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Summary 
Mobile Agents are mainly intended to be used for network 
computing - applications distributed over large-scale 
computer networks. An intelligent mobile agent is a self-
contained process, dispatched by its principal, roaming the 
internet to access data and services, and carrying out its 
assigned decision-making and problem-solving tasks 
remotely. In this paper, the author will present the design 
and implementation of the IMAGO (Intelligent Mobile 
Agents Gliding On-line) system. The goal of the project is 
to build a logic-based framework in the design space of 
intelligent mobile agent systems. To achieve this, we need 
to cope with design issues, such as explicit concurrency, 
code autonomy, security, communication/synchronization, 
service discovery, computation mobility, as well as 
implementation issues, such as multithreading, garbage 
collection, code migration, communication mechanism 
and database access.  The unique feature of IMAGO 
system is that it deploys intelligent mobile messengers for 
inter-agent communication. Messengers are anonymous, 
thin agents dedicated to deliver messages. Like other 
agents, messengers can move, clone, and make decisions 
for their assigned task: track down the receiving agents 
and reliably deliver messages in a dynamic, changing 
environment.   
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1. Introduction 

Mobile agent systems are generalized distributed systems 
in the sense that they are mainly intended to be used for 
network computing - applications distributed over large- 
scale computer networks. An agent is autonomous process 
acting on behalf of a user. A mobile agent roams the 
Internet to access data and services, and carries out its 
assigned task remotely. Numerous mobile agent systems 
have been implemented or are currently under 
development. Typical systems are Aglets[1], Voyager[2], 
Grasshopper[3], ARA[4],   Mole[5], D'Agent[6],   etc. 
 
Fundamental issues related to the mobile agent paradigm 
are support of agent mobility and inter-agent 
communication. As the primary identifying characteristic 

of a mobile agent is its ability to migrate from host to host, 
a protocol to support agent mobility is an essential 
requirement of a mobile agent system. An agent is 
normally composed of three parts: code, execution state 
(stack), and data (heap). All these parts should move with 
the agent whenever and wherever it moves. However, the 
majority of mobile agent systems (especially those built on 
top of Java) only support weak migration - an agent moves 
with its code and data, but without the stack of its 
execution thread. Thus, the moving agent has to direct the 
control flow appropriately when its state is restored at the 
destination. In contrast to the weak migration, strong 
migration requires that the execution thread of an agent 
must be transferred as well, so that the moving agent can 
resume its execution at a new host from the point it left off. 
Clearly, strong migration is more suitable to the fact that 
agents should be able to interact with their environment 
autonomously and effectively. 
 
Agents are not working alone in most mobile agent 
applications. They need to communicate with each other 
for cooperation and synchronization. Therefore, another 
essential issue is the design of communication models and 
inter-agent communication protocols. Generally speaking, 
communication models are concerned with conceptual 
paradigms such as RPC/RMI, message-based, or event-
based, whereas communication protocols deal with 
problems such as how to name mobile agents, how to 
establish communication relationships, how to track 
moving agents, and how to guarantee reliable message 
delivery. Most existing mobile agent systems adopt some 
kind of communication models/protocols from traditional 
distributed systems while developing separate protocols 
for agent migration. However, the IMAGO system adopts 
a different strategy to cope with this issue. The idea is to 
deploy intelligent mobile messengers for inter-agent 
communication. Messengers are thin agents dedicated to 
deliver messages. Like normal agents, a messenger can 
move, clone, and make decisions. Unlike normal agents, a 
messenger is anonymous and its special task is to track 
down the receiving agent and reliably deliver messages in 
a dynamic, changing environment. As a consequence, 
having only a simple agent migration protocol, the 
IMAGO system is capable of coping with both agent 
migration and inter-agent communication. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006 
 

 

108 

The IMAGO system is an infrastructure that implements 
the agent paradigm. An IMAGO server resides at a host 
machine intending to host mobile agents and provide a 
protected agent execution environment. From the 
application point of view, the IMAGO system consists of 
two kinds of agent servers: stationary server and remote 
server. The stationary server of an application is the home 
server where the application is invoked. On the other hand, 
agents of an application are able to migrate to remote 
servers. Like a web server, a remote server must have 
either a well-known name or a name searchable through 
the service discovery mechanism. Remote servers should 
provide services for network computing, resource sharing, 
or interfaces to other Internet servers, such as web servers, 
database servers, etc. 
 
This paper presents the design and implementation of the 
IMAGO system and is organized as follows. Section 2 
gives a briefly review of recent works related to this 
research, focusing on the agent communication models 
and different mechanisms for tracking mobile agents.  
Section 3 presents the architecture of the IMAGO system. 
We will briefly discuss the virtual machine design of the 
IMAGO server as well as the functionality of each module. 
In section 4, we will discuss the intelligent mobile 
messenger model and feasible solutions for problems such 
as agent naming, agent tracking, and inter-agent 
communication language.  At this moment, the IMAGO 
system only supports the IMAGO Prolog – an extended 
Prolog with rich Application Programming Interface 
supporting mobile agent applications. More programming 
languages are currently under investigation and will be 
added to the system. The IMAGO system has been 
implemented and is currently under benchmark testing. 
Finally, we present the conclusion and outline of future 
work. 

2. Related work 

Most of the mobile agents systems are based on scripting 
or interpreted programming languages that offer portable 
virtual machines for executing agent code, as well as a 
controlled execution environment featuring a security 
mechanism that restricts access to the host's private 
resources. Clearly, agents in a network application must 
interact with each other using some kind of 
communication models to exchange data and coordinate 
their execution.   Typical models are message passing, 
RPC/RMI, and distributed event handling. 
 
Message passing is used to support peer-to-peer 
communication patterns and is the most adopted model in 
mobile agent systems such as Aglet, Mole, D'Agent, 

Voyager, etc.  Aglet supports an object-based messaging 
framework that is flexible, extensible, rich, and both 
synchronous and asynchronous. Mole deploys the (global) 
exchange of messages through a session-oriented 
mechanism. Agents that want to communicate with each 
other must establish a session before the actual 
communication can start. D'Agent supports text-based 
message passing. The sender should know the location and 
identity of the receiver. There is no guarantee for reliable 
message delivery because communication is lost as soon 
as one peer jumps to another location. Voyager 
implements message passing through the concept of 
virtual objects. Agents are a special type of object in a 
Voyager application. Communication with a remote object 
is handled by its virtual object that hides the remote 
location and acts as a proxy to the remote object. When 
messages are being sent to the remote agent, the virtual 
object forwards the message to the remote object and 
returns messages back if necessary. 
 
RPC and RMI are commonly used paradigms in today's 
distributed programming. Since there is no distinction in 
syntax between an RPC and a local procedure call, it 
provides access transparency to remote operations. Several 
mobile agent systems support RPC/RMI paradigm such as 
Mole and Voyager.  An argument against this paradigm is 
that under the new paradigm where mobile agents can 
move to any remote host for data and services, why we 
need RPC/RMI at all. Agents for Remote Action (ARA) 
attempts to minimize the remote communication through a 
meeting oriented paradigm. ARA provides client/server 
style interaction between agents. The core provides the 
concept of a service point which is the meeting point with 
a well known name where agents located at a specific 
place can interact as clients and servers through an RPC-
like invocation on a local host. 
 
The concept of event based communication and 
synchronization can be viewed as a sophisticated 
paradigm of meeting oriented agent coordination. Some 
mobile agent systems have much in common with those 
event frameworks employed in GUI toolkits supported by 
Java and some scripting languages. Mobile agent systems 
such as D'Agent, Mole, etc., extend the event-driven 
programming technique to coordinate groups of mobile 
agents. In this paradigm, agent synchronization is 
achieved by the objects that are defined as active entities 
responsible for the coordination of an entire application or 
parts of it. These synchronization objects could be user-
defined objects or system implemented event managers.  It 
is their responsibility to accept event registration, listen 
and receive events, and notify interested parties when an 
event arises. On the other hand, an agent participating in 
such groups is responsible to register a list of event types 
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it is interested in as well as the location it wishes events to 
be sent. Certainly, this model requires the static binding of 
agents with their registered locations, or otherwise event 
notification becomes unreliable. 
 
Nevertheless, no matter which inter-agent communication 
model is selected, the model must be implemented through 
a stack of dedicated communication protocols. Inter-
process communication is dependent on the ability to 
locate the communication entities. This is the role of the 
naming services that primarily map each entity in its name 
space to a fixed location in traditional distributed systems. 
Mobile agents are distributed processes. However, once 
they are invoked they will autonomously decide the hosts 
they will visit and the tasks they have to perform. Their 
behavior is either defined explicitly through the agent code 
or alternatively defined by an itinerary that is usually 
modifiable at runtime. As a result, the mobility of agents 
makes it much harder to provide such kind of name 
resolution service because there is virtually no way to bind 
a moving agent with a static (fixed) location. Thus, 
existing mobile agent systems either do not provide the 
ability of automatically tracking moving agents, or overly 
constraint the mobility of agents. For example, Aglet API 
does not support agent tracking. Instead, it leaves this 
problem to applications. To avoid tracking agents during 
communication, Mole prevents agents from moving if they 
are involved in a session. 
 
Although the RPC/RMI model offers access transparency, 
it turns out that general purpose, high level message-based 
models are more convenient, and often adopted by most 
mobile agent systems. However, it can always be argued 
whether agent communication should be remote or 
restricted to local, considering that the most attractive 
motivation of mobile agents is that they are able to migrate 
between locations to locate data and services as well as 
their peers, and therefore avoiding remote communication. 
Furthermore, a stack of communication protocols usually 
implements a communication model. It is also 
questionable whether such a protocol is actually necessary 
if we already have a simple, reliable agent migration 
protocol.  In response to these questions, the IMAGO 
system utilizes the mobility of agents to achieve powerful, 
reliable and flexible inter-agent communication. 
 
Research in the area of mobile agents looked at languages 
that are suitable for mobile agent programming, and 
languages for agent communication. Much effort was put 
into security issues [7], control issues, and design issues. 
However, few research groups have paid attention to 
offering an environment to combine the concept of service 
discovery and mobile agents to build dynamic distributed 
systems. 

 
A variety of Service Discovery Protocols (SDPs) are 
currently under development by some companies and 
research groups. The most well known schemes are Sun's 
Java based JiniTM[8], Microsoft's UPP[9], IETF's SLP[10] 
and OASIS UDDI[11]. Some of these SDPs are extended 
and applied by several mobile agent systems to solve the 
service discovery problem. Though SLP provides a 
flexible and scalable framework for enabling users to 
access service information about existence, location, and 
configuration, it only possesses a local function for service 
discovery and is not scalable up to global Internet domain. 
After a study of different SDPs and mobile agent systems 
that are adopting these methods, we found that several 
problems cannot be easily solved by the existing protocols 
due to their limitations. 

3. The Architecture of the IMAGO System  

The IMAGO system is an infrastructure for mobile agent 
applications[12]. It includes the IMAGO server - the 
specification and implementation of Multi-threading Logic 
Virtual Machine (MLVM), the IMAGO Prolog - a Prolog-
like programming language extended with a rich API for 
implementing mobile agent applications, and the IMAGO 
IDE, a Java-GUI based program from which users can 
perform editing, compiling, and invoking an agent 
application.  
 

Fig. 1 The Architecture of the IMAGO System. 
 
IMAGO Prolog is a simplified Prolog with an extended 
API to support mobile agent paradigm[13]. An IMAGO 
Prolog program consists of a set of agent definitions and 
module definitions. Agent definitions serve to specify 
autonomous entities from which mobile agents can be 
created, whereas modules serve to partition the name 
space and support encapsulation for the purpose of 
constructing large applications from a library of smaller 
components. Like most Prolog implementations that are 
based on different kinds of virtual machines, the 
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implementation of IMAGO Prolog is based on MLVM - 
an efficient Multi-threading Logic Virtual Machine. The 
most significant differences from traditional Prolog virtual 
machines are that MLVM adopts a novel memory 
management approach and fully supports distributed as 
well as mobile agent applications. Fig. 1 shows the 
architecture of the IMAGO system as well as the 
organization of MLVM internal modules. 
 
Unlike the traditional client/server model, the IMAGO 
system exhibits a server/server model where each server is 
installed with the MLVM.  The goal of MLVM is to 
present a secure, consistent and efficient execution 
environment for mobile agents. The MLVM combines 
both kernel level and user level multi-threading into its 
implementation. Kernel level threads are responsible for 
system functionalities, such as engine, memory manager, 
security manager, service discovery module, etc. Those 
kernel level threads constitute the virtual machine to 
support concurrent execution and migration of user level 
threads, namely, mobile agents. 
 
Versatility in the threading algorithm is that a hardware 
configuration replacing threads with CPUs would 
accomplish the exact same behavior with little changes. To 
achieve such goal, the pool is initialized with a pre-defined 
number of general-purpose system threads. A highest- 
priority-first scheduling algorithm is then applied on a 
sorted set of queues. Each thread will scan those queues 
and process any task available according to the priority 
setting until no more task is to be handled. At this time, 
and at this time only, the unused thread will be put into a 
blocking state until new tasks are generated. The scheduler 
task list contains entries which match different stages of 
the life cycle of an agent, such as, creation, execution, and 
memory related processing (expansion, contraction or 
garbage collection), termination and migration (outgoing 
and incoming). The sorting of the priority list is such that 
the outgoing migration related tasks are of a highest 
priority followed by agent creation and incoming 
migration request tasks. The last entry in the list is, 
respectively, memory related tasks and the virtual machine 
engine, because they will be the most frequently requested 
cycle in the life of an agent. Such ordering prevents 
starvation by simply using the natural life cycle of the 
agent itself. The synchronization issues that arise from a 
multi-threaded environment have been resolved by the use 
of mutual exclusion primitives.   
 
Memory manager handles the tasks associated with 
memory expansion and contraction. The manager adopts a 
merged stack/heap scheme for memory allocation, and 
automatically conducts garbage collection [14]. The 
MLVL engine is an emulator of IMAGO Prolog. Not only 

it executes byte-code instructions of an agent, but also it 
dispatches an agent to different queues for further 
services，such as agent creation, cloning, moving, etc. 
Agents can be either created on the fly or from a file 
stored on a hard disk. The In/Out module interacts with 
the migration protocol to handle incoming and outgoing 
agents. 

3.1 Agent Migration Protocol 

To make it easier to deal with issues involved in different 
layers of communication, stack architecture has been 
chosen for the IMAGO agent-migration protocol. The 
design goal of the protocol stack is to provide the 
flexibility, reliability and security required in the mobile 
agent migration. The protocol stack also implements some 
cutting-edge technologies in multi-thread management. 
The current implementation consists of five layers, from 
top to bottom, Marshaling, Rendezvous, Security, Routing 
and Connection. The whole stack sits on top of the TCP/IP 
layer. 
 
In brief, the Connection layer is in charge of establishing 
and maintaining a direct TCP connection between two 
hosts. The connection layer offers two mechanisms for 
transmitting information over the network. One provides 
unreliable, lighter and faster service for exchanging 
control information between different servers. The other 
offers a much more reliable, wider bandwidth, but slower 
and using more resources. It is mainly used to transmit 
greater amount of data that should not be lost or corrupted, 
such as an entire mobile agent.    
 
The Routing layer resolves names and decides the route 
that a Protocol Data Unit (PDU) will take to reach its 
destination. Migration, being a basic feature of mobile 
agents, should be made as robust and flexible as possible 
while hiding, as much as possible, all the irrelevant, 
underlying details from the end user. Since name 
resolution is quite time consuming, an extremely simple 
caching algorithm is used in the internal lookup process in 
order to reduce redundant DNS requests. 
 
The Security layer is in charge of the encryption and 
decryption of PDUs as well as detecting tampering attacks. 
To secure a connection between two servers, encryption is 
only enough to insure privacy by preventing malicious 
people to read the content of the message. In order prevent 
masquerading attacks, this layer provides a simple 
authentication scheme for servers to detect possible fake 
identity and to drop such falsified PDUs.   
 
The Rendezvous layer makes sure that everything sent 
arrives at destination or reports an error. The purpose of 
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this layer is to establish a reliable agent migration channel 
between two servers regardless of the underlying network 
architecture. Using the shaking-hands technology, this 
protocol is able to certify the success of an agent migration 
as well as its failure. This means that a moving agent will 
never be lost or duplicated and its migration will not suffer 
any side effect from network failure. 

  
The top of the stack would be the place for the adaptation 
layer that will allow mobile agents to be transformed and 
prepared for transport. This layer, namely the Marshaling, 
is responsible to transform and trim a moving agent so 
only the required data would be transported to the 
destination server.   

3.2 Security 

Clearly, the potential benefits of mobile agent technology 
must be weighted against the very real security threads. 
Security threads can be visually lumped into three 
categories: (1) comprised hosts and mobile agents that 
attempt represent different parties that may exhibit 
malicious behavior toward one another, (2) exposure of 
mobile agents to third party intruders through the network, 
and (3) agents interfere with each other or gain 
unauthorized access to internal state. Security problems of 
the last two categories have been handled by the IMAGO 
migration protocol. The first category can be further 
divided into two cases: protecting agents from malicious 
hosts, or vice verse, protecting hosts from malicious 
agents. 
The first case, in which a malicious server attacks a 
visiting mobile agent, is the most difficult issue. In order 
for an agent to function, the server on which the agent 
executes must be able to interact with each other. Most 
mobile agent systems rely at least on the concept of virtual 
machine to standardize the execution environment. 
However, agents written in scripting or interpreted 
languages are easily de-compiled. Consequently, a 
malicious host may easily steal private information, 
modify the agent code, or mislead the agent. 
 
The IMAGO system assumes that IMAGO servers are 
trustworthy. The security mechanism will focus on the 
second case, i.e., protecting hosts from malicious agents. 
The security manager, one of the kernel threads in MLVM, 
is designed to deal with the system privacy issues, such as 
physical access restrictions, application availability, 
content integrity, and access policies. 
 
Although the migration protocol provides a secure 
communication channel for moving agents, whether or not 
an agent has tampered with is uncertain. It is the security 
manager’s responsibility to verify the integrity of agent 

code using a digit signature, such as optimized MD5. In 
addition, IMAGO system adopts a two-stage process to 
check if a system access issued by an agent is valid. The 
first stage is conducted during compilation. A so-called 
static semantic check will prevent a mobile agent to use 
illegal system calls. When an agent is loaded to execute, 
the second stage, namely, dynamic semantic check is 
required to ensure that the agent code had not been 
tampered with during transit. 
 
Certainly, the semantic checking technique only protects 
the server from the illegal usage of system resources. 
However, for some types of abnormal mobile agent 
activity, such as unlimited cloning itself or constantly 
expanding memory, the security manager must provide 
further assurance.  The technique being adopted is called 
limitation, which controls the persistent survivability of 
mobile agents and prevents them from “running wild”. 
The typical limitations controlled by the security manager 
are span of lifetime, number of migrations, number of 
cloning, amount of memory, etc. In order to facilitate 
different configurations of agent servers, a customizable 
security policy generator is equipped with the installation 
procedure of the IMAGO system. System installer can 
incorporate security manager comprised of various choices 
of security policies, refined from a set of system 
recommended defaults. 

3.3 Service Discovery  

Mobile agents must interact with their hosts in order to use 
their services or to negotiate services with other agents. 
Discovering services for mobile agents comes from two 
considerations. First, the agents possess local knowledge 
of the network and have a limited functionality, since only 
agents of limited size and complexity can efficiently 
migrate in a network and have little overhead. Hence 
specific services are required which aim at deploying 
mobile agents efficiently in the system and the network. 
Secondly, mobile agents are subject to strong security 
restrictions, which are enforced by the security manager. 
Thus, mobile agents should find services that help to 
complete security-critical tasks, other than execute code 
that might jeopardize remote servers. Following this trend, 
it becomes increasingly important to give agents the 
ability of finding and making use of services that are 
available in a network. 
 
In the IMAGO system, we have implemented a new 
service discovery model DSSEM (Discovery Service via 
Search Engine Model) for mobile agents. DSSEM is based 
on a search engine, a global Web search tool with 
centralized index and fuzzy retrieval. This model 
especially aims at solving the database service location 
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problem and is integrated with the IMAGO system.  
Service providers manually register their services in a 
service discovery server. A mobile agent locates a specific 
service by submitting requests to the service discovery 
server with the description of required services. Web 
pages are used to advertise services. The design goal of 
DSSEM is to provide a flexible and efficient service 
discovery protocol in a mobile agent environment.    
 
Before a service can be discovered, it should make itself 
public. This process is called service advertisement. The 
work can be done when services are initialized, or every 
time they change their states via broadcasting to anyone 
who is listening. A service advertisement should consist of 
the service identifier, plus a simple string saying what the 
service is, or a set of strings for specifications and attributes.  
 
The most significant feature of DSSEM is that we enrich 
the service description by using web page’s URL (later the 
search engine will index the content referenced by this 
URL) to replace the traditional string-set service 
description in mobile agent systems. Because of their 
specific characteristics, such as containing rich media 
information (text, sound, image, etc.), working with the 
standard HTTP protocol and being able to reference each 
other, web pages may play a key role acting as the 
template of the service description. On the other hand, 
since the search engine is a mature technology and offers 
an automated indexing tool that can provide a highly 
efficient ranking mechanism for the collected information, 
it is also useful for acting as the directory server in our 
model. Of course, DSSEM also benefits from previous 
service discovery research in selected areas but is 
endowed with a new concept by combining some special 
features of mobile agents as well as integrating service 
discovery tool with agent servers. Fig. 2 shows the steps 
of the IMAGO service discovery process. 

Fig. 2 Process of the IMAGO Service Discovery Module 

3.4 Database Management 

In order to endow agents with the ability of accessing 
remote data resources, the IMAGO system provides a 
database interface between mobile agents and remote 
DBMS. To the database interface coupled with mobile 
agent system and remote DBMS, efficiency has become an 
important issue, because heavy-duty agent database 
operations may easily turn it into bottleneck.  Two levels 
of system efficiency have been introduced: the technical 
level and logic level. On the technical level, the most 
commonly used designs are Database Connection 
Management [15] and Local Cache Management [16].  
 
In IMAGO system, each agent appears in the form of a 
logic program written in Prolog. Furthermore, a set of pre-
defined system predicates can be used in the agent 
program to require certain services provided by agent 
servers. For example, several sample predicates of 
database accessing are shown in the following code 
segment: 
 
// Database connection predicate. 
db_connection( 

connection(‘131.104.127.113’,‘Guelph’,‘student
’,‘1234’,‘readonly’), Handler), 
 

// Database searching predicate with SQL query. 
db_search(“select * from student”, Handler), 

 
// Database disconnection predicate. 
db_disconnection(Handler).  

 
Generally an agent will stay inside of the engine module 
and its byte code will be executed until a pre-defined 
system predicate is hit. Then the engine will postpone the 
current process, and transfer the agent to a proper service 
module according to the type of the system predicate. For 
example if the predicate is db_connection, the agent will 
be relocated to database module. After the required service 
being done, it will be returned back to the engine module 
for continuous execution.  
 
Whenever an agent is transferred into Database Module, 
the connection management will be able to receive proper 
request of the database operation based on the type of the 
current database predicate in the agent program. A 
corresponding kernel thread will be picked up from the 
Database Thread pool under some pre-defined thread 
assignment strategies.  After finishing the current database 
operation, the agent will be returned back to the engine. 
 

By introducing special database module threads, it is 
possible to unload those heavy resource consuming 
database operations from system threads. Thus system 
threads can run quickly and smoothly without being 
delayed or blocked and the performance of the whole 
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system will not be affected by executing heavy-duty 
database jobs. The architecture of multi-threading 
database connection management is shown in Fig. 3.  
 

 
 

Fig. 3 Architecture of Multi-threading Database Connection  

4. Intelligent Mobile Messengers 

The IMAGO system utilizes the mobility of agents to 
achieve powerful, reliable and flexible inter-agent 
communication. To better understand how our model 
works, we shall first distinguish messengers from normal 
mobile agents, and we shall call them as workers in the 
rest of this paper. A worker is a normal mobile agent 
created by its owner for some specific task, whereas a 
messenger is an anonymous thin agent dispatched by a 
worker to deliver messages. Generally speaking, a worker 
is purposely separated from the location of its owner, and 
best equipped with as much intelligence as possible in 
order to autonomously carry out the assigned task on 
behalf of its owner. Unfortunately, adding more 
intelligence to a worker will make some sacrifices of 
mobility. Thus, to deploy these thick workers directly for 
inter-agent communication is neither economical nor 
practical. This is the reason for introducing messengers – 
specialized thin agents - that not only provide an agent-
based solution for inter-agent communication but also 
make the solution efficient and feasible. 

4.1 Naming 

Clearly, each worker must have a unique name so that its 
owner and other workers can communicate with it over the 
network. Some systems, such as Voyager, adopt location-
transparent names at the application level. In contrast, 
systems such as Aglets and D'Agent, assign location-
dependent names. For example, an agent in Aglets is 
associated with a unique identifier so that every agent in 
the network can be uniquely addressed by combining its 
identifier with its context URL. 
 
Obviously, identifying an agent by the combination of its 
identifier and its current location does not fit well to the 

mobility of agents. Since a worker may move any time to 
an arbitrary remote server, its current location is uncertain. 
For this reason, our model adopts a location-transparent, 
closed-world naming scheme to identify workers. First, we 
assume that a user-friendly, symbolic name is assigned to 
each worker. Such a name must be unique in the 
application (a closed world) where the worker is created, 
and immutable throughout the worker's lifetime. This user-
friendly symbolic name is used to unambiguously refer to 
the worker inside the application that it belongs to. 
 
Secondly, we assume that each application is bound to a 
home location that always exists during the lifecycle of the 
application. Consequently, workers of an application are 
all originated from the same home. If several applications 
are concurrently running at the same home, we shall use 
different sequencing numbers to distinguish them. 
Therefore, by concatenating the user-friendly symbolic 
name, the home URL and the application sequencing 
number, we have a location-transparent, globally unique 
identifier for each worker. It is worthwhile to note that the 
home URL embedded in a worker's identifier is 
independent from the worker's current location. By using 
such identifiers, it is sufficient to unambiguously refer to a 
worker over the Internet. 
 
Both workers and messengers are allowed to move freely 
from one host to another. That is, they may decide where 
to go based on their own will or the information they have 
gathered. At any stage of execution, a worker can dispatch 
a messenger to deliver a message to another worker. 
Deployment of messengers is the only way to achieve 
inter-agent communication in our model. Since 
messengers are in fact mobile agents, they can be designed 
to serve different purposes such as asynchronous 
messaging, synchronous messaging, broadcasting or 
multicasting, etc. To accommodate incoming messengers, 
we assume that each worker is associated with a 
messenger queue that holds all messengers destined to this 
worker and waiting for delivery of messages. The 
assumptions we made in this section are reasonable 
because they are already satisfied by our implementation 
as well as some other mobile agent systems. 

4.2 Locating Mobile Agents 

Briefly speaking, locating an agent is invoking a function 
of the form “where_is(X)” which should return the current 
address (or access point) of agent X. Researchers have 
recently proposed many schemes for designing such a 
function. Various approaches for storing, updating, and 
locating mobile agents are well addressed in [17]. 
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Some communication protocols use broadcasting or 
multicasting approaches to locate mobile agents. In this 
paradigm, location queries are broadcast to the entire 
network, or multicast to a specific group of hosts. Upon 
receiving such a request, each machine must check the 
names of hosting agents and give a response if the 
requested name is found. This paradigm is mainly 
applicable to intranets. It becomes inefficient in a large-
scale network. Furthermore, the answer to “where_is(X)” 
is not accurate if X moves to another host immediately 
after the answer is returned, which makes message loss 
unavoidable.   
 
Another popular approach is to use a fixed location server, 
called home, to keep track of locations of mobile agents. 
In this scheme, agents follow a triangular routing to 
communicate with each other, that is, a message is sent to 
home first, which looks up the destination address and 
then simply forwards the message to the receiving agent. 
Unfortunately, the same problem remains. The address 
returned from the lookup function “where_is(X)” is 
ambiguous: X might still reside at that address, or X might 
have moved to another host and its location updating 
packet is on the way to home, or X might even have 
started to move at the same time a message is sent to its 
current location. 
 
Forward-pointer is a promising alternative for locating 
mobile agents. This scheme does not depend on a 
“where_is(X)” lookup function. Instead, each mobile 
agent host keeps a reference (forward pointer) for each 
moving agent. For example, in Voyager, a virtual object 
keeps track of the remote object by its last known address. 
If the remote object moves from its last location, it will 
leave a secretary object behind to forward messages to its 
new location. The secretary object will be removed only if 
the corresponding virtual object has received a returned 
message. The advantage of this approach is that it could 
automatically track down moving agents. However, it 
could cause a lot of overhead and delay if remote objects 
involve frequent movements. Furthermore, a theoretical 
flaw is that messages might forever chase a frequently 
moving receiver, even though this hardly occurs in 
practice. 
 
In the IMAGO system, the only way that workers 
cooperate with each other is by the means of dispatching 
messengers. Therefore, each messenger is responsible for 
locating the receiving worker. In order to locate a moving 
worker, agent servers should maintain enough information 
to keep track of current location of every worker. 
However, we have indicated that it is virtually impossible 
to have the precise information about a changing 
environment, because an application may involve workers 

that are creating, cloning or moving all the time. To cope 
with such a dynamic configuration, our model maintains 
heuristic location information through distributed 
registration and local updating operations, and employs a 
variant of forward-pointer-based approach plus a home-
based mechanism as the backup. 
 
Based on the naming scheme, identifiers of workers have 
an embedded static home location, although these workers 
might spread and roam over the network. This home is the 
default server for workers to send their registration.  A 
newborn worker, either by creating or cloning and 
regardless have born at the home host or a remote host, 
must register its birthplace with the home automatically. 
Even though registrations take a distributed manner, i.e., 
registration messages might flow to the home from 
different remote hosts, it does not cause much network 
traffic because each worker registers only once in its 
whole lifecycle. 
 
A registration message is stored as a worker record in the 
local cache of the home server. A worker record is a 
structure of the form {worker_id, timestamp, status} 
where worker_id is the globally unique identifier of the 
worker, timestamp gives the time the record last been 
modified, and status indicates the current state of the 
worker. For the sake of simplicity, we assume that a 
worker must be in one of three possible states: ALIVE, 
DISPOSED, or MOVED_TO(url). 
 
Like the home server, a remote agent server also 
remembers a collection of worker records per application 
basis. However, it maintains caching information through 
the local updating operation. Such an operation is very 
efficient because it is done completely in the local system 
layer. In general, a worker record is inserted into the local 
cache when the worker is created or cloned locally, or the 
first time it moves into this server. To make the local 
caching more effective in locating a worker, a remote 
server should also cache sender's information carried by a 
messenger. Obviously, caching sender's information 
exploits locality. For instance, a receiving worker is most 
likely to reply to its sender in the near future, and the 
sender's location can be found immediately from the local 
cache. 
 
An updating operation is also applied to a worker record 
whenever the worker changes its state.  For example, 
when a worker moves from host S1 to host S2, its cached 
record at S1 is modified with the new state 
MOVED_TO(S2). This is very similar to the forward 
pointer scheme which leaves behind a forwarding 
reference whenever an entity moves to a new location. 
Likewise, if the worker moves from S2 back to S1, its 
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record at S1 will be simply changed back to the state 
ALIVE. Furthermore, updating operations can be used to 
short cut a forwarding chain. For example, suppose that a 
worker moves from S1 to S2 and then to S3. From there, 
the worker dispatches a messenger to a receiver at S1. 
When the messenger arrives, the updating operation will 
change the worker (sender)'s record from the old state 
MOVED_TO(S2) to the new state MOVED_TO(S3). 
Therefore, subsequent communications to that worker will 
be dispatched to S3 directly. 
 
In the IMAGO system, we do not intend to have a 
network-wise “where_is(X)” lookup function for locating 
the  current address of X. Instead, we use a local lookup 
function that returns a possible location of X. The reason 
for saying possible is that the information recorded in a 
server's local cache is heuristic. For instance, if the status 
of a worker is recorded as MOVED_TO(S2), there is no 
guarantee that the worker we are looking for is still 
working at S2, because a worker is never bound to an 
absolute host address - it may very well have moved on to 
another location. However, it is guaranteed that successive 
lookup's at subsequently forwarded heuristic hosts will 
eventually trap the worker if the worker really wants to 
accept the messenger. 
 
Now, let us consider the general lookup facility for remote 
servers. The principle is very simple. We only search the 
local cache to find where the worker possibly resides in. 
This lookup function will never return something like 
WORKER_NOT_FOUND. Instead, it either returns the 
value of the current status from the located worker record, 
or MOVED_TO(home) if a cache miss occurs. Since a 
remote server might host multiple concurrent agents 
(workers and messengers), the lookup operation and the 
updating operation must be mutual exclusive. That is, 
when a messenger has to locate a worker and deliver 
message, it must lock the cached worker record (critical 
region) to achieve mutual exclusion and ensure that the 
worker is not able to change its state at the same time. 
 
The lookup function on the home server is analogous to 
the above description. In principle, there is no cache miss 
because the home should hold a complete set of worker 
records. However, what possibly happens in practice is 
that a messenger is dispatched to a worker who might have 
not been created yet or whose registration message might 
be on the way home. To solve this problem, the lookup 
function simply blocks this messenger. A blocked 
messenger will be resumed if a new registration with a 
matching receiver arrives. 

4.3 Messenger Behavior 

A messenger is an agent. It has its own code to be 
executed. There are many ways to design messengers for 
different purposes. To make it easier to understand, we 
will start out by discussing a very important system 
primitive. Then we will look at a simple messenger and 
discuss its behavior in some detail. A more concrete 
example will be given in the next section. 
 
System primitives serve as the interface between agents 
and the underlying system. In addition to the commonly 
used primitives such as create, move, clone, etc., another 
primitive that plays a major role in between workers and 
messengers is attach. The following code segment shows 
the skeleton of the attach primitive. 
 
attach(receiver){  

 lock(local_cache); 
 r = lookup(receiver);   
 if (r == ALIVE){  
   // insert this messenger into  
   // the receiver's messenger queue 
   unlock(local_cache); 
   // switch to another ready agent  
 } 
    else {  
   unlock(local_cache); 
   retrun r;  
 } 

} 

 
The basic idea behind a messenger is try to track down the 
receiver until its message is accepted. To achieve such 
behavior, a messenger simply invokes the following 
recursively defined deliver function. 
 
deliver(receiver, message){  

 r = attach(receiver);   
if (r == RECEIVED || r == DISPOSED) 

      dispose();   
 else { // r == MOVED_TO(url) 
  move_to(url);  
  deliver(receiver, message); 
 } 

} 

 
A messenger starts by invoking a call to attach which will 
issue a lookup mutual exclusively. Only two possible 
cases make the attach return immediately: the receiver has 
deceased locally, or the receiver has moved to another host. 
Recall that MOVED_TO(home) will be returned if a cache 
miss occurs in a lookup, so that it seems as if the receiver 
has migrated to home. Therefore, the messenger will 
follow the receiver by calling move and then try to deliver 
at the new host, or simply dispose itself if the receiver no 
longer exists. 
 
On the other hand, if the receiver is ALIVE at the current 
host, the attach primitive will insert the caller into the 
receiver's messenger queue and then make it suspended.   
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The underlying system is free to schedule another ready 
agent to execute. It is now the receiver's responsibility to 
resume an attached messenger based on different actions it 
is going to perform. Certainly, the receiver might invoke 
an accept-type primitive. If this happens, the accepted 
messenger is resumed as soon as its carried message has 
been transferred to the worker's working space. 
Unfortunately, whether its receiver will accept attached 
messengers is unknown, because the receiving worker 
might not be ready to accept any messenger yet. For 
instance, it is possible that the worker moves to another 
host while there are pending messengers. It is possible that 
the worker disposes itself without accepting messengers. It 
is also possible that the worker clones itself while it has a 
non-empty messenger queue. Nevertheless, these possible 
cases are facing with the same problem, namely, how the 
receiver deals with pending messengers. 
 
From the well-known semantics of strong migration, a 
mobile agent should take its code, data and execution state 
together when it moves to a new location. Unfortunately, 
such semantics have a flaw of ignoring messages. In fact, 
messages to an agent should also be a part of the agent. If 
they have been received, they become a portion of data. If 
they have not been received (either buffered by the 
underlying system or still in transmission), then they 
should go with the agent together whenever the agent 
moves. Therefore, the highest degree of strong migration 
is to take four parts of an agent, i.e., code, data, state and 
messages, into consideration. 
 
Although it sounds more difficult, the solution in our 
model is straightforward. A worker simply resumes all 
attached messengers if it moves. Likewise, a worker 
resumes all pending messengers if it disposes itself. Now 
consider what happens, for example, when the receiver it 
was attached to resumes a messenger. At this point, it 
seems as if the call to attach has just returned. However, 
the returned value might be one of the three possible cases 
now: RECEIVED, DISPOSED or MOVED_TO(url). 
Therefore, the resumed messenger must be able to cope 
with different cases and try to re-deliver the message if the 
message has not been received yet and the receiver is still 
alive. This is why a messenger will invoke attach each 
time it moves to a new place. A messenger claims that “I 
can track the receiver down provided I have the trail of the 
receiver”, whereas our lookup facility says that “the 
location I found is where most likely the receiver resides 
at, or at least the receiver has lived”.  In other words, the 
heuristic location from the lookup facility provides the 
trail of the receiving worker while leaves the tracking-
down job to the messenger. 

4.4 Agent Communication Language 

Agent Communication Language (ACL) is in fact a high-
level communication protocol that allows the sending 
agent and receiving agent mutually understanding each 
other. In an ACL, a message consists of two separate 
aspects, namely, performative and content. The 
performative shows the purpose of a message while the 
content gives a concrete description for achieving the 
purpose. Of course, the sending agent and the receiving 
agent must agree with their ACL, so that they have at least 
the same understanding of the purpose and the same 
interpretation of the content of a message. 
 
An ACL developed by FIPA [18] has defined several 
performatives of messages, such as IFORM, QUERY-IF, 
CFP, PROPOSE, and so on. For example, performative 
INFORM indicates that the content of a message is a true 
proposition, whereas QUERY-IF asks if the proposition 
given as the content of a message is true. On the other 
hand, FIPA does not prescribe the language used to 
express the message content. Instead, it specifies the ACL 
Protocol Data Unit (PDU) as a data structure, which 
contains a set of one or more message elements, such as 
performative, sender, receiver, language, content, etc. 
Precisely which elements are needed for an ACL message 
is application dependent, except that the performative 
element is mandatory in all ACL messages. Certainly, 
most ACL messages will also include sender, receiver, and 
content elements. A simple example of a FIPA ACL 
message is given in Table 1. 

Table 1: An Example of  FIPA ACL  

 
As the matter of fact, our agent-based communication 
model is in compliance with the FIPA ACL message 
structure specification. The example in Table 1 is a typical 
message carried by a mobile messenger. In the IMAGO 
system, the messenger type determines performatives of 
messages. For example, a messenger created from the  
one-way messenger carries a message with a default 
performative INFORM. To identify the sender, 
alice@simp://where.alice.resides.at is used to refer to an 
agent called alice residing on a mobile agent server with 
the DNS name where.alice.resides.at and relying upon the 
Simple Imago Migration Protocol. However, the receiver 
white_rabbit is at an unknown location at this moment. It 
is the messenger's responsibility to locate the receiving 

Element Value 
Performative INFORM 
Sender alice@simp://where.alice.resides.at 
Receiver white_rabbit@simp://to.be.located 
Language Prolog 
Content invite(mad_tea_party) 
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agent. In general, the receiver may be a single agent name, 
or a non-empty list of agent names. The language element 
specifies that the message content be expressed as a 
Prolog term that could be an atom, a variable, a list, or a 
compound structure. Consequently, upon receiving this 
message, the receiver white_rabbit should know that alice 
invites him to a mad_tea_party. 
 
Obviously, the performative and content of a message 
often determine the reaction of the receiver. In addition to 
the various types of system messengers for sending agents, 
the IMAGO system provides a set of primitives for 
receiving agents. The primitive which is similar to an 
unblocking receive is accept(Sender, Msg). An invocation 
to this primitive succeeds if a matching messenger is 
found, or fails if either the caller's messenger queue is 
empty or there is no matching messenger in the queue. 
Likewise, the primitive which implements blocking 
receive is wait_accept(Sender, Msg). A call to this 
primitive succeeds immediately if a matching messenger is 
found. However, it will cause its caller to be blocked if 
either the caller's messenger queue is empty, or no 
matching messenger can be found. In this case, it will be 
automatically re-executed when a new messenger attaches 
to the caller's messenger queue.  Pragmatically, the 
semantics of matching messengers is implemented by 
Prolog unification. Let (S, M) be the sender and content 
element carried by a messenger, and (Sender, Msg) be the 
arguments of an accept-like primitive, the messenger is a 
matching messenger of the accept-like primitive if the 
general unification of (S, M) and (Sender, Msg) succeeds. 

5. Conclusion 

In this paper, we discussed the design issues of mobile 
agent systems and concepts for inter-agent communication, 
and investigated these issues with respect to existing 
mobile agent systems. We presented the design of 
IMAGO system, and discussed implementation issues 
such as virtual machine, code migration, security, service 
discovery, communication mechanism and database access.   
The major concern of IMAGO system is how to track 
down agents and deliver messages in a dynamic, changing 
environment. We proposed an agent-based model that 
deploys intelligent mobile messengers for inter-agent 
communication. The advantage of the messenger model is 
that a simple, reliable agent migration protocol is 
sufficient to support both agent migration and inter-agent 
communication. The IMAGO system has been 
implemented and is currently under benchmark testing. An 
evaluation release of IMAGO is available at the IMAGO 
Lab Web site (http://draco.cis.uoguelph.ca/main.html).  

 

Research on this subject involves further extensions of 
API and investigation of adding more programming 
languages to the system. Although this study concentrates 
on the design of intelligent mobile agents based on logic 
programming, results will be also useful in related 
disciplines of network and mobile computing community. 
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