
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

127

A DTD-Syntax-Tree Based XML file Modularization
Browsing Technique
Zhu Zhengyu1, Changzhi Li, Yuan Gao

Computer College of Chongqing University, Chongqing (400044), China

ABSTRACT
First, by using the current mature HTML information retrieval
techniques, an XML information retrieval system framework will
be given in this paper. Then, a DTD-tree based XML file
modularization browsing technique will be introduced to browse
the retrieval result (a list of XML URLs). Compared with the
current XML retrieval systems[2,6-9], our new system has the
following advantages: 1) It can retrieve XML information among
all the XML files on Internet. 2) It can let the user browse XML
files more easily and faster by modularizing these files. 3) It can
effectively reduce the load on data transmission. So it is
applicable for cases of the users of mobile devices or users of
dial-in terminal connections.

Keywords
DTD syntax tree, XML, Basic Content Module, Information
Retrieval System.

1. INTRODUCTION
XML [1] is a simplified subset of the Standard Generalized
Markup Language (SGML), a text-based data format for
structured documents. XML is a tag language that looks similar in
style to HTML [3]. However, it supports a much richer set of
features such as user-definable tags. XML is now a
recommendation of W3C.
XML is perceived as the next wave of the Internet technology
with the potential of replacing HTML for several reasons. With
the increase in popularity in the use of XML pages, it is becoming
an important thing that how XML information can be retrieved
effectively from XML files.
The current information retrieval systems on XML files (XML-
IRS) can be divided into two types. One [7,8] is based on RDBMS.
XML data are transformed and saved in the RDB. The user
queries XML information by SQL. The other [2,6,9] is based on
some special XML query language. It works directly on XML
files. The user queries XML information by a query language
something like SQL. There exist some disadvantages for these
systems. The RDBMS-based systems can only retrieve
information on those XML files managed by the RDBMS. The
query language-based systems require users must specify
definitely the XML file's URL (XML URL, for shortening), know
its internal structure, and have some knowledge about the
language.
First, In this paper we will discuss how to use the current HTML
information retrieval techniques to build a basic XML-IRS, which
can retrieve XML information among all the XML files on
Internet. Then, we will introduce a DTD-tree based XML

modularization browsing technique to let users browse the
retrieval result more easily and faster.

2. A basic XML-IRS framework
Generally, a traditional information retrieval system on HTML
files (HTML-IRS) has the framework as is shown in Figuer1 and
its work process is as follows. 1) With some strategy, the Robot
searches and gathers the index information about each HTML
page on Internet and builds the HTML index database. 2) The
user enters a query condition at the browser. 3) The Web server
searches data in the HTML index database and finds out the query
result (a list of URLs of all the HTML pages) satisfying the given
query condition on Internet. 4) The query result will be
transmitted to the browser and shown to the user. 5) The user will
read and click each URL in the query result one by one. 6) When
a URL is clicked, the actual HTML page will be returned to the
browser.
Both XML files and HTML files are plain text files and both are
made up of tags and contents. Any XML file can be directly read
and understood by the user. An XML file can be easily wrapped
as a new HTML file which enables the user to read the original
XML file in the browser. So by using the technique on the HTML
IRS, we can easily build a basic XML IRS framework as is shown
in Figure2. Its work process is very similar to that of the HTML
IRS. To browse the query result (a list of XML URLs) one by one,
the user can directly read each XML file in the browser, or get the
needed XML information from each XML file by some tool such
as XQuery[2] or XQL[9] system.

[Figure1] The traditional HTML IRS framework

 brow
ser

Web server

Internet

HTML files

Internet

HTML file
HTML URL

query

query result
(a list of HTML URLs)

R
obot

Retrieval Service

HTML index
Database

[Figure2] The basic XML IRS framework

brow
ser

Web server

Internet

XML files

Internet

XML file

XML URL

query
di iquery result

(a list of XML URLs)

R
obot

Retrieval Service

 XML index
Database

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

128

3. The DTD-based XML modularization
technique

Commonly, an XML-IRS ought to complete two main tasks. The
first task is how to find out all the XML URLs (the query result)
among all the XML files on Internet for a given query condition.
The second task is how to fast browse and finally retrieve out the
needed XML information from the query result.
Though our basic XML-IRS has the important capability that can
do the first Task well, it is difficult and time-consuming to
complete the second task. If the user directly reads all the XML
files of the URLs in the query result, it is time-consuming because
he may have to deal with a great number of URLs or large files. If
the user uses some tool such as XQuery or XQL system, he must
command the knowledge of its query language and know the
internal structures of XML files in the query result.
To do the second task better, we will introduce a DTD-based
XML modularization technique into our system.

3.1 The concept about BCMs
Based on the technique of making the contents of an HTML file
blocked, an HTML-IRS has been presented in our former paper [4]
and It can let users browse a set of HTML file's URLs easily and
fast. Below we will introduce this idea into our XML-IRS.
Because XML files are different from HTML files, the technique
in our XML-IRS will also be different from that in HTML-IRS.
First, we introduce the concept about BCMs.
Though an XML file might contain a lot of contents, generally, a
different user might concern about its different part. So a better
XML-IRS ought to be the one that can retrieve out only the
needed part from the XML file and transmit it to the browser.
In our opinion, each XML file contains many Basic Content
Modules (BCMs). Each BCM is a part of contents of an XML file
and might be the needed XML information of users. Furthermore,
some other XML information that might be needed by users can
also be compounded from BCMs. We call them the Compound
BCMs (CBCMs). Here is an example to illustrate the concept.

[Example 1] For bib.xml in List1 with its DTD in List2, its three
BCMs are Module1 "the title and the authors of the books",
Module2 "the table of contents of the books" and Module3 "all
the books whose title contains a given string". They are shown
respectively in List3, List4 and List5 (when the string is "Web").
Here Module3 is a dynamic BCM. The string value can be given
dynamically from the user. Otherwise, CBCM "the title, the
authors and the table of contents of the books" can be composed
of Module1 and 2.

<bib>
 <book year="2000">
 <title>Data on the Web</title>
 <author>Serge Abiteboul</author>
 <author>Peter Buneman</author>
 <section>
 <title>Introduction</title>
 <p>Text ... </p>
 <section>
 <title>Audience</title>
 <p>Text ... </p>
 </section>
 <section>
 <title>Web Data and the Two Cultures</title>
 <p>Text ... </p>
 <image source="csarch.gif"/>
 <p>Text ... </p>
 </section>
 </section>

 </book>
……
</bib>

[List1] bib.xml

<!ELEMENT bib (book*)>
<!ELEMENT book (title, author+, section+)>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT section (title, (p | image | section)*)>
<!ELEMENT p (#PCDATA)>
<!ELEMENT image EMPTY>
<!ATTLIST image
 source CDATA #REQUIRED >

[List2] The DTD file for bib.xml

<bib>
 <book>
 <title>Data on the Web</title>
 <author>Serge Abiteboul</author>
 <author>Peter Buneman</author>
 </book>
 ……

</bib>
[List3] The title and the authors of the books

<bib>
 <book>
 <title>Data on the Web</title>
 <section>
 <title>Introduction</title>
 <section>
 <title>Audience</title>
 </section>
 <section>
 <title>Web Data and the Two Cultures</title>
 </section>

 </section>
 </book>
 ……
</bib>

[List4] The table of contents of the books

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

129

3.2 The DTD-based representation of BCMs
In this section, we will discuss how to describe BCMs. Different
from the method in the HTML-IRS where the modules are
described by adding module tags directly to HTML files [4], in our
XML-IRS, we will describe BCMs with a DTD syntax tree.
First, from each DTD we can produce a DTD syntax tree as below.
Each element in the DTD is a node in the tree. The order-relation
and nesting-relation among elements in the DTD will correspond
respectively to the brother-relation and father-children-relation in
the tree. Then, for describing BCMs, a special Module Attribute
(MA) will be used in the tree. Each MA-value denotes a unique
BCM. To simplify the discussion, we only consider the elements
in a DTD and so no attributes appear in the tree.
[Example 2] For the DTD in Example1, its DTD syntax tree with
three BCMs is shown in Figure3. In a DTD syntax tree, we will
use the following symbols to represent some special meanings:
() denotes MAs, all elements with MA=1 represent Module1,

likewise MA=2 represents Module2 and MA=3 with a
variable ‘title%’ represents Module3, a dynamic BCM;

 denotes the nested element that is also its sub-element;
 denotes one of the elements;
+ denotes one or more elements;
* denotes zero or more elements;
n# denotes that all the nodes of the sub-tree belong to Module n;
x% in [] denotes a variable (a path can be used before a variable)

Note: Although not every BCM of an XML file can always be
described in the DTD syntax tree, what it can describe satisfies a
lot of users’ needs and in most cases that is enough.

3.3 The automatic creation of BCMs
Now we will discuss how to create the actual BCM from its
description in the DTD syntax tree. Based on the XQuery system,
we have designed a service that can create automatically a query
by the description of each BCM. This query is given in the form
of XQuery language and its query result in XQuery is just the
actual BCM. Its basic process of the algorithm is explained by an
example.
[Example 3] For Mudule1 described in Figure3 (MA=1), the
actual BCM can easily be produced by the following process.
First, by the tree in Figure3, the sub-tree in Figure4(a) can be got
by cutting off all the irrelative nodes (MA< >1). Second, from the
sub-tree, the query in List6(a) can be easily created automatically.
Third, the query will be executed in XQuery and its result is just
Module1, namely List3.

<bib> {
 for $b in document("bib.xml")/bib/book
 return
 <book> {

 $b/title,
 for $a in $b/author
 return $a

 } </book>
} </bib>

[List6 (a)] The query corresponding to Module1

In the same way, for Module3, its sub-tree is Figure4(b) and the
query is List6(b). This query includes a variable 'title%'. Just
before it is executed in XQuery, a value given by the user will
replace the variable. So the result of Module3 is dynamic XML
information. Similarly, any CBCM can be produced in the same
way as BCM.

for $b in document("bib.xml")/bib/book

where contains($b/title/text(), &title%)

return $b

[List6 (b)] The query corresponding to Module1

3.4 The abstract DTD
To make our XML-IRS work faster, the abstract information
about each XML file is necessary. So a new DTD called abstract
DTD is given in List7 and can be used in XML files. It can be put
in the first part of XML file or can be saved as an independent file.

<!ELEMENT abstracts (subject, abstract, keyword*, module*)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT abstract (#PCDATA)>

<book year="2000">
 <title>Data on the Web</title>
 <author>Serge Abiteboul</author>
 <author>Peter Buneman</author>
 <section>
 <title>Introduction</title>
 <p>Text ... </p>
 <section>
 <title>Audience</title>
 <p>Text ... </p>
 </section>
 <section>
 <title>Web Data and the Two Cultures</title>
 <p>Text ... </p>
 <image source="csarch.gif"/>
 <p>Text ... </p>
 </section>
 </section>
</book>

[List5] All the books whose title contains
a given string (when the string is "Web")

image title(2)

*

[Figure3] A DTD syntax tree

title(1,2) author(1) + section(2)
+

book(1,2,3#[/title%])

p

bib(1,2)
*

●

●

●

● ●
●

● ●

[Figure4 (a)] The sub tree for Module1

title author
+

book

bib
*

[Figure4 (b)] The sub-tree for Module3

Book(3#[/title%])

bib
*

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

130

<!ELEMENT keyword (#PCDATA)>
<!ELEMENT module (ma, description, variable*)>
<!ELEMENT ma (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT variable (#PCDATA)>

[List7] The abstract DTD

 [Example 4] For bib.xml in Example1, the abstract description in
List8 might be included in it.
 <abstracts>

 <subject> Data on the Web </subject>
 <abstract>

 This book discusses the various representations about the data on the
 Web such as Relational Databases, Object Databases, etc and the
 syntax for the data.

 </abstract>
 <keyword>Web</keyword>
 <keyword> structure </keyword>
 <module>
 <ma>1</ma> <description>the title and the authors of the books
</description>
 </module>
 <module>
 <ma>2</ma> <description>the table of contents of the books </description>
 </module>
 <module>
 <ma>3</ma>
 <description>all the books whose title contains a given string </description>

 <variable>title%</variable>
 </module>

 </abstracts>
[List 8] The abstract information of bib.xml

4. The change of the browser
To support the DTD-based XML modularization technique, the
browser must be extended in two aspects.
(1) The Abstract Function
In our new browser, we add an abstract function in the sub-menu
that appears when the user right-clicks the mouse on an XML
URL. When the function is selected, the browser will get the
abstract information of the XML file from the Web server in a
very short time and show it in a sub-window as in Figure5. This
function enables the user to avoid opening any irrelevant XML
file.

[Figuer5] The sub window for abstract function

Note: Even if in the case of dial-in terminal connections, it takes
about three or four seconds to transfer abstract information with
size of 2k.
(2) The Modularization Function
In our new browser, the user can select BCMs by clicking the box
option "□" in Figure5. The browser will send the URL with the
selected MAs to the Web server, and receive from the Web server
only the XML information corresponding to these BCMs not the

whole XML file. Especially, in fields " " values can be
entered and they will be used to replace the variables in queries
for dynamic BCMs.

5. The advanced XML IRS framework
With the DTD-based XML modularization technique, we finally
build up an advanced XML IRS as in Figure6 and its work
process is as below.

1) The Web Server (Robot) gathers information on Internet and
builds the XML Index Database over all XML files on
Internet. The abstract information of XML files is also
included in it.

2) When receiving a query condition from The Browser, the
Web Server (Retrieval Service) will search information in the
XML Index database, and return the query result (a list of
XML URLs) to the Browser.

3) For each URL in the query result, the user uses Abstract
Function to decide if he needs to open it. The Web server
(XML Abstract Service) can get its abstract information from
the XML Index Database and return it to the Browser in a
very short time.

4) If not interested in the XML file, the user can go to the next
URL. Otherwise, he can select BCMs (maybe he needs to
enter a set of values), and then click the Content Module
button in the sub-window as in Figure5. The Browser will
transfer the URL with the MAs (and the values) to the Web
Server.

5) The Web Server (Creating Service) will create the query by
the DTD syntax tree (maybe the entered values will replace
all variables in the query) and send it to XQuery.

6) XQuery gets the XML information satisfying the query from
the XML file and returns it as an XML file to the Web Server.
In turn, it will be wrapped in an HTML file, transferred to
the Browser and finally shown to the user in the form of
XML file.

6. Conclusion
Our new XML-IRS is given by combining the current mature
HTML-IRS techniques with the XQuery system. It has the
following advantages. 1) Unlike the RDBMS-based systems [7,8],
it can retrieve XML information among all the XML files on
Internet, getting all the XML URLs related to a given query
condition. 2) Compared with the XML query language [2,6,9] based

 Subject: Data on the Web
 Abstract: This book discusses the various representations about the

data on the Web such as Relational Databases, Object
Databases, etc. and the syntax for the data.

 Keyword: Web, structure
 Module description:

□ 1= the title and the authors of the books
□ 2= the table of contents of the books
□ 3= all the books that its title contains a given string : .

 Content Module

[Figure6] The advanced XML-IRS framework

Retrieval
Service

Module-to-XQuery

Creating Service

R
obotXML index

Database

Web Server
XML Abstract

Service

XML URL with MAs

The XML information
in the form of XML file

B
row

ser

Internet

XML abstract information

abstract request

query condition

Query result
(A list of XML URLs)

X
Q

uery

XQuery result
(the XML information
in the form of XML file)

XQuery request

Internet

XML files

DTD
syntax trees

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

131

systems, it is more user-friendly because it dose not require the
user to command any XML query language and to know the
internal structures of all the XML files. 3) It works effectively for
two reasons: it avoids transmitting and browsing any useless
XML file, and it transfers only the needed part in an XML file to
the user. So it is more suitable to the users of mobile devices or
dial-in terminal connections.

7. REFERENCES
[1] Extensible Markup Language (XML) 1.0(Second Edition).

W3C recommendation, 6 Oct 2000.
http://www.w3.org/TR/2000/REC-xml-20001006

[2] XQuery 1.0: An XML Query Language. W3C
Working Draft, 20 Dec 2001.
http://www.w3.org/TR/2001/WD-xquery-20011220.

[3] HTML 4.01 Specification. W3C Recommendation, 24
December 1999.
http://www.w3.org/TR/1999/REC-html401-19991224.

[4] Zhu, Z. Y., et al. A Technique for Browsing HTML
files Faster Based on its Block Content. COMPUTER
ENGINEERING AND APPLICATIONS (Chinese
Magazine), May 2002, 38(10): 192-194.

[5] IBM Alphawork. XML Parser.
http://www.alphaworks.ibm.com.

[6] Böhm, K., On Extending the XML Engine with Query-
Processing Capabilities. Proceedings of the IEEE
Advances in Digital Libraries 2000 (ADL 2000).

[7] Cheng, J. and Xu, J., XML and DB2. Proceedings of
the 16th International Conference on Data Engineering.
1998.

[8] Bertino, E. and Catania, B., Integrating XML and
Databases. IEEE Internet Computing. Vol.5, No.4.
July-August 2001: 84-88.

[9] Ishikawa H., et al. The Design of a Query Language
for XML Data. Proceedings of the 10th International
Workshop on Database & Expert Systems Applications.
1-3 Sept, 1999, Florence, Italy.

