
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

107

Manuscript received February 25, 2006.
Manuscript revised February 28 , 2006.

On the Implementation of IMAGO System

Xining Li

University of Guelph, Guelph, Canada

Summary
Mobile Agents are mainly intended to be used for network
computing - applications distributed over large-scale
computer networks. An intelligent mobile agent is a self-
contained process, dispatched by its principal, roaming the
internet to access data and services, and carrying out its
assigned decision-making and problem-solving tasks
remotely. In this paper, the author will present the design
and implementation of the IMAGO (Intelligent Mobile
Agents Gliding On-line) system. The goal of the project is
to build a logic-based framework in the design space of
intelligent mobile agent systems. To achieve this, we need
to cope with design issues, such as explicit concurrency,
code autonomy, security, communication/synchronization,
service discovery, computation mobility, as well as
implementation issues, such as multithreading, garbage
collection, code migration, communication mechanism
and database access. The unique feature of IMAGO
system is that it deploys intelligent mobile messengers for
inter-agent communication. Messengers are anonymous,
thin agents dedicated to deliver messages. Like other
agents, messengers can move, clone, and make decisions
for their assigned task: track down the receiving agents
and reliably deliver messages in a dynamic, changing
environment.

Key words:
Mobile Agents, Inter-agent Communication, Messengers, Virtual
Machine, Migration

1. Introduction

Mobile agent systems are generalized distributed systems
in the sense that they are mainly intended to be used for
network computing - applications distributed over large-
scale computer networks. An agent is autonomous process
acting on behalf of a user. A mobile agent roams the
Internet to access data and services, and carries out its
assigned task remotely. Numerous mobile agent systems
have been implemented or are currently under
development. Typical systems are Aglets[1], Voyager[2],
Grasshopper[3], ARA[4], Mole[5], D'Agent[6], etc.

Fundamental issues related to the mobile agent paradigm
are support of agent mobility and inter-agent
communication. As the primary identifying characteristic

of a mobile agent is its ability to migrate from host to host,
a protocol to support agent mobility is an essential
requirement of a mobile agent system. An agent is
normally composed of three parts: code, execution state
(stack), and data (heap). All these parts should move with
the agent whenever and wherever it moves. However, the
majority of mobile agent systems (especially those built on
top of Java) only support weak migration - an agent moves
with its code and data, but without the stack of its
execution thread. Thus, the moving agent has to direct the
control flow appropriately when its state is restored at the
destination. In contrast to the weak migration, strong
migration requires that the execution thread of an agent
must be transferred as well, so that the moving agent can
resume its execution at a new host from the point it left off.
Clearly, strong migration is more suitable to the fact that
agents should be able to interact with their environment
autonomously and effectively.

Agents are not working alone in most mobile agent
applications. They need to communicate with each other
for cooperation and synchronization. Therefore, another
essential issue is the design of communication models and
inter-agent communication protocols. Generally speaking,
communication models are concerned with conceptual
paradigms such as RPC/RMI, message-based, or event-
based, whereas communication protocols deal with
problems such as how to name mobile agents, how to
establish communication relationships, how to track
moving agents, and how to guarantee reliable message
delivery. Most existing mobile agent systems adopt some
kind of communication models/protocols from traditional
distributed systems while developing separate protocols
for agent migration. However, the IMAGO system adopts
a different strategy to cope with this issue. The idea is to
deploy intelligent mobile messengers for inter-agent
communication. Messengers are thin agents dedicated to
deliver messages. Like normal agents, a messenger can
move, clone, and make decisions. Unlike normal agents, a
messenger is anonymous and its special task is to track
down the receiving agent and reliably deliver messages in
a dynamic, changing environment. As a consequence,
having only a simple agent migration protocol, the
IMAGO system is capable of coping with both agent
migration and inter-agent communication.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

108

The IMAGO system is an infrastructure that implements
the agent paradigm. An IMAGO server resides at a host
machine intending to host mobile agents and provide a
protected agent execution environment. From the
application point of view, the IMAGO system consists of
two kinds of agent servers: stationary server and remote
server. The stationary server of an application is the home
server where the application is invoked. On the other hand,
agents of an application are able to migrate to remote
servers. Like a web server, a remote server must have
either a well-known name or a name searchable through
the service discovery mechanism. Remote servers should
provide services for network computing, resource sharing,
or interfaces to other Internet servers, such as web servers,
database servers, etc.

This paper presents the design and implementation of the
IMAGO system and is organized as follows. Section 2
gives a briefly review of recent works related to this
research, focusing on the agent communication models
and different mechanisms for tracking mobile agents.
Section 3 presents the architecture of the IMAGO system.
We will briefly discuss the virtual machine design of the
IMAGO server as well as the functionality of each module.
In section 4, we will discuss the intelligent mobile
messenger model and feasible solutions for problems such
as agent naming, agent tracking, and inter-agent
communication language. At this moment, the IMAGO
system only supports the IMAGO Prolog – an extended
Prolog with rich Application Programming Interface
supporting mobile agent applications. More programming
languages are currently under investigation and will be
added to the system. The IMAGO system has been
implemented and is currently under benchmark testing.
Finally, we present the conclusion and outline of future
work.

2. Related work

Most of the mobile agents systems are based on scripting
or interpreted programming languages that offer portable
virtual machines for executing agent code, as well as a
controlled execution environment featuring a security
mechanism that restricts access to the host's private
resources. Clearly, agents in a network application must
interact with each other using some kind of
communication models to exchange data and coordinate
their execution. Typical models are message passing,
RPC/RMI, and distributed event handling.

Message passing is used to support peer-to-peer
communication patterns and is the most adopted model in
mobile agent systems such as Aglet, Mole, D'Agent,

Voyager, etc. Aglet supports an object-based messaging
framework that is flexible, extensible, rich, and both
synchronous and asynchronous. Mole deploys the (global)
exchange of messages through a session-oriented
mechanism. Agents that want to communicate with each
other must establish a session before the actual
communication can start. D'Agent supports text-based
message passing. The sender should know the location and
identity of the receiver. There is no guarantee for reliable
message delivery because communication is lost as soon
as one peer jumps to another location. Voyager
implements message passing through the concept of
virtual objects. Agents are a special type of object in a
Voyager application. Communication with a remote object
is handled by its virtual object that hides the remote
location and acts as a proxy to the remote object. When
messages are being sent to the remote agent, the virtual
object forwards the message to the remote object and
returns messages back if necessary.

RPC and RMI are commonly used paradigms in today's
distributed programming. Since there is no distinction in
syntax between an RPC and a local procedure call, it
provides access transparency to remote operations. Several
mobile agent systems support RPC/RMI paradigm such as
Mole and Voyager. An argument against this paradigm is
that under the new paradigm where mobile agents can
move to any remote host for data and services, why we
need RPC/RMI at all. Agents for Remote Action (ARA)
attempts to minimize the remote communication through a
meeting oriented paradigm. ARA provides client/server
style interaction between agents. The core provides the
concept of a service point which is the meeting point with
a well known name where agents located at a specific
place can interact as clients and servers through an RPC-
like invocation on a local host.

The concept of event based communication and
synchronization can be viewed as a sophisticated
paradigm of meeting oriented agent coordination. Some
mobile agent systems have much in common with those
event frameworks employed in GUI toolkits supported by
Java and some scripting languages. Mobile agent systems
such as D'Agent, Mole, etc., extend the event-driven
programming technique to coordinate groups of mobile
agents. In this paradigm, agent synchronization is
achieved by the objects that are defined as active entities
responsible for the coordination of an entire application or
parts of it. These synchronization objects could be user-
defined objects or system implemented event managers. It
is their responsibility to accept event registration, listen
and receive events, and notify interested parties when an
event arises. On the other hand, an agent participating in
such groups is responsible to register a list of event types

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

109

it is interested in as well as the location it wishes events to
be sent. Certainly, this model requires the static binding of
agents with their registered locations, or otherwise event
notification becomes unreliable.

Nevertheless, no matter which inter-agent communication
model is selected, the model must be implemented through
a stack of dedicated communication protocols. Inter-
process communication is dependent on the ability to
locate the communication entities. This is the role of the
naming services that primarily map each entity in its name
space to a fixed location in traditional distributed systems.
Mobile agents are distributed processes. However, once
they are invoked they will autonomously decide the hosts
they will visit and the tasks they have to perform. Their
behavior is either defined explicitly through the agent code
or alternatively defined by an itinerary that is usually
modifiable at runtime. As a result, the mobility of agents
makes it much harder to provide such kind of name
resolution service because there is virtually no way to bind
a moving agent with a static (fixed) location. Thus,
existing mobile agent systems either do not provide the
ability of automatically tracking moving agents, or overly
constraint the mobility of agents. For example, Aglet API
does not support agent tracking. Instead, it leaves this
problem to applications. To avoid tracking agents during
communication, Mole prevents agents from moving if they
are involved in a session.

Although the RPC/RMI model offers access transparency,
it turns out that general purpose, high level message-based
models are more convenient, and often adopted by most
mobile agent systems. However, it can always be argued
whether agent communication should be remote or
restricted to local, considering that the most attractive
motivation of mobile agents is that they are able to migrate
between locations to locate data and services as well as
their peers, and therefore avoiding remote communication.
Furthermore, a stack of communication protocols usually
implements a communication model. It is also
questionable whether such a protocol is actually necessary
if we already have a simple, reliable agent migration
protocol. In response to these questions, the IMAGO
system utilizes the mobility of agents to achieve powerful,
reliable and flexible inter-agent communication.

Research in the area of mobile agents looked at languages
that are suitable for mobile agent programming, and
languages for agent communication. Much effort was put
into security issues [7], control issues, and design issues.
However, few research groups have paid attention to
offering an environment to combine the concept of service
discovery and mobile agents to build dynamic distributed
systems.

A variety of Service Discovery Protocols (SDPs) are
currently under development by some companies and
research groups. The most well known schemes are Sun's
Java based JiniTM[8], Microsoft's UPP[9], IETF's SLP[10]
and OASIS UDDI[11]. Some of these SDPs are extended
and applied by several mobile agent systems to solve the
service discovery problem. Though SLP provides a
flexible and scalable framework for enabling users to
access service information about existence, location, and
configuration, it only possesses a local function for service
discovery and is not scalable up to global Internet domain.
After a study of different SDPs and mobile agent systems
that are adopting these methods, we found that several
problems cannot be easily solved by the existing protocols
due to their limitations.

3. The Architecture of the IMAGO System

The IMAGO system is an infrastructure for mobile agent
applications[12]. It includes the IMAGO server - the
specification and implementation of Multi-threading Logic
Virtual Machine (MLVM), the IMAGO Prolog - a Prolog-
like programming language extended with a rich API for
implementing mobile agent applications, and the IMAGO
IDE, a Java-GUI based program from which users can
perform editing, compiling, and invoking an agent
application.

Fig. 1 The Architecture of the IMAGO System.

IMAGO Prolog is a simplified Prolog with an extended
API to support mobile agent paradigm[13]. An IMAGO
Prolog program consists of a set of agent definitions and
module definitions. Agent definitions serve to specify
autonomous entities from which mobile agents can be
created, whereas modules serve to partition the name
space and support encapsulation for the purpose of
constructing large applications from a library of smaller
components. Like most Prolog implementations that are
based on different kinds of virtual machines, the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

110

implementation of IMAGO Prolog is based on MLVM -
an efficient Multi-threading Logic Virtual Machine. The
most significant differences from traditional Prolog virtual
machines are that MLVM adopts a novel memory
management approach and fully supports distributed as
well as mobile agent applications. Fig. 1 shows the
architecture of the IMAGO system as well as the
organization of MLVM internal modules.

Unlike the traditional client/server model, the IMAGO
system exhibits a server/server model where each server is
installed with the MLVM. The goal of MLVM is to
present a secure, consistent and efficient execution
environment for mobile agents. The MLVM combines
both kernel level and user level multi-threading into its
implementation. Kernel level threads are responsible for
system functionalities, such as engine, memory manager,
security manager, service discovery module, etc. Those
kernel level threads constitute the virtual machine to
support concurrent execution and migration of user level
threads, namely, mobile agents.

Versatility in the threading algorithm is that a hardware
configuration replacing threads with CPUs would
accomplish the exact same behavior with little changes. To
achieve such goal, the pool is initialized with a pre-defined
number of general-purpose system threads. A highest-
priority-first scheduling algorithm is then applied on a
sorted set of queues. Each thread will scan those queues
and process any task available according to the priority
setting until no more task is to be handled. At this time,
and at this time only, the unused thread will be put into a
blocking state until new tasks are generated. The scheduler
task list contains entries which match different stages of
the life cycle of an agent, such as, creation, execution, and
memory related processing (expansion, contraction or
garbage collection), termination and migration (outgoing
and incoming). The sorting of the priority list is such that
the outgoing migration related tasks are of a highest
priority followed by agent creation and incoming
migration request tasks. The last entry in the list is,
respectively, memory related tasks and the virtual machine
engine, because they will be the most frequently requested
cycle in the life of an agent. Such ordering prevents
starvation by simply using the natural life cycle of the
agent itself. The synchronization issues that arise from a
multi-threaded environment have been resolved by the use
of mutual exclusion primitives.

Memory manager handles the tasks associated with
memory expansion and contraction. The manager adopts a
merged stack/heap scheme for memory allocation, and
automatically conducts garbage collection [14]. The
MLVL engine is an emulator of IMAGO Prolog. Not only

it executes byte-code instructions of an agent, but also it
dispatches an agent to different queues for further
services，such as agent creation, cloning, moving, etc.
Agents can be either created on the fly or from a file
stored on a hard disk. The In/Out module interacts with
the migration protocol to handle incoming and outgoing
agents.

3.1 Agent Migration Protocol

To make it easier to deal with issues involved in different
layers of communication, stack architecture has been
chosen for the IMAGO agent-migration protocol. The
design goal of the protocol stack is to provide the
flexibility, reliability and security required in the mobile
agent migration. The protocol stack also implements some
cutting-edge technologies in multi-thread management.
The current implementation consists of five layers, from
top to bottom, Marshaling, Rendezvous, Security, Routing
and Connection. The whole stack sits on top of the TCP/IP
layer.

In brief, the Connection layer is in charge of establishing
and maintaining a direct TCP connection between two
hosts. The connection layer offers two mechanisms for
transmitting information over the network. One provides
unreliable, lighter and faster service for exchanging
control information between different servers. The other
offers a much more reliable, wider bandwidth, but slower
and using more resources. It is mainly used to transmit
greater amount of data that should not be lost or corrupted,
such as an entire mobile agent.

The Routing layer resolves names and decides the route
that a Protocol Data Unit (PDU) will take to reach its
destination. Migration, being a basic feature of mobile
agents, should be made as robust and flexible as possible
while hiding, as much as possible, all the irrelevant,
underlying details from the end user. Since name
resolution is quite time consuming, an extremely simple
caching algorithm is used in the internal lookup process in
order to reduce redundant DNS requests.

The Security layer is in charge of the encryption and
decryption of PDUs as well as detecting tampering attacks.
To secure a connection between two servers, encryption is
only enough to insure privacy by preventing malicious
people to read the content of the message. In order prevent
masquerading attacks, this layer provides a simple
authentication scheme for servers to detect possible fake
identity and to drop such falsified PDUs.

The Rendezvous layer makes sure that everything sent
arrives at destination or reports an error. The purpose of

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

111

this layer is to establish a reliable agent migration channel
between two servers regardless of the underlying network
architecture. Using the shaking-hands technology, this
protocol is able to certify the success of an agent migration
as well as its failure. This means that a moving agent will
never be lost or duplicated and its migration will not suffer
any side effect from network failure.

The top of the stack would be the place for the adaptation
layer that will allow mobile agents to be transformed and
prepared for transport. This layer, namely the Marshaling,
is responsible to transform and trim a moving agent so
only the required data would be transported to the
destination server.

3.2 Security

Clearly, the potential benefits of mobile agent technology
must be weighted against the very real security threads.
Security threads can be visually lumped into three
categories: (1) comprised hosts and mobile agents that
attempt represent different parties that may exhibit
malicious behavior toward one another, (2) exposure of
mobile agents to third party intruders through the network,
and (3) agents interfere with each other or gain
unauthorized access to internal state. Security problems of
the last two categories have been handled by the IMAGO
migration protocol. The first category can be further
divided into two cases: protecting agents from malicious
hosts, or vice verse, protecting hosts from malicious
agents.
The first case, in which a malicious server attacks a
visiting mobile agent, is the most difficult issue. In order
for an agent to function, the server on which the agent
executes must be able to interact with each other. Most
mobile agent systems rely at least on the concept of virtual
machine to standardize the execution environment.
However, agents written in scripting or interpreted
languages are easily de-compiled. Consequently, a
malicious host may easily steal private information,
modify the agent code, or mislead the agent.

The IMAGO system assumes that IMAGO servers are
trustworthy. The security mechanism will focus on the
second case, i.e., protecting hosts from malicious agents.
The security manager, one of the kernel threads in MLVM,
is designed to deal with the system privacy issues, such as
physical access restrictions, application availability,
content integrity, and access policies.

Although the migration protocol provides a secure
communication channel for moving agents, whether or not
an agent has tampered with is uncertain. It is the security
manager’s responsibility to verify the integrity of agent

code using a digit signature, such as optimized MD5. In
addition, IMAGO system adopts a two-stage process to
check if a system access issued by an agent is valid. The
first stage is conducted during compilation. A so-called
static semantic check will prevent a mobile agent to use
illegal system calls. When an agent is loaded to execute,
the second stage, namely, dynamic semantic check is
required to ensure that the agent code had not been
tampered with during transit.

Certainly, the semantic checking technique only protects
the server from the illegal usage of system resources.
However, for some types of abnormal mobile agent
activity, such as unlimited cloning itself or constantly
expanding memory, the security manager must provide
further assurance. The technique being adopted is called
limitation, which controls the persistent survivability of
mobile agents and prevents them from “running wild”.
The typical limitations controlled by the security manager
are span of lifetime, number of migrations, number of
cloning, amount of memory, etc. In order to facilitate
different configurations of agent servers, a customizable
security policy generator is equipped with the installation
procedure of the IMAGO system. System installer can
incorporate security manager comprised of various choices
of security policies, refined from a set of system
recommended defaults.

3.3 Service Discovery

Mobile agents must interact with their hosts in order to use
their services or to negotiate services with other agents.
Discovering services for mobile agents comes from two
considerations. First, the agents possess local knowledge
of the network and have a limited functionality, since only
agents of limited size and complexity can efficiently
migrate in a network and have little overhead. Hence
specific services are required which aim at deploying
mobile agents efficiently in the system and the network.
Secondly, mobile agents are subject to strong security
restrictions, which are enforced by the security manager.
Thus, mobile agents should find services that help to
complete security-critical tasks, other than execute code
that might jeopardize remote servers. Following this trend,
it becomes increasingly important to give agents the
ability of finding and making use of services that are
available in a network.

In the IMAGO system, we have implemented a new
service discovery model DSSEM (Discovery Service via
Search Engine Model) for mobile agents. DSSEM is based
on a search engine, a global Web search tool with
centralized index and fuzzy retrieval. This model
especially aims at solving the database service location

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

112

problem and is integrated with the IMAGO system.
Service providers manually register their services in a
service discovery server. A mobile agent locates a specific
service by submitting requests to the service discovery
server with the description of required services. Web
pages are used to advertise services. The design goal of
DSSEM is to provide a flexible and efficient service
discovery protocol in a mobile agent environment.

Before a service can be discovered, it should make itself
public. This process is called service advertisement. The
work can be done when services are initialized, or every
time they change their states via broadcasting to anyone
who is listening. A service advertisement should consist of
the service identifier, plus a simple string saying what the
service is, or a set of strings for specifications and attributes.

The most significant feature of DSSEM is that we enrich
the service description by using web page’s URL (later the
search engine will index the content referenced by this
URL) to replace the traditional string-set service
description in mobile agent systems. Because of their
specific characteristics, such as containing rich media
information (text, sound, image, etc.), working with the
standard HTTP protocol and being able to reference each
other, web pages may play a key role acting as the
template of the service description. On the other hand,
since the search engine is a mature technology and offers
an automated indexing tool that can provide a highly
efficient ranking mechanism for the collected information,
it is also useful for acting as the directory server in our
model. Of course, DSSEM also benefits from previous
service discovery research in selected areas but is
endowed with a new concept by combining some special
features of mobile agents as well as integrating service
discovery tool with agent servers. Fig. 2 shows the steps
of the IMAGO service discovery process.

Fig. 2 Process of the IMAGO Service Discovery Module

3.4 Database Management

In order to endow agents with the ability of accessing
remote data resources, the IMAGO system provides a
database interface between mobile agents and remote
DBMS. To the database interface coupled with mobile
agent system and remote DBMS, efficiency has become an
important issue, because heavy-duty agent database
operations may easily turn it into bottleneck. Two levels
of system efficiency have been introduced: the technical
level and logic level. On the technical level, the most
commonly used designs are Database Connection
Management [15] and Local Cache Management [16].

In IMAGO system, each agent appears in the form of a
logic program written in Prolog. Furthermore, a set of pre-
defined system predicates can be used in the agent
program to require certain services provided by agent
servers. For example, several sample predicates of
database accessing are shown in the following code
segment:

// Database connection predicate.
db_connection(

connection(‘131.104.127.113’,‘Guelph’,‘student
’,‘1234’,‘readonly’), Handler),

// Database searching predicate with SQL query.
db_search(“select * from student”, Handler),

// Database disconnection predicate.
db_disconnection(Handler).

Generally an agent will stay inside of the engine module
and its byte code will be executed until a pre-defined
system predicate is hit. Then the engine will postpone the
current process, and transfer the agent to a proper service
module according to the type of the system predicate. For
example if the predicate is db_connection, the agent will
be relocated to database module. After the required service
being done, it will be returned back to the engine module
for continuous execution.

Whenever an agent is transferred into Database Module,
the connection management will be able to receive proper
request of the database operation based on the type of the
current database predicate in the agent program. A
corresponding kernel thread will be picked up from the
Database Thread pool under some pre-defined thread
assignment strategies. After finishing the current database
operation, the agent will be returned back to the engine.

By introducing special database module threads, it is
possible to unload those heavy resource consuming
database operations from system threads. Thus system
threads can run quickly and smoothly without being
delayed or blocked and the performance of the whole

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

113

system will not be affected by executing heavy-duty
database jobs. The architecture of multi-threading
database connection management is shown in Fig. 3.

Fig. 3 Architecture of Multi-threading Database Connection

4. Intelligent Mobile Messengers

The IMAGO system utilizes the mobility of agents to
achieve powerful, reliable and flexible inter-agent
communication. To better understand how our model
works, we shall first distinguish messengers from normal
mobile agents, and we shall call them as workers in the
rest of this paper. A worker is a normal mobile agent
created by its owner for some specific task, whereas a
messenger is an anonymous thin agent dispatched by a
worker to deliver messages. Generally speaking, a worker
is purposely separated from the location of its owner, and
best equipped with as much intelligence as possible in
order to autonomously carry out the assigned task on
behalf of its owner. Unfortunately, adding more
intelligence to a worker will make some sacrifices of
mobility. Thus, to deploy these thick workers directly for
inter-agent communication is neither economical nor
practical. This is the reason for introducing messengers –
specialized thin agents - that not only provide an agent-
based solution for inter-agent communication but also
make the solution efficient and feasible.

4.1 Naming

Clearly, each worker must have a unique name so that its
owner and other workers can communicate with it over the
network. Some systems, such as Voyager, adopt location-
transparent names at the application level. In contrast,
systems such as Aglets and D'Agent, assign location-
dependent names. For example, an agent in Aglets is
associated with a unique identifier so that every agent in
the network can be uniquely addressed by combining its
identifier with its context URL.

Obviously, identifying an agent by the combination of its
identifier and its current location does not fit well to the

mobility of agents. Since a worker may move any time to
an arbitrary remote server, its current location is uncertain.
For this reason, our model adopts a location-transparent,
closed-world naming scheme to identify workers. First, we
assume that a user-friendly, symbolic name is assigned to
each worker. Such a name must be unique in the
application (a closed world) where the worker is created,
and immutable throughout the worker's lifetime. This user-
friendly symbolic name is used to unambiguously refer to
the worker inside the application that it belongs to.

Secondly, we assume that each application is bound to a
home location that always exists during the lifecycle of the
application. Consequently, workers of an application are
all originated from the same home. If several applications
are concurrently running at the same home, we shall use
different sequencing numbers to distinguish them.
Therefore, by concatenating the user-friendly symbolic
name, the home URL and the application sequencing
number, we have a location-transparent, globally unique
identifier for each worker. It is worthwhile to note that the
home URL embedded in a worker's identifier is
independent from the worker's current location. By using
such identifiers, it is sufficient to unambiguously refer to a
worker over the Internet.

Both workers and messengers are allowed to move freely
from one host to another. That is, they may decide where
to go based on their own will or the information they have
gathered. At any stage of execution, a worker can dispatch
a messenger to deliver a message to another worker.
Deployment of messengers is the only way to achieve
inter-agent communication in our model. Since
messengers are in fact mobile agents, they can be designed
to serve different purposes such as asynchronous
messaging, synchronous messaging, broadcasting or
multicasting, etc. To accommodate incoming messengers,
we assume that each worker is associated with a
messenger queue that holds all messengers destined to this
worker and waiting for delivery of messages. The
assumptions we made in this section are reasonable
because they are already satisfied by our implementation
as well as some other mobile agent systems.

4.2 Locating Mobile Agents

Briefly speaking, locating an agent is invoking a function
of the form “where_is(X)” which should return the current
address (or access point) of agent X. Researchers have
recently proposed many schemes for designing such a
function. Various approaches for storing, updating, and
locating mobile agents are well addressed in [17].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

114

Some communication protocols use broadcasting or
multicasting approaches to locate mobile agents. In this
paradigm, location queries are broadcast to the entire
network, or multicast to a specific group of hosts. Upon
receiving such a request, each machine must check the
names of hosting agents and give a response if the
requested name is found. This paradigm is mainly
applicable to intranets. It becomes inefficient in a large-
scale network. Furthermore, the answer to “where_is(X)”
is not accurate if X moves to another host immediately
after the answer is returned, which makes message loss
unavoidable.

Another popular approach is to use a fixed location server,
called home, to keep track of locations of mobile agents.
In this scheme, agents follow a triangular routing to
communicate with each other, that is, a message is sent to
home first, which looks up the destination address and
then simply forwards the message to the receiving agent.
Unfortunately, the same problem remains. The address
returned from the lookup function “where_is(X)” is
ambiguous: X might still reside at that address, or X might
have moved to another host and its location updating
packet is on the way to home, or X might even have
started to move at the same time a message is sent to its
current location.

Forward-pointer is a promising alternative for locating
mobile agents. This scheme does not depend on a
“where_is(X)” lookup function. Instead, each mobile
agent host keeps a reference (forward pointer) for each
moving agent. For example, in Voyager, a virtual object
keeps track of the remote object by its last known address.
If the remote object moves from its last location, it will
leave a secretary object behind to forward messages to its
new location. The secretary object will be removed only if
the corresponding virtual object has received a returned
message. The advantage of this approach is that it could
automatically track down moving agents. However, it
could cause a lot of overhead and delay if remote objects
involve frequent movements. Furthermore, a theoretical
flaw is that messages might forever chase a frequently
moving receiver, even though this hardly occurs in
practice.

In the IMAGO system, the only way that workers
cooperate with each other is by the means of dispatching
messengers. Therefore, each messenger is responsible for
locating the receiving worker. In order to locate a moving
worker, agent servers should maintain enough information
to keep track of current location of every worker.
However, we have indicated that it is virtually impossible
to have the precise information about a changing
environment, because an application may involve workers

that are creating, cloning or moving all the time. To cope
with such a dynamic configuration, our model maintains
heuristic location information through distributed
registration and local updating operations, and employs a
variant of forward-pointer-based approach plus a home-
based mechanism as the backup.

Based on the naming scheme, identifiers of workers have
an embedded static home location, although these workers
might spread and roam over the network. This home is the
default server for workers to send their registration. A
newborn worker, either by creating or cloning and
regardless have born at the home host or a remote host,
must register its birthplace with the home automatically.
Even though registrations take a distributed manner, i.e.,
registration messages might flow to the home from
different remote hosts, it does not cause much network
traffic because each worker registers only once in its
whole lifecycle.

A registration message is stored as a worker record in the
local cache of the home server. A worker record is a
structure of the form {worker_id, timestamp, status}
where worker_id is the globally unique identifier of the
worker, timestamp gives the time the record last been
modified, and status indicates the current state of the
worker. For the sake of simplicity, we assume that a
worker must be in one of three possible states: ALIVE,
DISPOSED, or MOVED_TO(url).

Like the home server, a remote agent server also
remembers a collection of worker records per application
basis. However, it maintains caching information through
the local updating operation. Such an operation is very
efficient because it is done completely in the local system
layer. In general, a worker record is inserted into the local
cache when the worker is created or cloned locally, or the
first time it moves into this server. To make the local
caching more effective in locating a worker, a remote
server should also cache sender's information carried by a
messenger. Obviously, caching sender's information
exploits locality. For instance, a receiving worker is most
likely to reply to its sender in the near future, and the
sender's location can be found immediately from the local
cache.

An updating operation is also applied to a worker record
whenever the worker changes its state. For example,
when a worker moves from host S1 to host S2, its cached
record at S1 is modified with the new state
MOVED_TO(S2). This is very similar to the forward
pointer scheme which leaves behind a forwarding
reference whenever an entity moves to a new location.
Likewise, if the worker moves from S2 back to S1, its

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

115

record at S1 will be simply changed back to the state
ALIVE. Furthermore, updating operations can be used to
short cut a forwarding chain. For example, suppose that a
worker moves from S1 to S2 and then to S3. From there,
the worker dispatches a messenger to a receiver at S1.
When the messenger arrives, the updating operation will
change the worker (sender)'s record from the old state
MOVED_TO(S2) to the new state MOVED_TO(S3).
Therefore, subsequent communications to that worker will
be dispatched to S3 directly.

In the IMAGO system, we do not intend to have a
network-wise “where_is(X)” lookup function for locating
the current address of X. Instead, we use a local lookup
function that returns a possible location of X. The reason
for saying possible is that the information recorded in a
server's local cache is heuristic. For instance, if the status
of a worker is recorded as MOVED_TO(S2), there is no
guarantee that the worker we are looking for is still
working at S2, because a worker is never bound to an
absolute host address - it may very well have moved on to
another location. However, it is guaranteed that successive
lookup's at subsequently forwarded heuristic hosts will
eventually trap the worker if the worker really wants to
accept the messenger.

Now, let us consider the general lookup facility for remote
servers. The principle is very simple. We only search the
local cache to find where the worker possibly resides in.
This lookup function will never return something like
WORKER_NOT_FOUND. Instead, it either returns the
value of the current status from the located worker record,
or MOVED_TO(home) if a cache miss occurs. Since a
remote server might host multiple concurrent agents
(workers and messengers), the lookup operation and the
updating operation must be mutual exclusive. That is,
when a messenger has to locate a worker and deliver
message, it must lock the cached worker record (critical
region) to achieve mutual exclusion and ensure that the
worker is not able to change its state at the same time.

The lookup function on the home server is analogous to
the above description. In principle, there is no cache miss
because the home should hold a complete set of worker
records. However, what possibly happens in practice is
that a messenger is dispatched to a worker who might have
not been created yet or whose registration message might
be on the way home. To solve this problem, the lookup
function simply blocks this messenger. A blocked
messenger will be resumed if a new registration with a
matching receiver arrives.

4.3 Messenger Behavior

A messenger is an agent. It has its own code to be
executed. There are many ways to design messengers for
different purposes. To make it easier to understand, we
will start out by discussing a very important system
primitive. Then we will look at a simple messenger and
discuss its behavior in some detail. A more concrete
example will be given in the next section.

System primitives serve as the interface between agents
and the underlying system. In addition to the commonly
used primitives such as create, move, clone, etc., another
primitive that plays a major role in between workers and
messengers is attach. The following code segment shows
the skeleton of the attach primitive.

attach(receiver){

 lock(local_cache);
 r = lookup(receiver);
 if (r == ALIVE){
 // insert this messenger into
 // the receiver's messenger queue
 unlock(local_cache);
 // switch to another ready agent
 }
 else {
 unlock(local_cache);
 retrun r;
 }

}

The basic idea behind a messenger is try to track down the
receiver until its message is accepted. To achieve such
behavior, a messenger simply invokes the following
recursively defined deliver function.

deliver(receiver, message){

 r = attach(receiver);
if (r == RECEIVED || r == DISPOSED)

 dispose();
 else { // r == MOVED_TO(url)
 move_to(url);
 deliver(receiver, message);
 }

}

A messenger starts by invoking a call to attach which will
issue a lookup mutual exclusively. Only two possible
cases make the attach return immediately: the receiver has
deceased locally, or the receiver has moved to another host.
Recall that MOVED_TO(home) will be returned if a cache
miss occurs in a lookup, so that it seems as if the receiver
has migrated to home. Therefore, the messenger will
follow the receiver by calling move and then try to deliver
at the new host, or simply dispose itself if the receiver no
longer exists.

On the other hand, if the receiver is ALIVE at the current
host, the attach primitive will insert the caller into the
receiver's messenger queue and then make it suspended.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

116

The underlying system is free to schedule another ready
agent to execute. It is now the receiver's responsibility to
resume an attached messenger based on different actions it
is going to perform. Certainly, the receiver might invoke
an accept-type primitive. If this happens, the accepted
messenger is resumed as soon as its carried message has
been transferred to the worker's working space.
Unfortunately, whether its receiver will accept attached
messengers is unknown, because the receiving worker
might not be ready to accept any messenger yet. For
instance, it is possible that the worker moves to another
host while there are pending messengers. It is possible that
the worker disposes itself without accepting messengers. It
is also possible that the worker clones itself while it has a
non-empty messenger queue. Nevertheless, these possible
cases are facing with the same problem, namely, how the
receiver deals with pending messengers.

From the well-known semantics of strong migration, a
mobile agent should take its code, data and execution state
together when it moves to a new location. Unfortunately,
such semantics have a flaw of ignoring messages. In fact,
messages to an agent should also be a part of the agent. If
they have been received, they become a portion of data. If
they have not been received (either buffered by the
underlying system or still in transmission), then they
should go with the agent together whenever the agent
moves. Therefore, the highest degree of strong migration
is to take four parts of an agent, i.e., code, data, state and
messages, into consideration.

Although it sounds more difficult, the solution in our
model is straightforward. A worker simply resumes all
attached messengers if it moves. Likewise, a worker
resumes all pending messengers if it disposes itself. Now
consider what happens, for example, when the receiver it
was attached to resumes a messenger. At this point, it
seems as if the call to attach has just returned. However,
the returned value might be one of the three possible cases
now: RECEIVED, DISPOSED or MOVED_TO(url).
Therefore, the resumed messenger must be able to cope
with different cases and try to re-deliver the message if the
message has not been received yet and the receiver is still
alive. This is why a messenger will invoke attach each
time it moves to a new place. A messenger claims that “I
can track the receiver down provided I have the trail of the
receiver”, whereas our lookup facility says that “the
location I found is where most likely the receiver resides
at, or at least the receiver has lived”. In other words, the
heuristic location from the lookup facility provides the
trail of the receiving worker while leaves the tracking-
down job to the messenger.

4.4 Agent Communication Language

Agent Communication Language (ACL) is in fact a high-
level communication protocol that allows the sending
agent and receiving agent mutually understanding each
other. In an ACL, a message consists of two separate
aspects, namely, performative and content. The
performative shows the purpose of a message while the
content gives a concrete description for achieving the
purpose. Of course, the sending agent and the receiving
agent must agree with their ACL, so that they have at least
the same understanding of the purpose and the same
interpretation of the content of a message.

An ACL developed by FIPA [18] has defined several
performatives of messages, such as IFORM, QUERY-IF,
CFP, PROPOSE, and so on. For example, performative
INFORM indicates that the content of a message is a true
proposition, whereas QUERY-IF asks if the proposition
given as the content of a message is true. On the other
hand, FIPA does not prescribe the language used to
express the message content. Instead, it specifies the ACL
Protocol Data Unit (PDU) as a data structure, which
contains a set of one or more message elements, such as
performative, sender, receiver, language, content, etc.
Precisely which elements are needed for an ACL message
is application dependent, except that the performative
element is mandatory in all ACL messages. Certainly,
most ACL messages will also include sender, receiver, and
content elements. A simple example of a FIPA ACL
message is given in Table 1.

Table 1: An Example of FIPA ACL

As the matter of fact, our agent-based communication
model is in compliance with the FIPA ACL message
structure specification. The example in Table 1 is a typical
message carried by a mobile messenger. In the IMAGO
system, the messenger type determines performatives of
messages. For example, a messenger created from the
one-way messenger carries a message with a default
performative INFORM. To identify the sender,
alice@simp://where.alice.resides.at is used to refer to an
agent called alice residing on a mobile agent server with
the DNS name where.alice.resides.at and relying upon the
Simple Imago Migration Protocol. However, the receiver
white_rabbit is at an unknown location at this moment. It
is the messenger's responsibility to locate the receiving

Element Value
Performative INFORM
Sender alice@simp://where.alice.resides.at
Receiver white_rabbit@simp://to.be.located
Language Prolog
Content invite(mad_tea_party)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

117

agent. In general, the receiver may be a single agent name,
or a non-empty list of agent names. The language element
specifies that the message content be expressed as a
Prolog term that could be an atom, a variable, a list, or a
compound structure. Consequently, upon receiving this
message, the receiver white_rabbit should know that alice
invites him to a mad_tea_party.

Obviously, the performative and content of a message
often determine the reaction of the receiver. In addition to
the various types of system messengers for sending agents,
the IMAGO system provides a set of primitives for
receiving agents. The primitive which is similar to an
unblocking receive is accept(Sender, Msg). An invocation
to this primitive succeeds if a matching messenger is
found, or fails if either the caller's messenger queue is
empty or there is no matching messenger in the queue.
Likewise, the primitive which implements blocking
receive is wait_accept(Sender, Msg). A call to this
primitive succeeds immediately if a matching messenger is
found. However, it will cause its caller to be blocked if
either the caller's messenger queue is empty, or no
matching messenger can be found. In this case, it will be
automatically re-executed when a new messenger attaches
to the caller's messenger queue. Pragmatically, the
semantics of matching messengers is implemented by
Prolog unification. Let (S, M) be the sender and content
element carried by a messenger, and (Sender, Msg) be the
arguments of an accept-like primitive, the messenger is a
matching messenger of the accept-like primitive if the
general unification of (S, M) and (Sender, Msg) succeeds.

5. Conclusion

In this paper, we discussed the design issues of mobile
agent systems and concepts for inter-agent communication,
and investigated these issues with respect to existing
mobile agent systems. We presented the design of
IMAGO system, and discussed implementation issues
such as virtual machine, code migration, security, service
discovery, communication mechanism and database access.
The major concern of IMAGO system is how to track
down agents and deliver messages in a dynamic, changing
environment. We proposed an agent-based model that
deploys intelligent mobile messengers for inter-agent
communication. The advantage of the messenger model is
that a simple, reliable agent migration protocol is
sufficient to support both agent migration and inter-agent
communication. The IMAGO system has been
implemented and is currently under benchmark testing. An
evaluation release of IMAGO is available at the IMAGO
Lab Web site (http://draco.cis.uoguelph.ca/main.html).

Research on this subject involves further extensions of
API and investigation of adding more programming
languages to the system. Although this study concentrates
on the design of intelligent mobile agents based on logic
programming, results will be also useful in related
disciplines of network and mobile computing community.

Acknowledgments

I would like to thank members in the IMAGO Lab for
their contributions to the IMAGO project. I would also
like to express my appreciation to the Natural Science and
Engineering Council of Canada for supporting this
research.

References
[1] D. B. Lange and M. Oshima, “Programming and
Deploying Java Mobile Agents with Aglets”, Addison-
Wesley, August, 1998

[2] http://www.objectspace.com/, Voyager: Application
Development Platform for Distributed Java Applications,
2005

[3] C. Baumer, M. Breugst & S. Choy, 1999, Grasshopper
- a universal agent platform based on OMG MASIF and
FIPA standards, In Proc. of MATA, 1999, pp. 1–18

[4] H. Peine, “Ara - Agents for Remote Action”, Mobile
Agents: Explanations and Examples (eds. W. Cockayne
and M. Zyda), Manning/Prentice Hall, 1997

[5] J. Baumann et al., “Mole - Concepts of Mobile Agent
System”, World Wide Web, (1)3, 1998, pp. 123-137

[6] R. Gray, G. Cybenko & D. Kotz, “D’Agents:
Applications and Performance of a Mobile-Agent System”,
Software – Practice and Experience, 32(6), 2002. pp. 543-
573

[7] G. Vigna, “Mobile Agents and Security”, LNCSD9,
Vol. 1419, Springer-Verlag Inc., 1998

[8] http://www.sun.com/jini/, Sun. Technical, “Jini
Architectural Overview”, White Paper, 1999

[9] Universal Plug and Play Forum, “Universal Plug and
Play Device Architecture”, Version 0.91, White Paper,
2000

[10] E. Guttman, C. Perkins & J. Veizades, “Service
Location Protocol”, Version 2, White Paper, IETF, RFC
2608, 1999

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

118

[11] http://www.uddi.org, OASIS UDDI, UDDI White
Paper, 2005

[12] X. Li, “IMAGO: A Prolog-based System for
Intelligent Mobile Agents”, In Proceedings of MATA,
2001, pp. 21-30

[13] X. Li, “IMAGO Prolog User's Manual version 1.0”,
Technical Report, University of Guelph, 2003

[14] X. Li, “Efficient Memory Management in a Merged
Heap/Stack Prolog Machine”, ACM-SIGPLAN 2nd
International Conference on Principles and Practice of
Declarative Programming, 2000, pp. 245-256

[15] D. Mckay, T. Finin and A. O’Hare, “The Intelligent
Database Interface: Integrating AI and Database Systems”,
In Proceedings of the 8th National Conference on
Artificial Intelligence, 1990, pp.677-684

[16] A. Sheth and A. O’Hare, “The Architecture of
BrAID: A System for Bridging AI/DB Systems”, In
Proceedings of the Seventh International Conference on
Data Engineering, 1991, pp. 570-581.

[17] A. Tanenbaum and M. van Steen, “Distributed
Systems”, Prentice Hall Inc., 2002

[18] http://www.fipa.org, “Agent Communication Language
Specifications”, FIPA, 2005

Xining Li is a professor of computing and information
science at the University of Guelph and the director of the
IMAGO Lab. His research interests include mobile agent system,
logic programming, and virtual machine implementation. Li
received a PhD in computer science from the University of
Calgary, Canada.

