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Summary 
Multi-class support vector machines with binary tree architecture 
(SVM-BTA) have the fastest decision-making speed in the 
existing multi-class SVMs. But SVM-BTA usually has bad 
classification capability. According to internal characteristics of 
feature samples, this paper uses resemblance coefficient method 
to construct automatically binary tree to incorporate multiple 
binary SVMs. The multi-class SVMs with constructed binary tree 
have good classification capability and fast decision-making 
speed. Experimental results of yeast protein localization site 
prediction and radar emitter signal recognition show that the 
introduced multi-class SVMs with binary tree architectures are 
superior to several popular multi-class SVMs including 
one-against-all, one-against-one, directed acyclic graph, 
bottom-up binary tree and several classification methods in the 
recent literatures. 
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1. Introduction 

Depending on a large number of observations, even 
depending on infinite observations, traditional statistical 
methods have good performances in theory. Different from 
traditional statistical methods, support vector machines 
(SVMs) can achieve ideal results when the number of 
given observations is small [1-3]. SVM is a novel and 
small-size sample machine learning technique. From the 
nature of logic, SVMs use efficient transduction inference 
from training samples to predicting samples, which avoids 
the traditional thinking from induction to deduction [1,3]. 
So SVMs simplify the problems of conventional 
classification and regression greatly. Because the decision 
functions are only related to support vectors, SVMs have 
good robustness and generalization [4]. As a valid method 
for dealing with nonlinear classification and nonlinear 
regression, SVMs have become very popular in many 
domains, such as audio classification and retrieval [5], 
visual object recognition [6], target recognition [7], radar 
emitter signal recognition [8], handwritten Chinese 
character recognition [9], wind speed prediction [10] and 
financial time series forecasting [11]. 

However, SVM was designed for binary classification 
originally and it is not a straightforward issue to extend 
binary SVM to multi-class problem [12-15]. Constructing 
multi-class SVMs is still an on-going research issue 
[13-21]. The combination of multiple binary SVMs is a 
popular technique to solve multi-class classification 
problems. A great number of experimental results and 
engineering applications verify that the combination 
method of binary SVMs is a valid and practical way for 
solving multi-class classification problems [5-9,13-21]. In 
the existing literatures, there are mainly 5 combination 
approaches presented to incorporate binary-class SVMs. 
They are respectively one-against-all (OAA) [14,16,17], 
one-against -one (OAO) [14,19], directed acyclic graph 
(DAG) [20], bottom-up binary tree (BUBT) [5] and binary 
trees architecture (BTA) [6,13-16,21,22]. 
 For an N-class classification problem, BTA need only 
test 2log N  binary SVMs for classification decision, 
while the other 4 methods need make at least N-1 binary 
decisions. So BTA has the fastest decision speed among 
the 5 combination methods. The recognition speed is a 
very vital performance index in some real-time 
applications such as radar emitter signal recognition. In the 
procedure of constructing a binary tree, how to choose the 
root node of every layer is an important issue. In [16], 
k-means clustering method was used to construct the 
binary tree. In [15], a kernel-based self-organizing map 
was used to convert the multi-class problem into binary 
hierarchies. The conversion employed two methods 
including human drawing and automatic clustering that 
maximizes a scattering measure calculated from the data. 
In [21], the minimum spanning tree algorithm was used as 
a tool for finding binary partition of classes in a multi- 
class learning problem. But k-means clustering and 
automatic clustering [15] can not process effectively the 
cases that there are overlaps among multiple or all classes. 
Human drawing is suitable for the classification problem 
with only 2-dimensional or 3-dimensional features because 
high dimensional features vector can not plot intuitively in 
feature space. Furthermore, the conversion in [15] requires 
exhaustive search for all possible combinations. The 
minimum spanning tree algorithm will product multiple 
binary tree architectures [21], that is to say, the algorithm 
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will result in multiple solutions, which brings another 
problem of choosing the best binary tree. 
 This paper proposes a novel method for constructing 
multi-class SVM classifiers with binary tree architectures. 
The method called Resemblance Coefficient multi-class 
SVM classifiers with Binary Tree Architectures (RCBTA) 
uses resemblance coefficient construction algorithm 
(RCA) to convert the multi-class problem into several 
binary-class problems. Utilizing the distribution of 
samples, RCA finds the optimal binary partition of classes 
in every layer of the binary tree. Both testing experiments 
and an application example of radar emitter signal 
recognition verify that the introduced method is superior to 
OAA, OAO, DAG, BUBT and several methods in 
[22,24-26] in recognition speed and classification 
capability. 
   The remainder of the paper is organized as follows. 
Section 2 introduces RCA. Results of simulation 
experiments are analyzed in section 3. Conclusions are 
listed in Section 4. 
 
2. Resemblance Coefficient Construction 
Algorithm 
 
The existence of confusion classes is one of the most 
important problems in multi-class pattern recognition 
problems [16]. It is also the main reason that results in 
misclassifications of different classes. How to deal with 
the overlapping samples of different classes is the key 
technique that converts multi-class classification problems 
into multiple binary-class classification problems [16]. So 
when binary-class SVMs are used to incorporate a binary 
tree, it is critical technique for making a coarse 
discrimination between confusion classes and then a finer 
discrimination within the confusion classes to determine 
how to partition multiple classes in every binary-class 
SVM in the tree. This section gives an algorithm to 
accomplish this task. In this section, the definition and the 
property of resemblance coefficient are firstly given. Then, 
a criterion function is presented to judge the degree of 
confusion of different classes. Finally, the detailed 
algorithm for constructing the binary tree is introduced 
Definition 1 Suppose that one-dimensional functions f(x) 
and g(x) are continuous, positive and real, i.e. 
 

( ) 0, ( ) 0f x g x≥    ≥ .                  (1) 
 
Resemblance coefficient of function f(x) and g(x) is 
defined as 
 

2 2

( ) ( )

( ) ( )
r

f x g x dx
C

f x dx g x dx
=

⋅

∫
∫ ∫

.          (2) 

 

In Eq. (2), the integral domains of f(x) and g(x) are their 
definable domains of the variable x. Moreover, when x is 
within its definable domain, the value of function f(x) or 
g(x) cannot be always equal to 0 [27]. 
Property 1 The value domain of resemblance coefficient 
Cr is 
 

0 1rC≤ ≤ .                 (3) 
 
Because f(x) and g(x) are positive functions, according to 
the famous Cauchy Schwartz inequality, we can obtain 
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Obviously, we can infer 0 1
r

C≤ ≤ . According to the 
conditions of Cauchy Schwartz inequality, if f(x) equals to 
g(x), resemblance coefficient Cr of f(x) and g(x) gets the 
maximal value 1. In fact, if and only if the f(x)-to-g(x) ratio 
in every point is constant, resemblance coefficient Cr 
equals to 1. If and only if the integral of product of f(x) and 
g(x) is zero, i.e. for arbitrary x, f(x)=0 or g(x)=0, 
resemblance coefficient Cr equals to the minimal value 0 
[27]. 

From Def. 1, computing resemblance coefficient of 
two functions corresponds to computing the correlation of 
the two functions. The value of resemblance coefficient 
mainly depends on the characteristics of two functions. If 
f(x) is in proportion to g(x), i.e. f(x)=kg(x), k>0, the value 
of resemblance coefficient Cr equals to 1, which indicates 
function f(x) resembles g(x) completely. As the 
overlapping of the two functions decreases gradually, 
resemblance coefficient Cr will increase gradually, which 
indicates that f(x) and g(x) are resemblant partly. When f(x) 
and g(x) are completely separable, Cr gets to the minimal 
value 0, which implies f(x) does not resemble g(x) at all. 

To compute the degree of sample overlapping of two 
classes, we introduce the following criterion function: 
 

2 2

( ) ( )
1

( ) ( )

f x g x dx
J

f x dx g x dx
= −

⋅

∫ .         (6) 

 
According to the definition and property of resemblance 
coefficient, the value of J is always equal to or more than 
zero. For any x, if f(x) ≠ 0 and g(x)=0 or if g(x) ≠ 0 and 
f(x)=0, J arrives at the maximal value. If f(x) is the same as 
g(x), J=0. So the criterion function J given in Eq.(6) 
satisfies the three class separability conditions that class 
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separability criterion based on probability distribution 
must satisfy [23]. i.e. (i) the criterion function value is not 
negative; (ii) if there is not overlapping part of distribution 
functions of two classes, the criterion function value gets 
to the maximal value; (iii) if distribution functions of two 
classes are identical, the criterion function value is 0. 

When the two functions f(x) and g(x) in Eq.(6) are 
regarded respectively as probability distribution functions 
of feature samples of two classes A and B, several 
separability cases of A and B are shown in Fig. 1. For all x, 
if one of f(x) and g(x) is zero at least, which is shown in 
Fig.1(a), A and B are completely separable and the 
criterion function J arrives at the maximal value 1. If there 
are some points of x that make f(x) and g(x) not equal to 0 
simultaneously, which is shown in Fig.1(b), A and B are 
partly separable and the criterion function J lies in the 
range between 0 and 1. For all x, if f(x)=kg(x), k R+∈ , 
which is shown in Fig.1(c), k=2, A and B are not 
completely separable and the criterion function J arrives at 
the minimal value 0. 

In pattern recognition, the extracted features usually 
order a certain laws. In general, the features vary in the 
neighboring area of expectation value because of plenty of 
noise and measurement errors. If occurrences of all feature 
samples are computed in statistical way, a feature 
probability distribution function can be obtained. The 
function can be considered approximately as a Gaussian 
distribution function with the parameters of expectation 
and variance of feature samples. Thus, functions f(x) and 
g(x) in Eq.(6) can be considered as feature distribution 
functions of different classes. Fig.1(b) and Eq. (6) indicate 
that the more serious the overlapping of two classes is, the 
larger the criterion function is. In other words, when 
functions f(x) and g(x) in Eq.(6) stand for feature 
distribution functions of two classes, the criterion function 
value denotes the confusion of two classes. Thus, we can 
use the criterion function in (6) to classify multiple classes 
into binary classes gradually. An additional explanation is 
that any function satisfied the conditions in definition 1 
can be used as f(x) or g(x) in Eq.(6). 

According to the above criterion function, the detailed 
algorithm for constructing binary tree architecture to 
combine multiple binary-class SVMs is given as follows. 
Step 1 Initialization: deciding the number N of classes, the 

number M of features and the number L of samples 
in training set. 

Step 2 Computing the mean value ( 1, 2, , ,ija i N j= =L  

1, 2, , )ML and the variance value 1,(ijv i =  

2, , , 1, 2, , )N j M=L L of L samples of the jth 
( 1, 2, ,j M= L ) feature of the ith ( Ni ,,2,1 L= ) 
class. 

Step 3 Let j=j+1, repeating step 2 until j=M. 
Step 4 Let i=i+1, repeating step 2 and step 3 until i=N. 

Step 5 For the jth ( 1, 2, ,j M= L ) feature (in the 

beginning, 1=j ), the mean values 1 2, , ,j ja a L  

Nja  of N classes are sorted from small to the large. 

The sorted results are represented with 1 2, ,j jb b  

, NjbL . 
Step 6 Let j=j+1, repeating step 5 until j=M. 

 

f(x) 

g(x) 

J =1 (a)   

f(x) 

g(x) 

0< J <1 (b)  
 

g(x) 

f(x) 

J =0(c)  
 

 
Fig. 1 Three separability cases of functions ( )f x and ( )g x . 

 
Step 7 Choosing a real number )10( ≤≤ hh TT as the 

adjusting parameter. When hT =1, the neighboring 
two classes have no overlapping samples nearly. 
When hT =0, the samples of the neighboring two 
classes are overlapping seriously. As hT  decreases 
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from 1 to 0, the confusion samples increase. 
Through changing the adjusting parameter, we can 
gradually convert multi-class classification 
problems into binary-class classification problems. 

Step 8 The position, where the smallest mean value jb1  of 
the jth feature is, is encoded to zero (i.e. Code=0) 
to be the initial value. 

Step 9 Starting with the smallest value jb1  of the jth 
feature, the criterion function value 

),,3,2( NkJk L=  of jb1 and )1(1 +jb is computed by 
the sorted order Njjj bbb ,,, 21 L using (6). In the 
procedure of computing, the function f(x) is 
considered as a Gaussian function of the mean value 

jb1 and its corresponding variance value and the 
function g(x) is considered as a Gaussian function of 
the mean value )1(1 +jb and its corresponding variance 
value. If hk TJ ≥ , the encoded value of the 
corresponding position of the mean value )1(1 +jb adds 
1, i.e. Code=Code+1. Otherwise, if hk TJ < , the 
encoded value of the corresponding position of the 
mean value )1(1 +jb  keeps unchanging, i.e. Code=0. 

Step 10 Let k=k+1, repeating step 9 till k=N. 
Step 11 Let j=j+1, repeating step 8, step 9 and step 10 until 

j=M. 
Step 12 An encoded table is finally obtained. An example 

of the encoded table is shown in Table 1. 
 

Table 1: An example of encoded table (2 rows denote two features 
and 10 column denote 10 classes) 

Clases 1 2 3 4 5 6 7 8 9 10
Feature1 1 1 1 0 0 3 2 1 1 0
Feature2 0 0 0 0 0 0 0 0 0 0

 
 
Step 13 According to the encoded table, we can easily 

classify multiple classes into two groups. The 
detailed classification steps are described in the 
following description. The classes with the same 
lines are considered as a group. Take Table 1 for 
example, column 1,2,3,8 and 9 are the same and 
column 4,5 and 10 are the same. So we can first 
group classes 1,2,3,8 and 9. The rest classes 4,5,6,7 
and 10 are grouped. Of course, classes 6 and 7 may 
belong to any group because the two classes have 
different code from any of 10 classes. To balance the 
binary-class SVM, we here group classes 6 and 7 
with classes 4, 5 and 10. 

Step 14 Decreasing the adjusting parameter, repeating step 
7 to step 13. When the adjusting parameter 
decreases, we obtain Table 2. In Table 2, classes 1,2 
and 8 have the same code. So we classify the former 
group into two subgroups: one is composed of 

classes 1,2 and 8; the other is composed of classes 3 
and 9. Similarly, the latter group is also classified 
two subgroups: one is composed of classes 4 and 5; 
the other is composed of classes 6, 7 and 10. 

Step 15 The rest may be deduced by analogy. Finally, a 
whole binary tree, which is shown in Fig.2, is 
constructed. 

 
Table 2: The encoded table obtained when the adjusting parameter 

decreases 
Clases 1 2 3 4 5 6 7 8 9 10

Feature1 1 1 2 0 0 4 3 1 2 0
Feature2 0 0 0 2 2 0 1 0 2 0

   
 

 

1,2,3,8,9 vs. 4,5,6,7,10 

1,2,8 vs. 3,9 4,5 vs. 6,7,10 

1,2 vs. 8 3 vs. 9 4 vs. 5 6,7 vs.10 

1 vs. 2 8 3 9 4 5 6 vs. 7 10 

6 71 2
 

 
Fig. 2 An example of binary tree architecture constructed. 

 
 
3. Experiments 
 
In this section, two experiments are made to verify the 
performance of the proposed algorithm. One is prediction 
of yeast protein cellular localization sites, which is a 
general benchmark and a very difficult classification 
problem [22, 24-26]. The other is an application example 
of radar emitter signal recognition, which is a very 
important and difficult problem in modern electronic 
warfare [27-30]. 
 
3.1 Testing Experiments 
 
The dataset of yeast protein localization sites was donated 
by Horton and Nakai in 1996. The detailed information 
can be found in [24,25]. The dataset can be obtained in this 
web [31]. In this dataset, the class is the localization site 
and there are 10 classes and 8 features for prediction. The 
number of samples for predicting yeast protein 
localizations is 1484. The 10 classes are respectively 
cytosolic or cytoskeletal (CYT), nuclear (NUC), 
mitochondrial (MIT), membrane protein with no 
N-terminal signal (ME3), membrane protein with 
uncleaved signal (ME2), membrane protein with cleaved 
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signal (ME1), extracellular (EXC), vacuolar (VAC), 
peroxisomal (POX) and endoplasmic reticulum lumen 
(ERL). The 10 classes are labeled 1, 2, 3, 4, 5, 6, 7, 8, 9 
and 10, respectively. The description of this dataset is 
shown in Table 3. 

According to the samples of 10 classes in this dataset, 
we use the proposed algorithm to construct binary tree 
architecture, which is shown in Fig.3. 
 

Table 3: Yeast protein dataset description (NoS is abbreviation of 
number of samples) 

classes CYT NUC MIT ME3 ME2
NoS 463 429 244 163 51 

classes ME1 EXC VAC POX ERL
NoS 44 35 30 20 5 

 
 

 1,2,4,5 vs. 3,6,7,8,9,10 

3,9,10 vs. 6,7,8 1,2 vs. 4,5 

3,9 vs. 10 

3 vs. 9 10 

1 vs. 2 

1 2 

3 9 

6 vs. 78 

6 7

4 vs. 5 

4 5 

6,7 vs. 8 

 
 

Fig. 3  Binary tree architecture for predicting yeast protein 
localization sites. 

 
 

In order to bring into comparison with the methods in 
[24-26], we use 5-fold cross-validation methodology to 
test the introduced algorithm. That is to say, the samples of 
every class are divided into 5 subsets of approximately 
equal size. Gaussian function is chosen as kernel function 
of SVMs. To decrease the effect of changing parameters, 
63 combinations of constant 0 1 2 3 4[10 ,10 ,10 ,10 ,10 ,C =       

5 610 ,10 ]  and kernel parameter [0.001, 0.005, 0.01,σ =     
0.05, 0.1, 0.5,1, 5,10]      are used to test respectively the 
multi-class SVMs with the binary tree architecture shown 
in Fig.3. The testing results of 5 subsets are given in Table 
4. In this Table, we give the highest recognition rate among 
63 experimental results for every cross-validation. Also, 
the parameters corresponding to the best result is given. 
The final experimental result obtained using the 
multi-class SVM classifiers with the binary tree 
architecture shown in Fig.3 is given in Table 5. In [24, 25, 
26], multiple methods were used to predict yeast protein 
localization sites. The methods are respectively 
probabilistic classification system (PCS) [25], kNN [24], 
decision tree (DT) [24], Naïve Bayes (NB) [24], HN [24], 

growing cell structures (GCS) [26], feed forward neural 
networks (FN) [26], genetic algorithm (GA) [26] and ERR 
[26]. The experimental results in [24, 25, 26] are also 
shown in Table 5. Additional explanation is that the 
number of samples of CYT and NUC has a little difference. 
In [24], CYT and NUC have 444 samples and 426 samples 
respectively, while in this paper, they are 463 and 429, 
respectively. 
 

Table 4: Experimental results of 5 subsets (SS) in 5-fold  
cross-validation tests (%) 

Classes SS1 SS2 SS3 SS4 SS5 
1 70.33 58.06 82.80 61.29 72.04 
2 62.35 50.00 52.33 53.49 43.02 
3 41.67 46.94 42.86 51.14 69.39 
4 77.42 66.67 84.85 87.88 87.88 
5 9.09 20.00 40.00 50.00 50.00 
6 75.00 88.89 77.78 66.67 77.78 
7 28.57 85.71 57.14 42.86 57.14 
8 0 0 0 16.67 0 
9 50 25.00 25.00 0 50.00 
10 100 0 0 100 100 
C 102 103 102 103 106 
σ  0.5 1 0.5 0.5 5 

   
The baseline correct recognition rate, which is the 

error rate for a classifier that always predicts the class with 
most instances, is 54.50% . From Table 4 and Table 5, the 
introduced method achieves 59.37% correct recognition 
rate, which is much higher than PCS, DT, NB, HN, GCS, 
FN, GA and ERR. Though, the correct recognition rate is a 
little lower than that of PCS. The reason is that the number 
of samples of CYT and NUC in [24] is not identical with 
that in this paper. The experimental results indicate the 
validity and superiority of the introduced method. 

In [22], only 9 classes were used to make 10-fold 
cross-validation experiments. To compare RCBTA with 
several methods in [22], we also use the 9 classes to test 
the performance of the proposed method. In this 
experiment, 1484 samples are divided into 10 subsets. In 
every test, 9 subsets are employed to train SVMs and the 
rest one subset is used to test trained SVMs. The testing 
results of 10 subsets are given in Table 6. In this Table, we 
give the highest recognition rate among 63 experimental 
results for every cross-validation. The average correct 
recognition rate of RCBTA is shown in Table 7. There are 
13 methods in [22] and they are 1AA (one-against-all), 
AAA (all- against-all), DDAG (decision directed acyclic 
graph), ECOC (error correcting output codes), 1, 2, 3, 4, 5, 
6, 7, 8 and DT, respectively. 1AA, AAA, DDAG and 
ECOC are 4 multi-class SVM methods. 1AA, AAA, 
DDAG are respectively identical with OAA, OAO and 
DAG in this paper. Experimental results of the 13 methods 
in [22] are also shown in Table 7. 

Table 6 and Table 7 show that the introduced 
method is superior to the other 13 methods in [22] in 
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Table 5: Comparisons of RCBTA and the methods in [24, 25, 26] (%) (The blank cells in this table have no values in [26]) 

Class RCBTA PCS kNN DT NB HN GCS FN GA ERR 
1 68.90 74.3 55.78 55.10 53.74 55.10     
2 52.21 35.7 59.18 51.02 57.82 55.78     
3 51.64 47.1 60.96 56.16 56.16 58.22     
4 80.98 85.3 65.75 58.22 58.22 55.48     
5 33.33 15.7 48.63 50.00 45.21 47.95     
6 77.07 63.6 62.33 57.53 54.11 53.42     
7 54.29 45.7 68.49 65.75 60.27 67.81     
8 3.33 10.0 58.90 57.53 61.64 56.16     
9 30.00 0 56.85 56.85 56.16 55.48     
10 60.00 60.0 58.22 57.53 59.59 57.53     

Ave. 59.37 54.9 59.51 56.57 56.29 56.29 55 57 55 56 
 
 

Table 6: Experimental results of 10 subsets in 10-fold cross-validation tests (%) 
Subsets CYT NUC MIT ME3 ME2 ME1 EXC VAC POX Ave. 

1 79.6 64.3 32.1 73.7 50.0 62.5 50.0 0.0 0.0 61.2 
2 63.0 58.1 54.2 81.3 20.0 100 66.7 0.0 100 61.0 
3 63.0 53.5 41.7 68.8 20.0 75.0 100 0.0 50.0 55.5 
4 58.7 44.2 54.2 75.0 20.0 100 66.7 0.0 0.0 53.4 
5 87.0 55.8 20.8 93.8 40.0 75.0 66.7 0.0 0.0 62.3 
6 69.1 41.9 54.2 87.5 0.0 100 33.3 0.0 100 63.7 
7 69.6 62.8 66.7 75.0 20.0 50.0 33.3 0.0 50.0 63.0 
8 69.6 53.5 37.5 93.8 60.0 75.0 100 0.0 50.0 61.0 
9 76.1 46.5 75.0 87.5 60.0 100 66.7 0.0 50.0 66.4 

10 71.7 53.5 62.5 81.3 40.0 75.0 33.3 0.0 0.0 61.6 
 
 

Table 7: Comparisons of RCBTA and methods in [22] (%) 
 CYT NUC MIT ME3 ME2 ME1 EXC VAC POX Ave. 

RCBTA 72.7 53.4 49.6 81.6 33.3 79.5 60.0 0.0 40.0 60.9 
1AA 67.7 50.8 57.7 84.8 33.3 81.0 50.0 3.3 45.0 60.1 
AAA 72.2 48.2 55.3 78.1 41.3 71.5 61.7 0.0 50.0 59.9 

DDAG 70.2 49.9 54.5 78.6 41.3 71.5 61.7 3.3 50.0 59.8 
ECOC 69.8 50.1 57.7 81.1 39.3 73.5 61.7 6.7 45.0 60.5 

1 71.3 51.3 48.3 75.6 33.7 69.5 47.5 0.0 45.0 58.3 
2 56.0 59.4 52.0 78.7 41.3 73.5 61.7 0.0 45.0 57.6 
3 70.0 50.4 50.4 78.7 43.3 75.5 52.5 6.7 45.0 59.2 
4 74.7 49.4 45.8 71.9 26.0 71.5 65.0 3.3 45.0 58.3 
5 71.7 52.0 51.1 71.3 39.0 51.0 40.0 0.0 50.0 58.3 
6 69.6 48.0 45.8 83.0 12.0 73.5 65.0 0.0 45.0 57.1 
7 61.2 56.4 50.7 79.3 25.0 80.0 52.5 3.3 50.0 57.8 
8 71.3 51.3 50.3 75.0 33.7 69.5 55.0 0.0 45.0 58.8 

DT 57.5 50.1 52.4 83.6 41.0 74.5 60.0 3.3 30.0 55.8 
 
 

correct recognition rate. Table 5 and Table 7 indicate that 
resemblance coefficient algorithm is a valid method to 
construct binary tree architecture for combining multiple 
binary-class SVMs to solve multi-class classification 
problems. 
 
3.2 Application Example 
 
Radar emitter signal recognition is one of the key proce- 

dure of signal processing in electronic intelligence systems, 
electronic support measure systems and radar warning 
receiver systems in modern electronic warfare [27-30]. In 
our prior work [28], two entropy features were extracted 
from 10 advanced radar emitter signals. The 10 signals are 
represented with 1 2 10, , ,x x xL , respectively. Every radar 
emitter signal has 500 samples. Thus, there are 5000 
samples of 10 signals totally. 

Using the samples, RCA is applied to construct binary 



IJCSNS International Journal of  Computer Science and Network Security, VOL.6 No.2, February 2006 
 
 

 

125

 

tree architecture, which is shown in Fig.2. The encoded 
tables in the procedure of construction are shown in Table 
1 and Table 2. In the experiment, 5-fold cross-validation 
method is employed to test trained SVM classifiers with 
the constructed binary tree architecture. That is to say, the 
total samples are divided into 5 parts of which 4 parts are 
used as training samples and the remaining one part as the 
testing samples. Gaussian function is chosen as kernel 
function of SVM. The parameter σ of Gaussian kernel 
function varies from 0.001 to 10, i.e. [0.001, 0.005,σ =    
0.01, 0.05, 0.1, 0.5,1, 5,10]      . The constant C varies from 1 

to 106, i.e. 0 1 2 3 4 5 6[10 ,10 ,10 ,10 ,10 ,10 ,10 ]C =       .  Thus, there 
are 63 combinations of C and σ  and consequently 63 
tests need fulfill in this experiment. Table 7 shows the 
lowest error recognition rates (ERR) of the tests of the 
introduced method. 

To compare the classification performances of the 
proposed multi-class SVMs with those of several popular 
multi-class SVMs including OAA [14, 16, 17], OAO 
[14,19], DAG [20], BUBT [5]. Performance evaluation 
includes ERR and testing time. Each of the 4 methods 
fulfills 63 tests, of which the lowest error recognition rate 
is also given in Table 8. 

Table 8 shows that RCBTA achieves the lowest ERR 
and the shortest testing time among 5 multi-class 
classification SVM classifiers. The experimental results 
verify again that the proposed method is valid. 
 

Table 8: Comparisons of RCBTA, OAA, OAO, DAG and BUBT  
(%) 

Signals RCBTA OAA OAO DAG BUBT
x1 3.75 26.75 29.25 23.63 25.38
x2 46.38 49.75 37.25 40.13 43.88
x3 0.00 3.50 0.13 1.88 0.25 
x4 0.63 1.38 0.63 0.25 0.25 
x5 1.13 6.50 5.13 2.63 4.00 
x6 0.00 0.00 0.00 0.00 0.00 
x7 0.00 3.25 0.00 0.00 0.00 
x8 13.38 8.25 10.13 11.38 5.25 
x9 0.00 0.38 0.00 0.00 0.25 
x10 1.63 4.38 1.38 2.13 0.88 

ERR 6.69 10.41 8.38 8.20 8.01 
Testing 

time(Sec.) 
92.84 525.41 496.14 103.30 160.75

 
 

Although BTA has fastest decision-making speed 
among several multi-class classification methods using 
binary-class SVMs, the problem of constructing good 
binary tree is always ongoing research issue. The examples 
of prediction of yeast protein localization sites and radar 
emitter signal recognition indicate that RCA proposed in 
this paper is a good way to solve this difficult problem. 
Moreover, Table 5, Table 7 and Table 8 show that if the 
architecture of binary tree is constructed appropriately, 

BTA can achieve better classification performances than 
other multi-class SVM methods. Thus, BTA has fast 
decision-making speed and good classification capability 
simultaneously. 
 
4. Concluding Remarks 
 
This paper proposes a novel preprocessing method for the 
multi-class classification SVMs with binary tree 
architecture. The main point of the introduced method is 
that RCA is used to convert multi-class classification 
problems into binary-class classification problems in each 
of layers in binary tree architecture. According to feature 
distribution, RCA groups preferentially the classes with 
serious confusion and then groups the classes with a little 
or no confusion. Therefore, the multi-class SVM 
classifiers with binary tree architecture constructed by 
using RCA have good classification capability. Also, the 
SVM classifier with binary tree architecture has faster 
decision speed than the existing popular multi-class SVM 
classifiers including OAA, OAO, DAG and BUBT. So the 
multi-class classification method in this paper takes 
advantage of both the efficient computation of BTA and 
the high classification accuracy of SVMs. Two examples 
of yeast protein localization site prediction and radar 
emitter signal recognition verify that the introduced 
method has high efficiency of decision-making and good 
classification capability. This paper uses only two 
examples to compare the performances of RCBTA with 
other methods. Further study of this paper is that more 
examples are applied to test the performances of the 
introduced method. Moreover, RCA is mainly used to 
process continuous feature values. How to deal with 
discrete feature values for constructing binary tree 
architecture is also a problem to study further 
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