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Summary 
XML has been extensively adopted in many modern data sharing 
applications. Following the relational setting, we might expect to 
directly use XQuery expressions to describe semantic mappings 
between schemas for transforming nested XML documents. Yet 
we observe that such an undecorated mapping representation is 
becoming one of the sources that complicate the ubiquitous tasks 
such as constructing, maintaining, and refining schema mappings. 
In this paper we propose a model, called mapping & correlation 
(Macor), to represent nested schema mappings. With Macor, a 
full mapping is modeled as a number of simple, partial atomic 
ones that are correlated with correlations. As a result, the full 
mapping can be modeled incrementally in a piecemeal fashion, 
and when refining or maintaining the mappings, Macor makes it 
possible to locate modifications to few atomic mappings and 
related correlations, and reuse other parts of the full mapping. 
Key words: 
Schema mapping, Data Transformation, XQuery, XML. 

Introduction 

Nowdays, there is a rapid growth of requirements for 
integrating, exchanging and transforming data stored in 
different autonomous sources. To achieve interoperability, 
modern data-sharing architectures use schema mappings to 
specify how data instances over one schema are trans-
formed to data instances over another. In data integration, 
for example, schema mappings are used to unfold or 
rewrite a user query over the global mediated schema into 
sub-queries over the source schemas [9]; in data exchange, 
the mappings are used to translate data from the sources 
into the target databases [1]. To enable data sharing, the 
user or the system manager has to first construct the 
semantic mappings between the target and the source 
schemas. Also, as the application requirements or the 
schemas change, the user has to maintain and modify the 
early constructed mappings. 

A number of tools have recently been developed to 
assist the user in such processes by increasing the 
abstraction level [2, 13], semi-automatically discovering 
mappings [15, 17, 3] or preserving their semantics as 
schemas evolve [22, 26]. However, in practice it is still 
inevitable for the user to manually construct and maintain 
the mappings. Currently, schema mappings are mainly 
represented as undecorated expressions such as SQL or 
XQuery queries. Besides the structural and semantic 
discrepancies existing in different schemas, such naive 

representation can be another source that complicates the 
above processes. Worse of all, this problem is becoming 
more acute with the pervasive adoption of XML model in 
data sharing applications, where a mapping may be very 
large, because it computes nested XML documents and, 
therefore, is as complex as the target schema [21]. To 
motivate our work, we begin with the following situations 
mostly encountered in practice. 
Mapping Refinement.  Due to subtle semantics hidden in 
the schemas, the user often needs to continuously refine a 
mapping to obtain the final desired one [25]. On the other 
hand, each refinement essentially is a semantically fine 
tuning over the mappings, e.g., changing a join from an 
inner join to an outer join, modifying a correspondence 
between the target and source elements, or appending 
some sub-mappings, etc. Mapping expression provides no 
mechanism for facilitating the action of refinement. On the 
contrary, a locally semantic adjustment may lead to a 
drastically, and then tediously syntactic modification on 
the expression. 
Schema Evolution. As application changes, schemas may 
change their structure and even semantics, then the 
initially obtained mappings have to be updated or adapted 
to the new contexts. Besides the tedious modification on 
the mappings, here another necessary task for the user (or 
tools, e.g., [22]) is to locate sub-mappings that may be 
affected potentially by the change of the schemas or the 
application requirements. Since there are no explicit sub-
mappings in an expression (e.g., they may correlate each 
other), such task also is intractable in general, especially in 
dynamic environment like the web, where both the target 
and source schemas may change frequently.  
Complex Application. Large, complex schemas now are 
becoming prevalent on the web. For example, many public 
DTDs have up to several hundred elements and several 
thousand attributes. An effective strategy for solving 
complex problems, e.g., creating mapping between such 
schemas, is to divide it into simple sub-problems and then 
conquer them sequentially. Yet most of the available 
mapping languages only provide id-based merging 
mechanism to stitch up partial mappings. We believe 
richer language facilities would make a more flexible 
division of the problem. 

In light of the above observations, we propose a model, 
called mapping & correlation (Macor), to represent 
schema mappings between nested schemas. In Macor, a 
full mapping consists of a number of simple, partial 
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atomic mappings, which are correlated using explicit 
correlations. To some extent, atomic mappings define 
local views of each single schema element and 
correlations denote semantic relationships between the 
atomic mappings. In contrast with an undecorated 
representation, Macor structurally models a mapping as a 
Macor tree. Except the explicit correlations, in a Macor 
tree there are no other relationships between the atomic 
mappings. As a result, to construct a full mapping for the 
whole target schema, the user can first independently 
construct atomic mappings for each single target schema 
element, and then incrementally correlate them using the 
correlations. Such flexibility in mapping construction 
makes Macor adapt well to complex applications. On the 
other hand, in maintaining or refining mappings, Macor 
makes it possible to locate modifications to sub-mappings 
(instead of the full mapping), i.e., certain local atomic 
mappings and related correlations, and remain and reuse 
the other parts of the mappings. 

A preliminary work has been reported in [18]. In this 
paper we precisely define the Macor model formally and 
present a case study about the usage of Macor. The rest of 
the paper is organized as follows. An overview of Macor 
and its intuition are first given in Section 2. Then the 
detailed model is presented in Section 3. Section 4 
presents a case study, and Section 5 discusses related work. 
Finally, Section 6 concludes. 

2. An Overview 

We provide an overview of Macor by means of a user 
scenario. Figure 1 shows portions of three nested schemas 
(e.g., DTD) T, S1 and S2. The schema T depicts a user 
interface for accessing an online bookshop, and S1 and 
S2 indicate formats of the books and reviews information 
stored in different sources, respectively. For instance, in 
the source (of) S1, books are grouped by year, and then 
categorized by styles such as novel. For expository 
reasons, we assume that each book is identified by its title 
value, and author is by name. Note that the element 
author2 is complex type, while author1 is atomic type 
and denotes author’s name. Element occurrence frequency 

(i.e., ?, *, +, ε) is associated with the corresponding edges. 
Throughout the paper we use the schemas T, S1 and S2 to 
discuss schema-to-schema mappings. Though these 
schemas are much simpler than in practice, they are 
enough to illustrate the usefulness of a flexible, 
maintainable mapping representation model. 

Given a (set of) source schema(s) SS and a target 
schema ST, a mapping M between SS and ST is a query 
that, given an input of instances conforming to SS, could 
always compute semantic-valid and application-specific 
target instances, that is, the transformed instances should 
conform to the target schema ST, as well as the application 
requirements, e.g., for the above scenario, the favorites of 
the bookshop. To illustrate the intuition behind Macor, we 
regard a schema as a pair of <elems, cons>, where elems 
denotes a finite set of single schema elements with 
different names and cons are constraints over elems. 
Specifically, our discussions consider simplified XML 
schemas that have tree structures like in Figure 1. For such 
a schema tree, elems includes empty, tag and text types of 
schema elements. For example, the elements such as book 
and tile are tag type; those like name_txt are text type 
(not shown in Fig. 1 for readability). Further, cons may be 
defined by the constraints such as child, next-sibling, 
cardinality and reference, which respectively model 
nesting structure, element sequence, element occurrence 
frequency, and referential relationship [5]. Instances of a 
schema element can be empty, tagged or text data nodes, 
and if the instances of the schema elements in elems 
satisfy all the constraints in cons, then they form instances 
(e.g., DOM trees) over the corresponding schema. Note 
that the empty data nodes have intuitive semantics, i.e., 
they can be safely removed from a data tree. 

Following the above observations, one single schema 
element can be regarded as the simplest schema without 
any constraints. Instead of directly expressing a mapping 
through a unique complex transformation (e.g., an XQuery 
query), to model the full mapping between the schemas in 
Figure 1, Macor first models mappings between the source 
schemas (i.e., S1 and S2) and the single schema elements 
in the target schema (i.e., T). Such mappings are referred 
to as atomic mappings. Employing XQuery, we illustrate 
sample atomic mappings as follows. 

Figure 1. Example of nested schemas 
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Ambook()_1: for $n1 in doc(“S1”)//novel return <book/> 
Amtitle()_1:  for $n2 in doc(“S1”)//novel, $t1 in $n2/title return <title/> 
Amtitle_txt_1:   for $t2 in doc(“S1”)//novel/title return $t2/text() 

When applied to data, atomic mappings transform single 
nodes into nodes (instead of subtrees into subtrees). Macor 
provides another language facility (called correlation, 
including Nest, Join, and Merge) to state how these data 
pieces must be glued together to obtain the target data 
trees. For example, the Nest correlation can state that the 
title nodes computed by Amtitle()_1 should be nested within 
the book nodes computed by Ambook()_1. Further, by 
correlating the atomic mapping Amtitle_txt_1, the text values 
can be assigned to the corresponding title nodes. As will 
be seen in the sequel, the correlations can also be used to 
constrain data instances computed by the atomic mappings. 
This ability is useful to model application-specific 
requirements. With correlations, atomic mappings are 
organized into a tree (called Macor tree), where each node 
contains atomic mappings and each edge is labeled with a 
type of correlation that correlates the atomic mappings 
contained in the parent-child nodes. Figure 2 shows 
examples of Macor trees that model mappings for our 
scenario. Note that for legibility Figure 2 uses a single 
atomic mapping Amtitle_1 instead of a correlation of 
Amtitle()_1 and Amtitle_txt_1 to copy the title nodes together 
with the related text nodes from the source.  

As a result, the task of constructing the full mapping is 
to construct the corresponding Macor tree, which can be 
done step by step. Consider the Macor tree Mt1. For 

example, one can fist correlate the atomic mappings 
Amauthor()_1 and Amname_1, and then connect them to 
Ambook()_1 and others. The correlations can be assigned by 
the user, or suggested by a discoverer like Clio [3]. After 
obtaining the Macor tree, how does the user know that it 
transforms instances as expected? Often, a schema only 
can depict partial semantics of the domain. Though, to 
some extent, a discoverer as presented in [15, 17] can 
semi-automatically suggest semantic-valid mappings, to 
get the desired, application-specific schema mappings, the 
user usually needs to further explore the semantics hidden 
in the schemas [25], and refine, execute (as motivated in 
[14]), and even debug the initially obtained mappings. 
With Macor, a complex mapping is partitioned into related 
simple atomic mappings. We believe such a piecemeal 
fashion would facilitate the tasks such as specifying, 
refining, and modifying schema mappings. After 
presenting the semantics of Macor, we shall provide a case 
study in Section 4 to illustrate the usage of the model. 

3. Mapping Model 

The goal of Macor is to provide mechanisms for modeling 
mappings and then obtaining maintainability. Having 
illustrated the intuition, we present Macor in detail in this 
section. Specifically, we focus on the language facilities 
provided by Macor for transforming data instances from 
the sources into the target. Checking whether the mapping 
is consistent or not is beyond the scope of the paper. Thus, 

Figure 2. Examples of Macor trees that model mappings between the schemas in Figure 1: at first Mt1 is 
created incrementally; then Mt2 and Mt3 are derived in sequence by modifying Mt1 partially. 
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in the following the terms mapping and query are 
interchangeable.  

3.1 Atomic Mapping 

We define an atomic mapping Am as a restricted XQuery 
expression: one for, one return and one optional where 
clauses. 

Am ::=  for V in SP (where cond)? return ( ) | constant | sp | <a></a>  
sp ::=   ( doc( constant ) | $v ) (( / | // ) constant)* 
cond ::= sp θ  ( sp | constant ) | cond and cond 

The symbol a denotes XML tags, θ comparison predicates, 
sp a path query, and cond conditional expressions. We 
distinguish two kinds of equivalence comparison 
operators: =n and =v, which compare the identities and 
values of two operands, respectively. For brevity, we write 
a single clause “V in SP” instead of “$v1 in sp1, $v2 in sp2, 
…”. All variables used should be defined in the same 
atomic mapping for the query to be safe. In terms of the 
return clause, the atomic mapping is referred to as empty, 
constant, copy, or constructor type. An extension is 
straightforward to include computing expressions about sp 
(e.g., sp1*sp2, etc) in the condition cond and the return-
caluse. In the sequel we use the notations Vars(Am) to 
denote the variables defined in Am, and sp($v) to explicitly 
declare that sp is relative to the variable $v. 

Taking an XML tree D conforming to the source 
schema, an atomic mapping Am computes a sequence of 
new data trees. First, a path query sp is evaluated at a 
context node v (i.e., either a document root or a node 
bound to $v) of D, and its result is the set of nodes of D 
reachable via sp from v, denoted by v sp . At a context 
node v, a unitary cond holds iff v sp  contains a node 
satisfying cond. Interpretation for binary condition 
expression is similar. Let b={$v1: t1, $v2: t2, …} denote a 
tuple of bindings of the sequence of variables defined in 
the for clause, where ti corresponds to a node bound to $vi. 
For each binding tuple b satisfying the condition cond, Am 
returns a data tree d. Corresponding to the type of Am, the 
data tree d may be an empty node, a text node, a copied 
sub-tree of D, or a tagged node.  

3.2 Correlation 

Let Am1 and Am2 be the atomic mappings. We assume the 
prefix variables such as $n2 (possibly renamed) defined in 
Amtitle_1 have been defined explicitly in the atomic 
mappings (If not, they can be introduced dynamically and 
change no semantics of the atomic mappings). A 
correlation is a pair of (cop, cpath), where cop is one of 
the Nest, Join and Merge operators, and cpath is a 
combination path defined as: 

Definition 3.1 A combination path between Am1 and 
Am2 is a conjunction of the conditional items sp1($v1) θ  
sp2($v2), where $v1∈Vars(Am1) and $v2∈Vars(Am2). 

We also say that cpath is defined over the variables set 
{Vars(Am1) ∪ Vars(Am2)}. Different from mapping (or 
query) composition (e.g., [11]), where one query can be 
answered directly using the results of another query, 
correlating two mappings is a “parallel” type of 
connection, which respectively combines the heads (i.e., 
the return clause) and the bodies (i.e., the for and where 
clauses) of the mappings. Informally, applying Nest or 
Join correlation between Am1 and Am2, the instances 
computed by Am2 are nested within those by Am1, while 
applying Merge the returned instances are merged. 
Moreover, the Nest and Join correlations restrict Am1 and 
Am2 to be nesting compatible, while the Merge correlation 
restricts them to be merging compatible.  

Definition 3.2 Given atomic mappings Am1 and Am2. If 
Am1 is empty or constructor type then it is nesting 
compatible with any type of Am2; if (i) Am1 (or Am2) is 
empty type and Am2 (or Am1) is any type, or (ii) both Am1 
and Am2 are constructor types with the same tag name a, 
then Am1 is merging compatible with Am2. 

Definition 3.3 Given a pair of compatible atomic 
mappings Am1 and Am2. Let b1 and b2 respectively denote 
their variable binding tuples over some input data, and d1 
and d2 be the corresponding computed data trees. By 
applying a correlation between Am1 and Am2, a new data 
tree d3 is derived from d1 and d2. Semantically, with the 
data tree d3, we define the following correlations, 
respectively. 

 (Nest, cpath) indicates that for each b1 that satisfies cond1, 
if there are i, i≥0 b2 (denoted by b2, i) satisfying cond2 and 
cpath, then d3 is produced by appending all d2, i 
(corresponding to b2, i) as the children of the root of d1. 

 (Join, cpath) is similar to (Nest, cpath), except that only 
when i≥1, does d3 is produced. 

 (Merge, cpath) indicates that for each pair of (b1, b2) that 
satisfies cond1, cond2 and cpath, there is a d3 produced 
that unites d1 and d2 by merging their roots. 

Note that when merging an empty node and a 
text/tagged node, the result still is the text/tagged node. 
Intuitively, the Nest correlation captures an outer join 
relationship between b1 and b2, that is, the data tree d3 is 
produced only if the corresponding d1 exists. In contrast, 
the Join correlation specifies a join relationship, which is 
useful to filter out those undesired d1s computed by Am1.  

Example 3.4  Consider the atomic mappings and 
correlations shown in Figure 2. The Join correlation “(2)” 
declares a value comparison between novel/author1 and 
author2/name: only when it holds, is a new book node 
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returned; otherwise, the book node is filtered out. To 
some extent, the Join correlation represents a conditional 
nesting: a branch (e.g., book-author) is formed by nesting 
if certain conditions are satisfied; otherwise the entire 
branch is dropped, comprising the parent. 

On the other hand, the Merge correlation is used to 
declare constraints over the same type of data nodes. For 
another example, consider the merging compatible atomic 
mappings Ambook()_1 and Ambook()_3 in Fig.2. They both 
compute new book nodes, but a Merge correlation (Merge, 
$n1/title =v $b1/title) can rule that only when a source 
novel having a rating greater than 3, could a new book 
node be returned. 

In light of the semantic definitions of the correlations between 
two atomic mappings Am1 and Am2, we write the following 
syntactical correlation rules, respectively. 

C1  for V1 in SP1 where cond1 return <a>{ 
for V2 in SP2 where cond2 and cpath  
return atomic_item  

}</a> 
 
C2   for V1 in SP1  

where cond1 and count( 
for V2 in SP2 where cond2 and cpath  
return atomic_item 
)>0 

return <a>{ 
for V2 in SP2  
where cond2 and cpath return atomic_item  

}</a> 
 
C3  for V1 in SP1  

for V2 in SP2  
where cond1 and cond2 and cpath  
return <a></a> 

Note that atomic_item represents the return items of the 
atomic mappings. The rule C1 nests Am2 within the return 
clause of Am1. Similarly, the rule C2 nests Am2 within Am1, 
except that a condition count()>0 of joining Am1 and Am2 
is introduced additionally. In the rule C3, the for, where 
and return clauses of Am1 and Am2 are merged 
respectively. Following XQuery [24], checking the 
semantics of the above rules is trivial. For example, the 
rule C1 indicates that the values computed by the inner 
query will be nested within the tagged nodes a, if the 
corresponding conditions are satisfied. It should be noted 
that the syntactical rules are not unique. Specifically, a 
simplified version of the rule C2 may be obtained by 
introducing a let variable in XQuery, since it can be 
pushed into the where and return clauses [12], like the 
rule C2. 
Join+. In terms of the correlation rule C2, we extend the 
Join correlation to a general form (Join+, cpath, α, β), 
where α, substituting for count()>0, denotes an arbitrary 
condition of joining Am1 and Am2, and β, substituting for 
the special return item, i.e., Am2 in C2, represents an 

expression over Am2. As shown in the Macor tree Mt3 in 
Figure 2, when β is null, the correlation Join+ serves as a 
constraint over the related atomic mapping. The discussion 
about the Join correlation also suits for Join+. 

3.3 Macor Tree 

Regarding atomic mapping as a node, if Am1 and Am2 are 
correlated using the Nest or Join operator, then Am2 is a 
child node of Am1; if they are correlated using the Merge 
operator, then the nodes are united into one. 

Definition 3.5    A Macor tree is a 4-tuple <T, atoms, λe, 
λn>, where T=(N, E) is an ordered tree, and atoms, λe and 
λn are functions defined as: 

 atoms is a function that assigns i (i≥1) atomic 
mappings to each node n∈N, s.t. each pair of atomic 
mappings (Am1, Am2) assigned to the parent-child 
nodes are nesting compatible, and to the same node 
are merging compatible;  

 λe is a function that assigns a correlation (cop, cpath) 
to each edge e = (n1, n2) ∈ E, s.t. cop is the Nest or 
Join operator and cpath is defined over {$v | 
$v∈Vars(m), m∈atoms(n1) ∪ atoms(n2)}; 

 λn is a partial function that assigns a correlation 
(Merge, cpath) to the node n where |atoms(n)|>1, s.t. 
cpath is defined over {$v | $v∈Vars(m), 
m∈atoms(n)}.  

We say that a Macor tree Mt represents a mapping 
between the source schema SS and the target schema ST, 
which means that, given any instance conforming to SS, 
the resulting instances, returned by Mt in the way as 
defined in Definition 3.3, always conform to the target 
schema ST. Specifically, for each node n in Mt, atoms(n) 
jointly compute instances of the same schema element (say 
ei, denoted by I(ei)). Note that there may be multiple nodes 
in Mt contributing to I(ei), with the semantics of union. In 
light of the correlations that label the edges of Mt, the sets 
of instances {I(e1), I(e2), …, I(em)} (m is the number of 
nodes of Mt) are stitched up, denoted by I(ST). Let I'(ei) 
denote the instances of ei in I(ST), then I'(ei) ⊆ I(ei) holds, 
which indicates that not every instance in I(ei) will 
contribute to the glued target instances, e.g., some may be 
filtered out by the Join correlation. 

Proposition 3.6 For a Macor tree Mt, the following 
properties hold: 

1. In each inner (i.e., non-leaf) node of Mt, the 
contained atomic mappings are either empty or 
constructor types. 

2. If a node of Mt contains constant or copy type of 
atomic mappings, then it must be a leaf node. 

3. For each atomic mapping Am contained in a node n 
of Mt, there is only the possibility that Am was 
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correlated with those atomic mappings contained in 
the same, parent, or child nodes. 

The above properties 1 and 2 character a general Macor 
tree. Such trees provide a flexible way to construct, rectify, 
and modifying the schema mappings. For example, we can 
go on nesting corresponding atomic mappings into Mt1 in 
Figure 2 and make it additionally compute other data 
nodes such as year, cate(gory), and review. Further, as 
can be seen in Example 3.4, we can obtain a mapping that 
only transforms those novels with good ratings. When an 
atomic mapping in a Macor tree changes, the correlations 
associated with it may need to be adjusted accordingly. 
Moreover, as indicated in [22], such changes could result 
in searching for new correlations to discover other 
candidate mappings. The above property 3 reduces the 
search space to those atomic mappings contained in the 
same, parent, and children nodes, while other parts can be 
remained and reused. 

Due to the composability of XQuery, the correlated 
mappings can be further correlated with other mappings, 
in the same way as C1, C2, or C3. Based on the 
correlation rules, the mapping expression corresponding to 
a Macor tree Mt can be recursively written out. 

Procedure toExp 
Input: A Macor tree Mt with the root node n  
Output: The mapping expression E denoted by Mt 

E ← Correlating the atomic mappings atoms(n) in the same way as C3 
For each node ni ∈ childOf(n) 
 e ← toMapping(ni) 
 Switch the correlation between n and ni 
 Case (Nest, cpath):   
  E ← Correlating E with e in sequence, in the same way as C1  
 Case (Join, cpath):   
  E ← Correlating E with e as C2 
 Return E 

Example 3.7 Taking the Macor tree Mt3 in Figure 2, the 
procedure toExp outputs a query expression as shown in 
Figure 3. In terms of the order of the sibling nodes, the 
sub-expressions E2 and E3 are nested within E1 in 
sequence. With an empty β, the Join+ correlation “(7)” in 
then introduces a condition count()>0 over the sub-
expression E4, which serves as a condition to filter out 
those unsatisfied book instances computed by Mbook()_1, 
i.e., I'(book) ⊆ I(book). Notice that in most cases the Join 
and Join+ correlations can additionally be used to simulate 
conditions expressed by the some-clause in XQuery. 

3.3 Other Facilities 

For integrity, we briefly present in the following the 
facilities incorporated into Macor for dealing with 
overlapping, and missing information, though they are not 
the contributions of this paper.  

Consider our scenario again. For each novel in the 
source S1, the Macor tree Mt1 in Figure 2 will compute a 
new book instance. This is probably not the desired, since 
the same novel with several versions (e.g., different 
publishing years) will appear as multiple book entries, 
rather than as a single book in the target. To enable the 
desired behavior, Macor appoints Amtitle()_1 the role of id-
mapping for mapping multiple binding instances to the 
same output: if two nodes created in the target have the 
same tag name and ID attribute, then they will fuse into 
one [16, 4, 8, 20]. This fusion process is repeated 
recursively over the combined elements. 

The schema T in Figure 1 indicates that the coun(try) 
information associated with each author is optional. Thus 
the Macor tree Mt1 in Figure 2 is semantic-valid and can 
always compute valid target instances. Yet if the country 
data of each author is required, the sources S1 and S2 
provide no corresponding information. This case is usual 

for $n1 in doc(“S1”)//novel 
where count(     for $n3 in doc(“S1”)//novel  

       for $b1 in doc(“S2”)//book  
where $b1/rating>3 and $n1/author1 =n $n3/author1 and $n3/title =v $b1/title   /* (6) (7) 

       return <book></book> )>0 
return <book>{ 

for $n2 in doc(“S1”)//novel, $a4 in $n2/author1  
where $n1 =n $n2       /* correlation (2') 
return <author>{ 

for $a5 in doc(“S1”)//author1 
where $a4 =n $a5     /* correlation (3') 
return <name>……</name>}{ 
for $a3 in doc(“S1”)//author2, $i1 in $a3/intro 
where $a4 =v $a3/name     /* correlation (4') 
return $i1}}</author>} 

</book> 

Figure 3. The fragment of the Macor tree Mt3 in Figure 2 is translated into an expression. 

E2 

E3 

E1 

E4 
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in practical data-sharing applications. To address this issue, 
Macor employees Skolem functions, a common technique 
extensively used in data integration and data exchange, to 
represent “unknown” values. In the following atomic 
mapping, for example, the Skolem term “Sk($a7/name)” 
computes a special value in terms of each author name. 
Amcoun_txt_1:   for $a7 in doc(“S1”)//author2 return Sk($a7/name) 

4. Case Study 

Due to subtle semantics hidden in the schemas, it is 
difficult for the user to directly specify a correct mapping 
that conforms to the target schema and also satisfies the 
application requirements. In this section, we show how 
Macor is able to simplify such tasks. 

Consider our running example. We assume the Macor 
tree Mt1 has been obtained in Figure 2, which states a 
transformation from novels into target books. Though 
such a mapping is semantic-valid, does it satisfy the 
application requirement? To answer this question, the user 
may decide first to transform it into an equivalent query 
expression (see next section), and then execute the query 
over some selected sample data sets [25].  

The test may help the user find that in the 
transformation those novels with no corresponding 
author2 instances are lost. Suppose this is not the desired. 
Hence the user tries to make a modification over Mt1 by 
changing the correlation “(2)” into a Nest one. 
Consequently, the originally lost novels can also be 
transformed into books, but with no information about 
authors. Further modifications are made again. This time 
the target author nodes are computed in terms of the 
element author1 in the source, i.e. Amauthor()_1 is changed 
into Amauthor()_2 (see Fig.2). This again leads to update of 
the related correlations and atomic mappings. Finally, an 
updated Macor tree Mt2 is obtained, which transforms 
each novel into a book instance and associates possible 
author information with the book. The highlighted part in 
Mt2 shows the modifications. Note that in Mt2 the atomic 
mapping Amname_txt_2 is modeled explicitly to compute 
name values. This is because the matching schema 
elements (i.e., name of T and author1 of S1) have 
different names. Also, it is interesting to note that the 
highlighted subtree of Mt2 can be modeled, modified, and 
tested independently, and then be inserted with the 
correlation “(2')”. In contrast, for an undecorated 
representation, e.g., a unique complex XQuery expression, 
since there are no clear delimiters to distinguish sub-
mappings, the modification has to be located to the whole 
mapping, though in essence it may be local. 

As another example, we consider the case where the 
user (bookshop) only favors popular books, e.g., with 
good ratings. To code such requirements, the user models 

an atomic mapping Ambook()_3 (see Figure 2) and tries to 
merge it with Ambook()_1 in the Macor tree Mt2. After 
executing the new resulting mapping, the user finds that 
such a constraint is too strong, and then makes a 
relaxation: if there is an author who has written at least 
one novel with a rating greater than 3, then all the novels 
written by him are popular. Driven by this requirement, 
the user first selects out those novels with qualified 
ratings, i.e., those qualified authors, by removing 
Ambook()_3 from Mt2, and merging it again with another 
atomic mapping Ambook()_2, with the correlation “(7)” in 
Figure 2. Then, applying an extended Join correlation, 
Join+, the sub-mapping is correlated with the atomic 
mapping Ambook()_1 in Mt2. A fragment of the refined 
schema mapping Mt3 is shown in Figure 2. Specifically, by 
comparing the novel authors bound by Ambook()_1 with the 
qualified authors, the correlation “(6)” constrains 
Ambook()_1 to compute only the qualified books. Again, this 
example shows the ways to edit the schema mappings 
modeled with Macor. Notice that, while in terms of the 
constraints contained in the schemas, the mapping 
technologies presented in [17, 22] can semi-automatically 
discover or preserve semantic-valid mappings, dealing 
with the above application-specific semantics would go 
beyond their abilities.  

5. Related Work 

Schema mappings are extensively used in many modern 
applications such as the data integration and data exchange 
systems. A number of techniques recently have been 
studied to provide automated support for dealing with 
mapping problems. Among those, schema matching (e.g., 
[19, 6]) focuses on computing semantic correspondences 
between schema elements. Under an assumption that the 
desired matches have been given, [15, 17] further makes 
significant progress in discovering semantically valid 
schema-to-schema mappings. Yet, lacking of a suitable 
mapping model, [15, 17] deploy the automation on the 
whole schemas, which limits its application scopes. 
Though a discoverer can search for semantic relations 
between given element correspondences (or matches) and 
produce candidate sub-mappings, there are no ways to 
correlate them together to form a full mapping. [22] 
studies how to locate matches affected by schema 
evolution and then adapts original mappings by employing 
a discoverer in the same way. By composing mappings, a 
more general method is proposed in [26] to adapt the 
mappings when schemas evolve. However, as shown in 
the introduction, the requirements for modifying mappings 
are various. By exposing correlations in mapping 
languages, Macor makes it possible to employ a discoverer 
at the atomic mapping level and provides much flexibility 
in mapping construction. More importantly, with Macor, 
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modification can be located to partial sub-mappings, no 
matter whether the schemas change or not.  

In recent literature there are proposals that elevate 
schema mappings to first-class citizens. Within a general 
framework of model management, schemas and mappings 
between them can be manipulated via a set of operators [2, 
13]. In their works mappings are modeled as an abstract 
syntactical model, and in essence the operators are defined 
for a set of correspondences between schema elements, 
which are useful in applications such as model translation. 
An extension in relational set-ting to executable mappings 
such as SQL queries has been made recently in a 
succeeding work [14]. Yet, manipulating mappings in 
these works is subject to schema (e.g., evolution), while 
Macor tree can be directly modified. Moreover, Macor 
makes it possible to reify the abstract mapping model into 
XML settings. 

To some significant extent, the atomic (or partial) 
mappings in Macor resemble subgoals in defining 
integrated views using datalog programs. With Skolem 
functions XML query languages such as XML-QL [4] also 
allow for defining schema mappings in a piecemeal 
fashion. In contrast with such id-based mechanisms of 
gluing sub-mappings, Macor provides richer language 
facilities, i.e., correlations, which enable fine-grained sub-
mappings and then fine-grained maintainability of the 
model. To facilitate the validation of the schema mappings, 
a recent work in [7] also proposes, based on attribute 
grammars, to express a full mapping by sub-mappings 
(called grammars) defined for each schema element. Yet, 
in their work the specification of one sub-mapping is 
dependent on the specification of another, i.e., correlations 
are coded into the sub-mappings. 

6. Conclusion 

This work discussed a maintainable XQuery model, i.e., 
Macor, for representing nested schema mappings. With 
Macor, a schema mapping was modeled as a number of 
atomic ones related with the correlations. XQuery is a 
young language designed for querying XML, and we 
believe our work is also useful to explore its 
characteristics. 
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