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Summary 
For the problem of pattern recognition of the ten digits, four 
learning algorithms of the supervised Hebbian learning, the 
pseudo-inverse learning, the Widrow-Hoff learning and the back-
propagation learning are studied with neural nets. Progressively, 
these learning algorithms as well as network structures are 
investigated to improve the performance of the neural networks 
for the recognition task. For a linear associator with the 
supervised Hebbian learning rule and the concept of 
autoassociative memory, the performance of the network is not 
as good as expected. Although the pseudo inverse method can 
improve the recognition rate, it cannot stand firm from the attack 
of noise. For the Widrow-Hoff learning with the Adaline 
network, it is able to perform the task of pattern recognition, but 
is still suffered from noise corruption in the input patterns. With 
hidden layer structure, the performance of the multi-layer neural 
network using the back-propagation algorithm is over that of the 
other three single-layer neural networks trained with the other 
algorithms. Noised patterns are tested. The recognition rate of 
one-bit corrupted patterns is 100%, and for two bits corrupted, 
the identification rate can still reach more than 98%. If more bits 
in the input patterns are corrupted, more information is lost from 
the patterns, and neural nets may get more difficult to perform 
the task of pattern recognition correctly. 
Key words: 
Pattern recognition, neural networks, learning algorithm, 
Hebbian learning, pseudo-inverse learning, Widrow-Hoff 
learning, back-propagation learning. 

1. Introduction 

There is a complex biological neural network in a human 
brain [12], which contains about 1110  neurons. The 
neurons in the network facilitating our thinking, reading 
and motion are highly interconnected. Some of our neural 
structure is with us at birth, and most parts have been 
furnished through experience. All the biological neural 
functionalities, including memory, are stored in the 
neurons and in the connections among them. The behavior 
of learning can be viewed as the establishment of new 
connections or the modification of existing connections.  
The neural networks considered here are not biological. 
They contain artificial neurons, which could be realized 
with computer programs or electrical circuits.  

The artificial neural networks may not be as powerful as 
human brain, but they can be trained to perform lots of 
useful tasks. Many researches and applications of neural 
networks and fuzzy logic to control systems and pattern 
recognition have been studied in recent years [16]. The 
first practical application of neural networks was proposed 
in the late 1950s. Frank Rosenblatt built a perceptron 
network with associated rule and demonstrated its ability 
to perform pattern recognition [12]. In recent years, lots of 
researches are about pattern recognition using neural 
networks [5] [6], [8], [10]. They can be applied in many 
fields, such as intrusion detector to recognize attacks [9], 
analysis of cardiotocographic records [11], and underwater 
object recognition [3]. Mathematical models of neural 
networks and learning algorithms are overviewed in 
Section 2. Comparison of neural models and learning 
algorithms for pattern recognition is given in Section 3. A 
discussion of the learning algorithms for pattern 
recognition and the conclusion are given in Section 4. 
 
 
 

2. Overview of Neural Models and Learning 
Algorithms 

A model of a single-input neuron [4] is shown in Fig. 1, 
which is served as a building unit of a neural network. The 
neuron output is calculated as follows. 
 

)( bwpfa +=                              (1) 
 

where p is the input signal, w the synaptic weight, b the 
bias, and f(.) the activation function. General speaking, 
one neuron, even with several inputs, may not be 
sufficient to useful application. One might need more 
neurons to form a network, operating in parallel, with 
layered structure. A single-layer network of S neurons is 
shown in Fig. 2. The input elements pi, i=1, 2,…, R enter 
the single-layer network through the weight matrix W, 
given as follows. 
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where the row of the matrix is for a weight vector of a 
destination neuron, while the column is for the weight 
vector of destination neurons for a input signal. Note that 

ijw ,  represents the connection from the ith input to the jth 
neuron for i=1, 2,…, R and j=1, 2,…, S. 
The one-layer network also can be drawn in abbreviated 
notation [4], as shown in Fig. 3. 
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where p  is the input vector, W the RS ×  weight matrix, b 

the vector of biases, and a the output vector. Elements in 
W and b are adjustable parameters of the network, and 
they can be adjusted using learning rule to perform 
specific tasks. Transfer functions in the neural network are 
chosen according to the need of the problem that the 
neural network is attempting to solve. 
A multi-layer neural network is shown in Fig. 4. Each 
layer has its own weight matrix, bias vector, net-input 
vector and output vector. Note that the superscripts are 
used to identify layers. The abbreviated notation of the 
three-layer network is given in Fig. 5. Four learning 
algorithms are studied in the paper, explained as follows. 

Supervised Hebbian Learning 

The neural network used for Hebbian learning is a linear 
associator, as shown in Fig. 6. The network was proposed 
by James Anderson [2] and Teuvo Kohonen [7]. A linear 
transfer function whose output is equal to its input is used 
in the linear associator [17]-[18]. The algorithm of 
supervised Hebbian learning, where the weight matrix W 
is initialized to zero and each of the Q input/output pair is 
applied, is shown as follows. 

T

QQ
TTT

qq
oldnew ptptptptWW +++=+= ...

2211
 (4) 

 
 
 
 
 
 

Fig.1. A single-input neuron. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. A layer of neural network with S neurons. 

 
 
 
 
 
 
 
 

Fig.3. Abbreviated notation of one-layer network. 

where qt  is the target corresponding to the input vector 

q
p , which can be represented in matrix form as follows. 
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which is called the supervised Hebbian learning rule [4].  

Pseudo-Inverse Learning 

  Assume that W is the weight matrix after training. The 
linear associator shown in Fig. 6 is expected to produce 
the output qt  for a corresponding input 

q
p , given as 
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qq
tpW =×                         (6 ) 

for .,...,2,1 Qq =  Eq. (6) can be represented in matrix 
form as follows. 

TWP =                            ( 7 ) 
where  

][
21 Q

pppP L=
 

][ 21 QtttT L=
                          (8)  

If the matrix P has an inverse, the solution can be written 
as follows. 

1−= TPW                           (9 ) 
  However, it is hardly possible to find a weight matrix to 
satisfy Eq. (7). What one can do is to minimize the 
following equation. 

∑
=

−=
Q

q
qq pWtWF

1

2||||)(                   (10) 

The Moore-Penrose pseudo-inverse [1] of the matrix P 
can be computed to minimize F(W) given in Eq. (10), 
given as 

TT PPPP 1)( −+ =                        (11) 
The weight matrix for the linear associator is calculated as 
follows to minimize F(W). 

+=TPW                                (12) 
Widrow-Hoff Learning 
  Bernard Widrow and Marcian Hoff introduced the 
ADALINE (ADAptive LInear NEuron) network and a 
learning rule, called the LMS (Least Mean Square) 
algorithm [8], which is a gradient-based algorithm. The 
ADALINE network is shown in Fig. 7. The output of the 
ADALINE network is given as follows.  

bpWbpWpurelina +=+= )(                (13) 
  In Widrow-Hoff learning rule, error signal used to update 
the weight matrix is defined as follows. 

ate −=                               (14) 
The learning rule of Widrow-Hoff method is given as 

TPkekWkW ⋅⋅⋅+=+ )(2)()1( α         (15) 
where α is the learning rate of the LMS algorithm and the 
index k indicates the kth learning iteration.                                                                                     
Back-Propagation Learning Rule 
  The perceptron learning rule in Eqs. (5) and (12) and the 
LMS (Least Mean Square) algorithm in Eq. (15) are used 
to train single-layer neural networks. These single-layer 
networks are able to solve linearly separable problems 
only [4]. Although multilayer neural networks are 
powerful for dealing with nonlinear problems, there was 
no algorithm to train these kinds of networks until 1974 
[15]. Since 1980s, back-propagation algorithm has  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Three-layer neural network. 

 
 
 
 
 
 
 
 
 
 
 

Fig.5. Abbreviated notation of a three-layer network. 

 
 
 
 
 
 

Fig.6. Linear associator network. 

 
 
 
 
 
 
 
 

Fig.7. ADALINE network. 
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been widely publicized [13] for training multilayer neural 
networks. In Fig. 8, the outputs of the first and second 
layers are given as follows. 

)( 1111 bpWfa +=                    (16) 
where  
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The back-propagation learning algorithm for multi-layer 
neural network is a generalization of the LMS algorithm. 
The mean square error is used in the algorithm. The 
network is provided with input/output pairs. As each input 
is applied to the network, the network output is compared 
to the corresponding target. The network parameters are 
adjusted with learning algorithm to minimize the mean 
square error defined below. 

)].()[(])[(][)( 22 atatEatEeExF T −−=−==    (18) 
where x is the vector of the network synaptic weights and 
biases and a is the network output. As for the LMS 
algorithm, the mean square error can be approximated by  

)()())()(())()(()(ˆ kekekaktkaktxF TT =−−=    
( 1 9 ) 
where the expectation of the square error has been 
replaced by the square error at iteration k. The steepest 
descent algorithm for the approximate mean square error 
is given as follows for the weights an biases of the mth 
layer for m=1, 2, …, M. 
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for i=1, 2, …, Sm and j=1, 2, …, Sm-1 where α is learning 
rate. For a multi-layer network, the error is not an explicit 
function of the parameters in the hidden layers, whose 
derivatives can not be computed directly. The chain rule of 
calculus is used to calculate the derivatives, given as 
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The net input to layer m is a function of the weights and 
bias in the layer, as shown below. 
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Fig.8. Two-layer neural network. 
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The sensitivity [4] of F̂  for the ith node of layer m is 
defined as follows. 
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With Eqs. (21)-(23), Eq. (24) can be written as follows. 
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Thus, Eq. (20) can be expressed as follows. 
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whose matrix form can be expressed as follows. 
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The sensitivity vector at the output layer (that is layer M) 
can be calculated as follows. 
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network. The sensitivity at the first layer can be calculated 
as follows. 
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3. Pattern Recognition with Neural Nets 

With the four learning methods mentioned, the neural 
networks are trained for the task of pattern recognition, for 
which the ten digits are chosen to be the patterns. The 
algorithms are provided with input/output pairs, 

},{},...,,{},,{ 2211 QQ
tptptp

 
where 

q
p  is the qth input vector to the network, and tq is 

the corresponding target, q=1, 2, …, Q. As an input 
pattern is applied to the network, the network output is 
compared to the corresponding target. 
  Learning algorithms are to update the synaptic weights of 
the networks, which are viewed as the memories of the 
networks. After training, the networks are tested with 
patterns which are similar to the training patterns. The 
patterns representation and the training processes of the 
four learning algorithms are studied as follows. 

Representation of Patterns 

  The patterns of the ten digits for recognition training are 
shown in Fig. 9. They represent the digits 0~9, which are 
characterized with a 56×  grid array. These digits are 
converted into vectors, and become the training patterns 
for Hebbian, Pseudo-Inverse and Widrow-Hoff learnings. 
Each white square is represented by a “-1”, and each black 
square by a “1”. To create pattern vector, each 56×  grid 
array is scanned one row at a time so that each pattern 
becomes a 130×  vector. For example, the prototype vector 
of the digit “0” is expressed as follows. 
 

 
 

The autoassociative memory, a special type of associative 
memory, is used for Hebbian, pseudo-inverse, and 
Widrow-Hoff learnings. With the autoassociative memory, 
the desired output vector is equal to the input vector.  
 

 
 
 
 
 
 
 
 
 
 

Fig.9. Patterns of the ten digits. 

 
 
 
 
 
 
 

Fig.10. Autoassociative network for digit recognition. 

Supervised Hebbian Learning 

  Since the autoassociative memory is used, there are only 
two possible values, “1” and “-1”, for an output vector, 
and symmetrical hard limit function is used for an 
autoassociative network, shown in Fig. 10. The 
autoassociative network is trained with the supervised 
Hebbian learning rule given in Eqs. (4) to (5). The 
performance of this network is then investigated. The 
network is provided with the patterns shown in Fig. 9 to 
check the network output. The test result is shown in Fig. 
11. There are only two digits, “4” and “8” recognized 
correctly, using the test patterns the same as the original 
patterns. The original patterns are changed one bit 
randomly and then are provided to the network for the 
output. It was found that the network could only recognize 
two or three of ten patterns. Because the input prototype 
patterns are not orthogonal to each other, some errors are 
produced with the Hebbian rule [4]. To reduce these errors, 
the pseudo-inverse learning is used and discussed in the 
following. 

Pseudo-Inverse Learning 

  With the same network structure used in the Hebbian 
learning, the neural network is trained with the pseudo-
inverse learning, given in Eqs. (10) to (12). The network is 
then tested with the original patterns shown in Fig. 9. The 
ten digits can be recognized very well, with 100% 
recognition rate. If a bit changed from each original 
pattern for noise corruption, there are 30 different  
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situations. We found that when the 6th, 10th or 11th element 
only was changed from each original pattern, the network 
produced errors. Fig. 12 is the test result when the 6th 
element was changed from each pattern vector. It is 
interesting to note that the test output is the same as the 
input vector to the network. This is also occurred when 
either the 10th or the 11th element is changed. With the 
pseudo-inverse learning, the network still cannot do a 
good job for the test patterns with noise. 

Widrow-Hoff Learning 

  In Widrow-Hoff learning, the linear associator network is 
used, as shown in Fig. 6, and the error between target and 
network output is used to update the synaptic weights of 
the network. The concept of autoassociative memory is 
used in training the network. With the Widrow-Hoff 
learning given in Eq. (15), the network is trained with 
learning rate α=0.01. 
The test result, using the original patterns, is shown in Fig. 
13. The network can recognize the ten patterns very well. 
If the network is provided with the noised patterns in 
which one or two bits are changed from the original 
patterns in Fig. 9, the test result is no longer as good as Fig. 
13. The test results, when patterns changed one and two 
bits from original patterns, are shown in Figs. 14 and 15. 
For the autoassociative memory in the network, the results 
are admitted to be correct only when they are completely 
equal to the targets. With an idea different from the 
autoassociative memory, the amount of neurons is reduced 
from 30 to 10, so that input patterns to the network are 
recognized using 10 distinguishing targets, each of which 
is a 110×  vector. The modified structure of network for 
Widrow-Hoff learning is shown in Fig. 16, in which log-
sigmoid transfer functions are used. 
Note that the linear transfer function is replaced with a 
log-sigmoid transfer function in the network, which 
squashes the output in between 0 and 1. The output of the 
network is a  110×  vector, given as  

Taaaaaaaaaaa ][ 9876543210=                                             
The ten distinguishing targets are shown in Table 1. With 
the learning rate α=0.01, the network shown in Fig. 16 is 
trained for 1,000 times with the patterns shown in Fig. 9. 
The performance of this revised network is then checked. 
Tables 2, 3, and 4 are some of the outputs of the network 
when the original patterns are used for testing. In Table 2, 
for the digit “2”, the test result of the network is excellent. 
The value of a2 is superior to other values in the output 
vector a. The results show that the network can identify 
these patterns very well. The test results for others of the 
ten digits are very good, shown in Tables 3 to 4. 

 
 
 
 
 
 
 
 

Fig.11. Test result of Hebbian learning. 

 
 
 
 
 
 
 

Fig.12. Test result of pseudo-inverse learning when the 6th bit in each 
original pattern is changed. 

 
 
 
 
 
 
 

Fig.13. Test result of the Widrow-Hoff learning with original patterns. 

 
 
 
 
 
 
 

Fig.14. Test result of the Widrow-Hoff learning with one-bit changed 
patterns. 

 
 
 
 
 
 
 
 

Fig.15. Test result of the Widrow-Hoff learning with two-bit changed 
patterns. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006 
 

 

98 

In Table 4, the test result can be viewed in such a way that 
the testing pattern is 99.66% similar to digit “7” and 
0.11% similar to digit “0”. A restriction is placed on the 
recognition performance of the network that if the largest 
element value in the output vector is not more than 50%, 
the network is not considered recognizing the pattern 
correctly. It may be interested to see the performance of 
the network by the Widrow-Hoff learning if a bit is 
corrupted from original pattern. There are 30 variations if 
concerning about one bit changed for a digit pattern, and 
there are 300 different kinds of conditions for the ten digit 
patterns. Two test results of the 300 noised patterns are 
listed in Tables 5 and 6. In Table 6, the pattern is 92.82% 
similar to the digit of “5”, and 35.4% similar to the digit of 
“8”, and the result is considered successful in this testing. 
After testing the 300 noised patterns, there are only 4 
patterns that can not be recognized correctly by the 
network. The identification rate of one-bit changed 
patterns is considered as 98.67%. 
If two bits are changed from each original pattern, there 
are 30

2C  different test patterns to be obtained. 300 patterns 
are selected from the 30

2C  patterns for testing, the 
identification rate of this testing is 96%. Similarly, for 3 
bits changed in each pattern, the identification rate can still 
reach more than 94 %. A test result is shown in Table 7 
for a test pattern with 3 bits noised. If the amount of noise-
corrupted bits is increased, the identification rate is getting 
worse. This urges us to use a back-propagation neural 
network for the pattern recognition task. 

Back-Propagation Learning 

  A two-layer neural network shown in Fig. 17 is used for 
the pattern recognition. Each layer has the same structure 
as the Widrow-Hoff network shown in Fig. 16. Input 
pattern to this network is a 130×  vector, and the output is a 

110×  vector. 10 neurons in the output layer are served to 
distinguish input patterns to 10 different classes. The 
amount of the neurons in the hidden layer is given to be 20. 
Furthermore, the amount of training data for the network 
is increased from 1 set of 10 patters shown in Fig. 9 to 3 
sets of 30 patterns shown in Figs. 18 to 20, with targets 
listed in Table 1. Three different versions of patterns of 
the ten digits are used for the network to expect improving 
the performance of the network for pattern recognition. 
The network is trained for 1,000 iterations with back-
propagation learning algorithm. The initial conditions of 
the two weight matrices W1 and W2 are set to 20-by-30 
matrix and 10-by-20 matrix with random entries of a 
uniform probability distribution in the interval [0, 1]. 
Besides, since the weight matrices are updated by the BP  

 
 
 
 
 
 
 

Fig.16. Widrow-Hoff network with logsig transfer function. 

 
 
 
 
 
 

Fig.17. Two-layer network for pattern recognition. 

 
 
 
 
 
 
 
 
 

Fig.18. Training patterns of set 1.  

 
 
 
 
 
 
 
 
 

Fig.19. Training patterns of set 2. 

 
 
 
 
 
 
 
 

Fig.20. Training patterns of set 3. 
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learning rule, the value of learning rate α becomes an 
important factor for the stability and speed of learning. 
The learning rate used is designed to be decreased 
gradually with learning iterations, given in following 
equation. 

)
1000

(
5.0

k

e
−

×=α     
where k indicates the kth learning iteration. 
Testing with the 30 original patterns perfect without error. 
Two of these test results are shown in Tables 8 and 9. 
Table 8 shows the test result for the pattern of the digit “0” 
in the training patterns of set 1, and Table 9 is the test 
result for the pattern of “7” shown in Fig. 19. Moreover, 
we test the network with the testing pattern in Table 7, 
which can not be recognized correctly by the Widrow-
Hoff network. The two-layer network recognizes the 
pattern very well, as shown in Table 10. 
To test the performance of the network for noise 
robustness, the digit of “9” in the training patterns of set 1 
is 5-bit corrupted and the test result is shown in Table 11. 
The performance of this testing is pretty good, even there 
are 5 bit changed. After testing the 300 one-bit changed 
patterns, all of the testing patterns are recognized correctly 
by the network and the identification rate of one-bit 
corrupted patterns is 100%. If two bits are changed from 
each original pattern, there are 30

2C  different test patterns 
from the original patterns shown in Fig. 9 to be obtained. 
300 patterns are selected from the 30

2C  patterns for testing. 
Only 4 patterns that can not be recognized correctly by the 
network, thus the identification rate of this testing is 
98.67%. Similarly, for 3 bits changed in each pattern, the 
identification rate can still reach 96.33%, and for 5 bits 
changed in each pattern, the identification rate is 91.33%. 

4. Discussions and Conclusions 

Models of neural networks and training methods have 
been overviewed and studied for their capability and 
performance in pattern recognition. Single-layer neural 
nets such as linear associator and Adaline are able to 
perform the pattern recognition of the ten digits but are 
fragile in recognition performance when noises are 
attacking the input patterns. Multi-layer neural net is 
superior to single-layer neural nets in the performance of 
pattern recognition of the ten digits. And it is much more 
robust standing for noise corruption in the input patterns. 
For a linear associator with the supervised Hebbian 
learning rule and the concept of autoassociative memory, 
the performance of the network is not as good as expected.  
 

Table 1: Targets  of  the  ten  digits  for Widrow-Hoff  learning. 
Digit Target 

0 1 0 0 0 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 0 0 
3 0 1 0 0 0 0 0 0 0 0 
4 1 0 0 0 0 0 0 0 0 0 
5 0 1 0 0 0 0 0 0 0 0 
6 1 0 0 0 0 0 0 0 0 0 
7 0 1 0 0 0 0 0 0 0 0 
8 1 0 0 0 0 0 0 0 0 0 
9 0 1 0 0 0 0 0 0 0 0 

Table 2: Test result of the pattern “2”. 
Test pattern Output vector a Target

a0 0.00201219516138 0 
a1 0.00039147767143 0 
a2 0.98972741903177 1 
a3 0.00301141806624 0 
a4 0.00033066543309 0 
a5 0.00056993723520 0 
a6 0.00048076700437 0 
a7 0.00184060791137 0 
a8 0.01436147485882 0 
a9 0.00003954185133 0 

Table 3: Test result of the pattern “3”. 
Test pattern Output vector a Target

a0 0.00004466879181 0 
a1 0.00022689077386 0 
a2 0.00108251128144 0 
a3 0.98731478033793 1 
a4 0.00013725185118 0 
a5 0.00780721158314 0 
a6 0.00004494518130 0 
a7 0.00116343046601 0 
a8 0.00417556428794 0 
a9 0.00074007425914 0 

Table 4: Test result of the pattern “7”. 
Test pattern Output vector a Target

a0 0.00106729238450 0 
a1 0.00193640454340 0 
a2 0.00253779099154 0 
a3 0.00314544436438 0 
a4 0.00094923447830 0 
a5 0.00018866740566 0 
a6 0.00022092764568 0 
a7 0.99663596242401 1 
a8 0.00000118457743 0 
a9 0.00110908538684 0 
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Table 5: Test result with one-bit changed pattern of “1”. 
Test pattern Output vector a Target

a0 0.0092% 0 
a1 99.8077% 1 
a2 1.0961% 0 
a3 1.3805% 0 
a4 0.15% 0 
a5 0.6765% 0 
a6 5.6731% 0 
a7 0.3425% 0 
a8 0.0002% 0 

 

a9 0.7343% 0 

Table 6: Test result with one-bit changed pattern of “5”. 
Test pattern Output vector a Target

a0 0.0135% 0 
a1 0.0190% 0 
a2 0.1805% 0 
a3 0.3105% 0 
a4 0.0357% 0 
a5 92.8218% 1 
a6 1.2476% 0 
a7 0.0235% 0 
a8 35.4024% 0 

 

a9 0.0704% 0 
 
The recognition rate is poor for the pattern vectors of the 
ten digits are not orthonormal [4].  
Using the pseudo inverse learning algorithm [1], the 
recognition performance of the ten digits is much 
improved, as shown in Fig. 12. Although the pseudo 
inverse method can improve the recognition rate, it cannot 
stand firm from the attack of noise, even for one bit 
change only in input pattern, as shown in Fig. 12. The 
learning method is to make the linear associator network 
produce the network output as close to the target as 
possible. When input pattern is corrupted, it is interesting 
to see that the network produces the output almost the 
same as the corrupted input, as shown in Fig. 12. 
For the Widrow-Hoff learning with the autoassociative 
memory, the linear associator network is able to perform 
excellently the job, shown in Fig. 13, but is still suffered 
from noise corruption in the input patterns as shown in 
Figs. 14 and 15. If the autoassociative memory is 
discarded and is replaced with simpler coding patterns as 
the targets of the ten digits, the network performance of 
pattern recognition of the ten digits is improved. Log-
sigmoid transfer functions are used in the single-layer 
neural network for more robust in noise corruption. The 
performance of the modified single-layer neural net with 
the Widrow-Hoff learning is much improved, compared to 
that of the original linear associator using the idea of 
autoassociative memory. The recognition rate can be as 

Table 7: Test result with three-bit changed pattern of “4”. 
Test pattern Output vector a Target

a0 0.3139% 0 
a1 1.0815% 0 
a2 0.2507% 0 
a3 2.8352% 0 
a4 45.0819% 1 
a5 0.0149% 0 
a6 3.0970% 0 
a7 2.0566% 0 
a8 0.0665% 0 
a9 11.0714% 0 

Table 8: Test result with the digit of “0” in set 1. 
Test pattern Output vector a Target

a0 95.0366% 1 
a1 3.6343% 0 
a2 1.3811% 0 
a3 1.4427% 0 
a4 0.0141% 0 
a5 1.4955% 0 
a6 2.7093% 0 
a7 0.0481% 0 
a8 0.0154% 0 
a9 1.6394% 0 

 
high as more than 98% for noised version of test patterns 
with one bit corrupted. If more bits in the input patterns 
are corrupted, more information is lost from the patterns, 
and neural nets may get more difficult to perform the job.  
For the neural network with one hidden layer and the 
standard BP learning algorithm, the recognition 
performance is much improved in both correct recognition 
rate and noise robustness. The simplified version of 
coding for the target patterns of the ten digits is used in the 
multilayer, and obviously it improves the performance of 
training and recognition. Training patterns are important 
information to the neural network for pattern recognition. 
The training data is increased from one set of ten patterns 
to three sets of 30 patterns, in which some noised versions 
of the digit patterns are involved. This increases both the 
recognition rate and the robustness for noise corruption. 
The hidden layer is very important to the network for 
performing the task, for the recoding ability of the 
network is augmented [13]. 
Both single-layer and multi-layer neural networks with 
learning algorithms have been studied progressively for 
the performance comparison in the problem of pattern 
recognition of the ten digits. The result of pattern 
recognition can be affected by several factors, such as 
model structure, transfer function, amount of layers and 
nodes in each layer, learning algorithm, pattern definition, 
noise, training patterns, and training process. 
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Table 9: Test result with the digit of “7” in set 2. 
Test pattern Output vector a Target

a0 1.7733% 0 
a1 4.3424% 0 
a2 0.7677% 0 
a3 1.9739% 0 
a4 2.3498% 0 
a5 1.6274% 0 
a6 0.0987% 0 
a7 94.9723% 1 
a8 1.1572% 0 

 

a9 1.7974% 0 

Table 10: Test result with three-bit changed pattern of “4”. 
Test pattern Output vector a Target

a0 0.9613% 0 
a1 1.1368% 0 
a2 0.0015% 0 
a3 3.2144% 0 
a4 91.2105% 1 
a5 2.3362% 0 
a6 0.0017% 0 
a7 1.0149% 0 
a8 2.2584% 0 

 

a9 34.1968% 0 
 
Among these factors, model structure, hidden layer, and 
learning algorithm are considered as the most significant. 
Four learning algorithms, which are the supervised 
Hebbian rule, the pseudo-inverse method, the Widrow-
Hoff learning algorithm, and the back-propagation 
algorithm, are studied for single-layer neural networks 
with linear transfer function and with log-sigmoid transfer 
function and for the multi-layer neural network with one 
hidden layer. The neural network with hidden layer is 
much powerful than the one-layer neural networks in the 
problem of pattern recognition. A multi-layer neural 
network with more hidden neurons may possess recoding 
capability to tolerate more patterns in it so that the 
performance can be increased. 
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