =n $a2)
(4) (Nest, $a1 =n $a3)

(2') (Nest, $n1 =n $n2)
(3') (Nest, $a4 =n $a5) (5) (Nest, $a5 =n $a6)
(4') (Nest, $a4 =v $a3/name)

(6) (Join+, $n1/author1 =n $n3/author1, count()>0, ε)
(7) (Merge, $n3/title =v $b1/title)

Ambook()_1: for $n1 in doc(“S1”)//novel return <book></book>
Amtitle_1: for $n2 in doc(“S1”)//novel, $t1 in $n2/title return $t1
Amauthor()_1: for $a1 in doc(“S1”)//author2 return <author></author>
Amname_1: for $a2 in doc(“S1”)//author2, $na1 in $a2/name return $na1
Amintro_1: for $a3 in doc(“S1”)//author2, $i1 in $a3/intro return $i1

Amauthor()_2: for $n2 in doc(“S1”)//novel, $a4 in $n2/author1 return <author/>
Amname()_2: for $a5 in doc(“S1”)//author1 return <name></name>
Amname_txt_2: for $a6 in doc(“S1”)//author1 return $a6/text()

Ambook()_2: for $n3 in doc(“S1”)//novel return <book></book>
Ambook()_3: for $b1 in doc(“S2”)//book where $b1/rating>3 return <book/>

(1) (2')

(3') (4')

Ambook()_1

Amauthor()_2Amtitle_1

Amname()_2 Amintro_1

Amname_txt_2

(5)

Macor tree Mt2

(2')

(3') (4')

Ambook()_1

Amauthor()_2

Amname()_2 Mintro_1

Amname_txt_2

(5)

Ambook()_2 Ambook()_3

(6) (7)

Macor tree Mt3

Atomic Mappings Correlations

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

86

in the following the terms mapping and query are
interchangeable.

3.1 Atomic Mapping

We define an atomic mapping Am as a restricted XQuery
expression: one for, one return and one optional where
clauses.

Am ::= for V in SP (where cond)? return () | constant | sp | <a>
sp ::= (doc(constant) | $v) ((/ | //) constant)*
cond ::= sp θ (sp | constant) | cond and cond

The symbol a denotes XML tags, θ comparison predicates,
sp a path query, and cond conditional expressions. We
distinguish two kinds of equivalence comparison
operators: =n and =v, which compare the identities and
values of two operands, respectively. For brevity, we write
a single clause “V in SP” instead of “$v1 in sp1, $v2 in sp2,
…”. All variables used should be defined in the same
atomic mapping for the query to be safe. In terms of the
return clause, the atomic mapping is referred to as empty,
constant, copy, or constructor type. An extension is
straightforward to include computing expressions about sp
(e.g., sp1*sp2, etc) in the condition cond and the return-
caluse. In the sequel we use the notations Vars(Am) to
denote the variables defined in Am, and sp($v) to explicitly
declare that sp is relative to the variable $v.

Taking an XML tree D conforming to the source
schema, an atomic mapping Am computes a sequence of
new data trees. First, a path query sp is evaluated at a
context node v (i.e., either a document root or a node
bound to $v) of D, and its result is the set of nodes of D
reachable via sp from v, denoted by v sp . At a context
node v, a unitary cond holds iff v sp contains a node
satisfying cond. Interpretation for binary condition
expression is similar. Let b={$v1: t1, $v2: t2, …} denote a
tuple of bindings of the sequence of variables defined in
the for clause, where ti corresponds to a node bound to $vi.
For each binding tuple b satisfying the condition cond, Am
returns a data tree d. Corresponding to the type of Am, the
data tree d may be an empty node, a text node, a copied
sub-tree of D, or a tagged node.

3.2 Correlation

Let Am1 and Am2 be the atomic mappings. We assume the
prefix variables such as $n2 (possibly renamed) defined in
Amtitle_1 have been defined explicitly in the atomic
mappings (If not, they can be introduced dynamically and
change no semantics of the atomic mappings). A
correlation is a pair of (cop, cpath), where cop is one of
the Nest, Join and Merge operators, and cpath is a
combination path defined as:

Definition 3.1 A combination path between Am1 and
Am2 is a conjunction of the conditional items sp1($v1) θ
sp2($v2), where $v1∈Vars(Am1) and $v2∈Vars(Am2).

We also say that cpath is defined over the variables set
{Vars(Am1) ∪ Vars(Am2)}. Different from mapping (or
query) composition (e.g., [11]), where one query can be
answered directly using the results of another query,
correlating two mappings is a “parallel” type of
connection, which respectively combines the heads (i.e.,
the return clause) and the bodies (i.e., the for and where
clauses) of the mappings. Informally, applying Nest or
Join correlation between Am1 and Am2, the instances
computed by Am2 are nested within those by Am1, while
applying Merge the returned instances are merged.
Moreover, the Nest and Join correlations restrict Am1 and
Am2 to be nesting compatible, while the Merge correlation
restricts them to be merging compatible.

Definition 3.2 Given atomic mappings Am1 and Am2. If
Am1 is empty or constructor type then it is nesting
compatible with any type of Am2; if (i) Am1 (or Am2) is
empty type and Am2 (or Am1) is any type, or (ii) both Am1
and Am2 are constructor types with the same tag name a,
then Am1 is merging compatible with Am2.

Definition 3.3 Given a pair of compatible atomic
mappings Am1 and Am2. Let b1 and b2 respectively denote
their variable binding tuples over some input data, and d1
and d2 be the corresponding computed data trees. By
applying a correlation between Am1 and Am2, a new data
tree d3 is derived from d1 and d2. Semantically, with the
data tree d3, we define the following correlations,
respectively.

 (Nest, cpath) indicates that for each b1 that satisfies cond1,
if there are i, i≥0 b2 (denoted by b2, i) satisfying cond2 and
cpath, then d3 is produced by appending all d2, i
(corresponding to b2, i) as the children of the root of d1.

 (Join, cpath) is similar to (Nest, cpath), except that only
when i≥1, does d3 is produced.

 (Merge, cpath) indicates that for each pair of (b1, b2) that
satisfies cond1, cond2 and cpath, there is a d3 produced
that unites d1 and d2 by merging their roots.

Note that when merging an empty node and a
text/tagged node, the result still is the text/tagged node.
Intuitively, the Nest correlation captures an outer join
relationship between b1 and b2, that is, the data tree d3 is
produced only if the corresponding d1 exists. In contrast,
the Join correlation specifies a join relationship, which is
useful to filter out those undesired d1s computed by Am1.

Example 3.4 Consider the atomic mappings and
correlations shown in Figure 2. The Join correlation “(2)”
declares a value comparison between novel/author1 and
author2/name: only when it holds, is a new book node

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

87

returned; otherwise, the book node is filtered out. To
some extent, the Join correlation represents a conditional
nesting: a branch (e.g., book-author) is formed by nesting
if certain conditions are satisfied; otherwise the entire
branch is dropped, comprising the parent.

On the other hand, the Merge correlation is used to
declare constraints over the same type of data nodes. For
another example, consider the merging compatible atomic
mappings Ambook()_1 and Ambook()_3 in Fig.2. They both
compute new book nodes, but a Merge correlation (Merge,
$n1/title =v $b1/title) can rule that only when a source
novel having a rating greater than 3, could a new book
node be returned.

In light of the semantic definitions of the correlations between
two atomic mappings Am1 and Am2, we write the following
syntactical correlation rules, respectively.

C1 for V1 in SP1 where cond1 return <a>{
for V2 in SP2 where cond2 and cpath
return atomic_item

}

C2 for V1 in SP1

where cond1 and count(
for V2 in SP2 where cond2 and cpath
return atomic_item
)>0

return <a>{
for V2 in SP2
where cond2 and cpath return atomic_item

}

C3 for V1 in SP1

for V2 in SP2
where cond1 and cond2 and cpath
return <a>

Note that atomic_item represents the return items of the
atomic mappings. The rule C1 nests Am2 within the return
clause of Am1. Similarly, the rule C2 nests Am2 within Am1,
except that a condition count()>0 of joining Am1 and Am2
is introduced additionally. In the rule C3, the for, where
and return clauses of Am1 and Am2 are merged
respectively. Following XQuery [24], checking the
semantics of the above rules is trivial. For example, the
rule C1 indicates that the values computed by the inner
query will be nested within the tagged nodes a, if the
corresponding conditions are satisfied. It should be noted
that the syntactical rules are not unique. Specifically, a
simplified version of the rule C2 may be obtained by
introducing a let variable in XQuery, since it can be
pushed into the where and return clauses [12], like the
rule C2.
Join+. In terms of the correlation rule C2, we extend the
Join correlation to a general form (Join+, cpath, α, β),
where α, substituting for count()>0, denotes an arbitrary
condition of joining Am1 and Am2, and β, substituting for
the special return item, i.e., Am2 in C2, represents an

expression over Am2. As shown in the Macor tree Mt3 in
Figure 2, when β is null, the correlation Join+ serves as a
constraint over the related atomic mapping. The discussion
about the Join correlation also suits for Join+.

3.3 Macor Tree

Regarding atomic mapping as a node, if Am1 and Am2 are
correlated using the Nest or Join operator, then Am2 is a
child node of Am1; if they are correlated using the Merge
operator, then the nodes are united into one.

Definition 3.5 A Macor tree is a 4-tuple <T, atoms, λe,
λn>, where T=(N, E) is an ordered tree, and atoms, λe and
λn are functions defined as:

 atoms is a function that assigns i (i≥1) atomic
mappings to each node n∈N, s.t. each pair of atomic
mappings (Am1, Am2) assigned to the parent-child
nodes are nesting compatible, and to the same node
are merging compatible;

 λe is a function that assigns a correlation (cop, cpath)
to each edge e = (n1, n2) ∈ E, s.t. cop is the Nest or
Join operator and cpath is defined over {$v |
$v∈Vars(m), m∈atoms(n1) ∪ atoms(n2)};

 λn is a partial function that assigns a correlation
(Merge, cpath) to the node n where |atoms(n)|>1, s.t.
cpath is defined over {$v | $v∈Vars(m),
m∈atoms(n)}.

We say that a Macor tree Mt represents a mapping
between the source schema SS and the target schema ST,
which means that, given any instance conforming to SS,
the resulting instances, returned by Mt in the way as
defined in Definition 3.3, always conform to the target
schema ST. Specifically, for each node n in Mt, atoms(n)
jointly compute instances of the same schema element (say
ei, denoted by I(ei)). Note that there may be multiple nodes
in Mt contributing to I(ei), with the semantics of union. In
light of the correlations that label the edges of Mt, the sets
of instances {I(e1), I(e2), …, I(em)} (m is the number of
nodes of Mt) are stitched up, denoted by I(ST). Let I'(ei)
denote the instances of ei in I(ST), then I'(ei) ⊆ I(ei) holds,
which indicates that not every instance in I(ei) will
contribute to the glued target instances, e.g., some may be
filtered out by the Join correlation.

Proposition 3.6 For a Macor tree Mt, the following
properties hold:

1. In each inner (i.e., non-leaf) node of Mt, the
contained atomic mappings are either empty or
constructor types.

2. If a node of Mt contains constant or copy type of
atomic mappings, then it must be a leaf node.

3. For each atomic mapping Am contained in a node n
of Mt, there is only the possibility that Am was

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

88

correlated with those atomic mappings contained in
the same, parent, or child nodes.

The above properties 1 and 2 character a general Macor
tree. Such trees provide a flexible way to construct, rectify,
and modifying the schema mappings. For example, we can
go on nesting corresponding atomic mappings into Mt1 in
Figure 2 and make it additionally compute other data
nodes such as year, cate(gory), and review. Further, as
can be seen in Example 3.4, we can obtain a mapping that
only transforms those novels with good ratings. When an
atomic mapping in a Macor tree changes, the correlations
associated with it may need to be adjusted accordingly.
Moreover, as indicated in [22], such changes could result
in searching for new correlations to discover other
candidate mappings. The above property 3 reduces the
search space to those atomic mappings contained in the
same, parent, and children nodes, while other parts can be
remained and reused.

Due to the composability of XQuery, the correlated
mappings can be further correlated with other mappings,
in the same way as C1, C2, or C3. Based on the
correlation rules, the mapping expression corresponding to
a Macor tree Mt can be recursively written out.

Procedure toExp
Input: A Macor tree Mt with the root node n
Output: The mapping expression E denoted by Mt

E ← Correlating the atomic mappings atoms(n) in the same way as C3
For each node ni ∈ childOf(n)
 e ← toMapping(ni)
 Switch the correlation between n and ni
 Case (Nest, cpath):
 E ← Correlating E with e in sequence, in the same way as C1
 Case (Join, cpath):
 E ← Correlating E with e as C2
 Return E

Example 3.7 Taking the Macor tree Mt3 in Figure 2, the
procedure toExp outputs a query expression as shown in
Figure 3. In terms of the order of the sibling nodes, the
sub-expressions E2 and E3 are nested within E1 in
sequence. With an empty β, the Join+ correlation “(7)” in
then introduces a condition count()>0 over the sub-
expression E4, which serves as a condition to filter out
those unsatisfied book instances computed by Mbook()_1,
i.e., I'(book) ⊆ I(book). Notice that in most cases the Join
and Join+ correlations can additionally be used to simulate
conditions expressed by the some-clause in XQuery.

3.3 Other Facilities

For integrity, we briefly present in the following the
facilities incorporated into Macor for dealing with
overlapping, and missing information, though they are not
the contributions of this paper.

Consider our scenario again. For each novel in the
source S1, the Macor tree Mt1 in Figure 2 will compute a
new book instance. This is probably not the desired, since
the same novel with several versions (e.g., different
publishing years) will appear as multiple book entries,
rather than as a single book in the target. To enable the
desired behavior, Macor appoints Amtitle()_1 the role of id-
mapping for mapping multiple binding instances to the
same output: if two nodes created in the target have the
same tag name and ID attribute, then they will fuse into
one [16, 4, 8, 20]. This fusion process is repeated
recursively over the combined elements.

The schema T in Figure 1 indicates that the coun(try)
information associated with each author is optional. Thus
the Macor tree Mt1 in Figure 2 is semantic-valid and can
always compute valid target instances. Yet if the country
data of each author is required, the sources S1 and S2
provide no corresponding information. This case is usual

for $n1 in doc(“S1”)//novel
where count(for $n3 in doc(“S1”)//novel

 for $b1 in doc(“S2”)//book
where $b1/rating>3 and $n1/author1 =n $n3/author1 and $n3/title =v $b1/title /* (6) (7)

 return <book></book>)>0
return <book>{

for $n2 in doc(“S1”)//novel, $a4 in $n2/author1
where $n1 =n $n2 /* correlation (2')
return <author>{

for $a5 in doc(“S1”)//author1
where $a4 =n $a5 /* correlation (3')
return <name>……</name>}{
for $a3 in doc(“S1”)//author2, $i1 in $a3/intro
where $a4 =v $a3/name /* correlation (4')
return $i1}}</author>}

</book>

Figure 3. The fragment of the Macor tree Mt3 in Figure 2 is translated into an expression.

E2

E3

E1

E4

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

89

in practical data-sharing applications. To address this issue,
Macor employees Skolem functions, a common technique
extensively used in data integration and data exchange, to
represent “unknown” values. In the following atomic
mapping, for example, the Skolem term “Sk($a7/name)”
computes a special value in terms of each author name.
Amcoun_txt_1: for $a7 in doc(“S1”)//author2 return Sk($a7/name)

4. Case Study

Due to subtle semantics hidden in the schemas, it is
difficult for the user to directly specify a correct mapping
that conforms to the target schema and also satisfies the
application requirements. In this section, we show how
Macor is able to simplify such tasks.

Consider our running example. We assume the Macor
tree Mt1 has been obtained in Figure 2, which states a
transformation from novels into target books. Though
such a mapping is semantic-valid, does it satisfy the
application requirement? To answer this question, the user
may decide first to transform it into an equivalent query
expression (see next section), and then execute the query
over some selected sample data sets [25].

The test may help the user find that in the
transformation those novels with no corresponding
author2 instances are lost. Suppose this is not the desired.
Hence the user tries to make a modification over Mt1 by
changing the correlation “(2)” into a Nest one.
Consequently, the originally lost novels can also be
transformed into books, but with no information about
authors. Further modifications are made again. This time
the target author nodes are computed in terms of the
element author1 in the source, i.e. Amauthor()_1 is changed
into Amauthor()_2 (see Fig.2). This again leads to update of
the related correlations and atomic mappings. Finally, an
updated Macor tree Mt2 is obtained, which transforms
each novel into a book instance and associates possible
author information with the book. The highlighted part in
Mt2 shows the modifications. Note that in Mt2 the atomic
mapping Amname_txt_2 is modeled explicitly to compute
name values. This is because the matching schema
elements (i.e., name of T and author1 of S1) have
different names. Also, it is interesting to note that the
highlighted subtree of Mt2 can be modeled, modified, and
tested independently, and then be inserted with the
correlation “(2')”. In contrast, for an undecorated
representation, e.g., a unique complex XQuery expression,
since there are no clear delimiters to distinguish sub-
mappings, the modification has to be located to the whole
mapping, though in essence it may be local.

As another example, we consider the case where the
user (bookshop) only favors popular books, e.g., with
good ratings. To code such requirements, the user models

an atomic mapping Ambook()_3 (see Figure 2) and tries to
merge it with Ambook()_1 in the Macor tree Mt2. After
executing the new resulting mapping, the user finds that
such a constraint is too strong, and then makes a
relaxation: if there is an author who has written at least
one novel with a rating greater than 3, then all the novels
written by him are popular. Driven by this requirement,
the user first selects out those novels with qualified
ratings, i.e., those qualified authors, by removing
Ambook()_3 from Mt2, and merging it again with another
atomic mapping Ambook()_2, with the correlation “(7)” in
Figure 2. Then, applying an extended Join correlation,
Join+, the sub-mapping is correlated with the atomic
mapping Ambook()_1 in Mt2. A fragment of the refined
schema mapping Mt3 is shown in Figure 2. Specifically, by
comparing the novel authors bound by Ambook()_1 with the
qualified authors, the correlation “(6)” constrains
Ambook()_1 to compute only the qualified books. Again, this
example shows the ways to edit the schema mappings
modeled with Macor. Notice that, while in terms of the
constraints contained in the schemas, the mapping
technologies presented in [17, 22] can semi-automatically
discover or preserve semantic-valid mappings, dealing
with the above application-specific semantics would go
beyond their abilities.

5. Related Work

Schema mappings are extensively used in many modern
applications such as the data integration and data exchange
systems. A number of techniques recently have been
studied to provide automated support for dealing with
mapping problems. Among those, schema matching (e.g.,
[19, 6]) focuses on computing semantic correspondences
between schema elements. Under an assumption that the
desired matches have been given, [15, 17] further makes
significant progress in discovering semantically valid
schema-to-schema mappings. Yet, lacking of a suitable
mapping model, [15, 17] deploy the automation on the
whole schemas, which limits its application scopes.
Though a discoverer can search for semantic relations
between given element correspondences (or matches) and
produce candidate sub-mappings, there are no ways to
correlate them together to form a full mapping. [22]
studies how to locate matches affected by schema
evolution and then adapts original mappings by employing
a discoverer in the same way. By composing mappings, a
more general method is proposed in [26] to adapt the
mappings when schemas evolve. However, as shown in
the introduction, the requirements for modifying mappings
are various. By exposing correlations in mapping
languages, Macor makes it possible to employ a discoverer
at the atomic mapping level and provides much flexibility
in mapping construction. More importantly, with Macor,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

90

modification can be located to partial sub-mappings, no
matter whether the schemas change or not.

In recent literature there are proposals that elevate
schema mappings to first-class citizens. Within a general
framework of model management, schemas and mappings
between them can be manipulated via a set of operators [2,
13]. In their works mappings are modeled as an abstract
syntactical model, and in essence the operators are defined
for a set of correspondences between schema elements,
which are useful in applications such as model translation.
An extension in relational set-ting to executable mappings
such as SQL queries has been made recently in a
succeeding work [14]. Yet, manipulating mappings in
these works is subject to schema (e.g., evolution), while
Macor tree can be directly modified. Moreover, Macor
makes it possible to reify the abstract mapping model into
XML settings.

To some significant extent, the atomic (or partial)
mappings in Macor resemble subgoals in defining
integrated views using datalog programs. With Skolem
functions XML query languages such as XML-QL [4] also
allow for defining schema mappings in a piecemeal
fashion. In contrast with such id-based mechanisms of
gluing sub-mappings, Macor provides richer language
facilities, i.e., correlations, which enable fine-grained sub-
mappings and then fine-grained maintainability of the
model. To facilitate the validation of the schema mappings,
a recent work in [7] also proposes, based on attribute
grammars, to express a full mapping by sub-mappings
(called grammars) defined for each schema element. Yet,
in their work the specification of one sub-mapping is
dependent on the specification of another, i.e., correlations
are coded into the sub-mappings.

6. Conclusion

This work discussed a maintainable XQuery model, i.e.,
Macor, for representing nested schema mappings. With
Macor, a schema mapping was modeled as a number of
atomic ones related with the correlations. XQuery is a
young language designed for querying XML, and we
believe our work is also useful to explore its
characteristics.

References
1. M. Arenas and L. Libkin. XML Data Exchange:

Consistency and Query Answering. In PODS 2005,
pages 13-24.

2. P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In Proc. of CIDR,
2003.

3. Clio. http://www.cs.toronto.edu/db/clio/

4. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. A Query Language for XML. In proc. of
WWW, 1999.

5. A. Deutsch and V. Tannen. Containment and Integrity
Constraints for XPath. In KRDB, 2001.

6. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P.
Domingos. iMAP: Discovering Complex Semantic
Matches between Database Schemas. In proc. of
SIGMOD, 2004.

7. W. Fan, M. Garofalakis, M. Xiong and X. Jia.
Composable XML Integration Grammars. In Proc. of
CIKM, 2004.

8. A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov.
Piazza: Data Management Infrastructure for Semantic
Web Applications. In proc. of WWW, 2003.

9. M Lenzerini. Data Integration: A Theoretical
Perspective. In PODS 2002.

10. B. S. Lerner. A Model for Compound Type Changes
Encountered in Schema Evolution. ACM TODS,
25(1):83–127, March 2000.

11. J. Madhavan and A. Halevy. Composing mappings
among data sources. In Proc. of VLDB, 2003.

12. I. Manolescu, D. Florescu, and D. Kossman.
Answering XML Queries on Heterogeneous Data
Sources. In proc. of VLDB, 2001.

13. S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A
Programming Platform for Generic Model
Management. In proc. of SIGMOD, 2003.

14. S. Melnik, P. A. Bernstein, A. Halevy, E. Rahm.
Supporting Executable Mappings in Model
Management. In proc. of SIGMOD, 2005.

15. R. Miller, L. Haas, and M. Hernández. Schema
Mapping as Query Discovery. In Proc. of VLDB,
2000.

16. Y. Papakonstantinou, S. Abiteboul, and H. Garcia-
Molina. Object Fusion in Mediator Systems. In Proc.
of VLDB, 1996.

17. L. Popa, Y. Velegrakis, R Miller, M. A. Hernandez,
and R. Fagin. Translating Web Data. In Proc. of
VLDB, 2002.

18. G. Qian and Y. Dong. Constructing Maintainable
Semantic Mappings in XQuery. In WebDB'05, pages
121-126, 2005.

19. E. Rahm and P.A. Bernstein. A survey of approaches
to automatic schema matching. The VLDB Journal,
10(4): 334-350, 2001.

20. E. Rahm, A. Thor, D. Aumueller, H-. Do, N. Golovin,
T. Kirsten. iFuice – Information Fusion utilizing

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

91

Instance Correspondences and Peer Mappings. In
WebDB'05.

21. A. Sahuguet. Everything You Ever Wanted to Know
About DTDs, But Were Afraid to Ask. In WebDB'00,
2000.

22. Y. Velegrakis, R. J. Miller, and L. Popa. Preserving
mapping consistency under schema changes. The
VLDB Journal, 13(3): 274-293, 2004.

23. XQEngine. http://www.fatdog.com
24. XQuery. http://www.w3.org/XML/Query
25. L. Yan, R. J. Miller, L. M. Hass, and R. Fagin. Data-

Driven Understanding and Refinement of Schema
Mappings. In proc. of SIGMOD, pages 485-496, 2001.

26. C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings when Schemas Evolve. In Proc. of VLDB,
2005.

Gang Qian received the B.S. and M.S.
degrees from Hohai University in 1995 and
2002, respectively, and is currently a PH.D.
candidate in Southeast University.

His research interest includes database and
information system.

Yisheng Dong was born in 1940, and is
a professor at Southeast University.

His research interest includes database and
information system.

