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Summary 
We analyze how the decisions of agents contribute to 
network formation. Incentives promote effort and 
performance, and there is a lot of evidence that they do. 
Given that incentives work quite effectively in many 
instances, and the agent who faces uncertainty about his 
payoff from taking a particular action. The agent will 
undertake the task only if he has sufficient confidence in 
his own ability to succeed, and in the project’s net return. 
Agents with a stake in his performance have incentives to 
manipulate signals relevant to his self-knowledge. We 
model the agent as an information processing network that 
is capable of learning a data set of environmental 
variables.  
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1. Introduction 

We model agent of different organizational structures 
competing given that they have to learn the effect of 
changing environmental states on the demand parameters. 
We model the structure of the agent as the size of the 
network, given by the number of processing units, that 
agents face a trade-off between speed and accuracy. Over 
time, agents learn to perform the mapping between 
environmental characteristics and optimal decisions. Given 
competition between agents, small firms networks reach 
relatively quickly a satisfactory knowledge of the function 
linking environmental factors and demand. And larger 
firms, initially slower to learn, tend in the long run to 
outperform the small ones by becoming more accurate in 
their mapping. We shows that an equilibrium configuration 
may be found and that it is also related to the complexity 
of the environment. The agents have to learn how to react 
to their opponents’ behavior. The convergence to the 
Walrasian prices and quantities is more probable when 
learning takes place, and agents are bounded-ly rational. 
Learning is in regards to the opponent’s strategy, or the 
firm’s own influence on prices, information about the 
environment is unnecessary for learning to take place. If 
demand is mis-specified, then even best reply dynamics 
may converge to steady states different from the unique 

Nash outcome. The directed networks end up having 
different incentive properties  as agents can unilaterally 
form new links, whereas here we need to consider the 
incentives. Focus as a way to identify equilibrium which is 
quite different from the stochastic dynamic, and examines 
which strategies players play in a game when the set of 
opponents that a player might face depends on the 
structure. The agents may have such limited information in 
large network settings. Although a number of networks 
may be pair-wise stable, they can differ in how resilient 
they are to random mutations.   
Information processing has to be decentralized among 
many agents. It can depend on broader information about 
the organization’s strategy. Organizational decision 
making, in which information processing is communicated 
along hierarchical lines. Aggregation entails a loss of 
useful information, in the sense that when agents 
summarize their information to their hierarchical superiors. 
Agents’ decision problems interact, in the sense that an 
agent’s optimal decision should depend on information 
held by agents in other parts of the organization. We 
determine what hierarchical structure an organization 
should adopt, and to what hierarchical level the returns to 
employing agents who are better able to process 
information are the highest. They follow a multi-stage 
hierarchical procedure, to the security selection, 
combinations os assets in each of the several groups, and 
involves the determination of an appropriate combination 
of the group portfolios and an appropriate combination of 
the group portfolios. The final stage is devoted to asset 
allocation, using the asset portfolios as asset-class 
portfolios. Decisions are made myopically, considering a 
subset of the available assets. In this hierarchical 
procedure, agent’s decision problems obviously interact. 
To solve the organization design problem, we must make 
an assumption on the probability distribution of factor as 
of the design stage. Given the optimal decision rules, we 
can evaluate the performance of different hierarchical 
structure, and all agents have subordinate. With missing 
markets, earnings differentials in steady state must 
overcompensate for training cost margin, yielding higher 
levels of earnings net of costs in occupations with higher 
gross earnings. We provide a broad set of conditions under 
which there is a unique steady state distribution. This 
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condition characterizes efficient steady states in a rate of 
return to all occupations.  
The long-run rate of an individual is weakly increasing in 
the initial status, number of social ties and human capital 
of any other member of his of her group and strictly 
increasing in her own initial status. The group-level 
relationship between human capital and long-run rates. We 
described the relationship between network itself and the 
long-run behavior of the rate. Small groups without ties to 
the rest of society are at risk. The structure of the ties 
within the group matter.    
The structure of the paper is as follows. Section 2 shows 
that in these problems, the set of stochastically stable 
network links coincides with the set of core stable 
networks, which are necessarily Pareto efficient. Section 3 
characterizes informational connections.    Section 4 
builds a framework of hierarchical group selection..  
Section 5 presents information strategies. 
 
2. Network links 
 
The network relations among the players are represented 
by graphs. Jackson and Watts (2002) focus in non-directed 
networks where links are reciprocal. Consider a population 
of agents, each of them having a certain level ia . The 

utility iπ obtained by the agent in the interaction with 
market  The agents live in dimensional chain with 
periodic boundary conditions and they can interact with 
their nearest-neighbors only. Each network in the sequence 
differs by one link from the previous network. If a link is 
deleted, then it must be that at least one of the two agents 
involved in the link strictly benefit from its deletion. An 
improving path from a network g to a network g′  are a 

finite sequence of networks Kgg ,.....,1  with gg =1  

and ggK ′= such that for any { }1,....,1 −∈ Kk either: 

ijgg kk −=+1 for some i j such that 

( ) ( )kiki gYijgY >− , or 

ijgg kk +=+1 for some i j such that 

( ) ( )kiki gYijgY >+  and ( ) ( )kjkj gYijgY ≥+ . 
The behavior implicit in an improving path may be m turn 
leaves the first agent worse off relative to the starting 
position. However, in larger networks and networks where 
agent’s information might be limited, myopic behavior in 
our setting all a agent needs to know is whether adding or 
deleting a given link is directly beneficial to him in the 
current circumstances. The improving paths from any 
starting network lead either to a stable network or to a 
cycle. 
A set of networks C, form a cycle if for any Cg ∈  and 

Cg ∈′  there exists an path connecting g to g′ . A cycle 
C is a closed cycle if no network in C lies on an improving 
path leading to a network that is not in C. A closed cycle is 
necessarily a maximal cycle.  
For any v and Y there exists at least one pair-wise stable 
network or closed cycle of networks.  
A network is pair-wise stable if it does not lie on an 
improving path to any other network. Given the finite 
number of possible networks, either the improving path 
ends at some network which has no improving paths 
leaving it, which then must be stable, or it can be 
continued through each network is hits. The improving 
path must form a cycle. Since there must exist a cycle, 
given the finite number of networks there must exists a 
maximal cycle, then there would be a larger cycle, there 
exists a closed cycle. Agents benefit from trading with 
other agents with whom they are linked, and trade can only 
flow along links. Agents begin by forming a network, they 
receive random endowments and trade along chains of the 
network. The expected utility for a agent of being in a 
given network is calculated by expecting over the 
Walrasian equilibrium that result in the agent’s connected 
component as a function of realized endowments. Each 
agent has a random endowment, which is independently 
and identically distributed. A agent's’ endowment is either 
( )0,1  and ( )1,0 , each with probability 2/1 , realized 
after the network is in place. For a given network, 
Walrasian equilibrium occur on each connected component, 
regardless of the configuration of links. The expected 
utility of a agent is strongly increasing and a concave in 
the number of other agents that she is directly or indirectly 
connected to, ignoring the cost of links. Accounting for the 
cost of a link, if k agents are in connected component of a 
pair-wise stable network, then thee must be exactly 1−k  
links, then there is at least one link that can be severed 
without changing the component structure of the network. 
So some agent can sever a link and save the cost of the 
link without losing any everyone else, loses in expected 
utility by severing the link.  
At s set of times { },.......3,2,1 decisions to add or sever a 
link are made. At each time a pair of agents ij is randomly 
identified with probability ( ) 0>ijp . The potential link 
between these agents is only link that can be altered at that 
time. One may think a random meeting process where 
agents randomly bump into each other and time id 
identified. If the link is already in the network, then the 
decision is whether to sever it, and otherwise the decision 
is whether to add the link. The agents involved act 
myopically, adding the link if it makes at least as well off 
and one strictly better off. The above process defines a 
Markov chain with states being the network in place at the 
end of period. The stationary distribution converges to a 
unique limiting stationary distribution, after the action is 
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taken, there is some small probability 0>ε  that a 
mutation occurs and the link is deleted if it is present, and 
added if it is absent.  
A network that is in support of the limiting stationary 
distribution of the above –described Markov process is 
stochastically stable. 
A path { }Kggp ,.....,1= is a sequence of adjacent 

networks. The resistance of a path { }Kggp ,......,1=  

from gtog′ , denoted ( )pr , is computed by 

( ) ( )∑
−

+=
1

1
1,

K

ii ggIpr , where  

( ) 0, 1 =+ii ggI . 
A mutation is necessary to move from one network to an 
adjacent one whenever it is not in the relevant agent’s 
interests to sever or add the link .Let 
( ) ( ){ }gtogfrompathispprggr ′=′ min, . Thus, 

if g′ and g are in the same cycle, then ( ) 0, =′ ggr . 
Given a network g, a g-tree is a graph which has as 
vertices all networks and has a unique path leading from 
each g′  to g. Let ( )gT  denote all the g-trees, so that 

tgg ∈′′′ if there is a edge g,C 
The resistance of a network g is computed as 
( )

( )
( )ggrgr

tgggTt
′′′= ∑

∈′′′
∈

,min . 

The stochastically stable network is the set 
( ) ( ){ }gallforgrgrg ′′≤ , and the set of 

stochastically stable networks is always nonempty as we 
are taking a minimum over a finite set. Thus , if g is 
stochastically stable, then either g is pair-wise stable or 
part a closed cycle. If one network in a closed cycle is 
stochastically stable then all networks in the closed cycle 
are stochastically stable. A closed cycle C and a network g, 
let ( ) ( )ggrgCr ,, ′=  is any network in C and 

( ) ( )ggrCgr ′= ,,  where g′  in C. A network g, 
restricted g-tree is a graph. A network g is core stable if 
there is no group of agents who each prefer network g′ to 
g and who can change the network from g to g′without 
the cooperation of the remaining agents. A network 

Gg ∈ is core stable if there does not exist any set of 
agents A and Gg ∈′  such that: 

( ) ( )gYgY ii ≥′  for all Ai ∈ ,  (1) 

if gij ′∈  but gij ∉ , then Ai ∈  and Aj ∈ , and
     (2) 
if gij ′∉ , but gij ∈ , then either Ai ∈ , and/or 

Aj ∈ .     (3) 
A simultaneous path, is a sequence of networks 

Kgg ,.....,0  in G such that if g′ follows g in the 
sequence then either: 

ijgg −=′  and either ( ) ( )gYgY ii >′  or 

( ) ( )gYgY jj >′ , or    (4) 

Gg ∈′  and 

{ }jmijgijgjmikijgikijgg −++−−+−+∈′ ,,,
     (5) 
where gij ∉ and ( ) ( )gYgY ii ≥′  and 

( ) ( )gYgY jj ≥′ .    (6) 
Improving paths are a subset of simultaneous improving 
paths. Here the simultaneity refers to the fact that a agent 
may both sever an existing link and add a new one. Cycles 
can exist with the notion of simultaneous improving path.  
At each time a agents is randomly identified. If the link is 
already in the network, then the decision is whether to 
sever it. Their actions are constrained to lead to a feasible 
g in G. The agents involved act myopically, adding the link 
if it makes each at least as well off, and severing the link 
of its deletion makes either agent better off. After the 
action is taken, there is some small probability that a 
tremble occurs and the link is deleted.  
Let { }nN ,....,2,1= be the set of agents. For any 

NS ⊂ , let { }STTg S ⊂ be the set of all subsets of S. 
A network ,  Mutuswami and Winter (2002) denoted 
generically by gin some subset of Ng . The element 

{ }ji, of g is called the link between i and j and denoted as 

( )ij . For every { }S
S gggGNS ⊂=⊂ ,  denotes 

the set of links only between agents of S., if there exists a 
sequence of agents jiiii K == ,.....,, 10 such that 

( ) gii Kk ∈1 for all 1,....,0 −= Kk . All agents in 

( )gNN \  are said to be isolated. The graph gh ⊂ is a 

connected component of g if all agents in ( )hN are 
connected to each other in h. The set of all connected 
components of g is denoted as ( )gC . 
An agent’s benefit from being path of a network is given 
by a utility function ( ) ( ) iiii xgvxgU −=, , where ix is 

as the cost share imputed to agent i. For all NGi ∈ , and 

all NGgg ∈′, , gg ′⊂ , ( ) ( ) 0≥≥′ gvgv ii . (7) 
Where the gross benefit to an agent is non-decreasing in 
the set of links. Thus, if ( ) ( )gChhNi ∈∈ , , then her 
utility can be affected by the formation of a link between 
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agents in ( )hNN \ . 
The marginal contribution of agent nkk ,...,1, = is 

( ) ( )1
*

+−= kkk SsaSsau . 
If there are externalities across components, then there is 
way to measure the worth of a coalition. We therefore have 

( ) ( ) ( )SsagvTsa Si
Ti

≥≥ ∑
∈

* , where inequality follows 

*
Sg  will not achieve the stand payoff for T. The net 

payoffs to the agents are given by the marginal vector 
( )**

1 ,....., nuu  . 
If there are number of possible efficient graphs, then, they 
are able to pin down the equilibrium net payoffs uniquely. 
Suppose that agents in { }k,....,1  have announced 

( ){ }k
iii xg 1, = . Let { }kik ,...,1∈ be the largest such that 

there exists a graph 
kiSGg ∈ satisfying  

ggi ⊂  for all { }kii k ,...,∈ ,  (8) 

( ) ( ) ( )∑∑
=

+
∈

>+−
+

k

ij
kjj

Sj kk

Ssaxgcgv 1
1

, (9) 

 where says that by utilizing by contributions of agents in 
{ }kik ,....,  the agents in 1kS can obtain a payoff greater 

than their stand-alone payoff.. Let ( )nK uu ,....,1+  be the 
resulting net utilities of the agents following K. Since the 
maximal coalition must be a set of 

Ki
S  if agents in 

1+KS are receive a collective payoff greater than 

( )1+KSsa , we must have ( )∑
+=

+≤
n

Kj
Kj Ssau

1
1 . 

The maximal compatible coalition resulting from any j has 
a profitable deviation.  
Let *

jj uu = for all { }nKj ,....,1+∈ . 

Choose some **
KK Gg ∈ . Let agent 1+K  deviate by 

announcing ⎟
⎠
⎞⎜

⎝
⎛ ′

+1
* , KK xg , where 

( ) ( ) ( ) ( ) *
1

*
11

**

2
2 ++

=
+

+=
+ −<′<−+− ∑∑ KKK

K

ii
KiKKi

n

Ki
K ugvxxgcgvSsa

K

..      (10) 

. The hypothesis implies that the compatible coalition must 
be a set of 

1+Ki
S  

Since 11 +≤+ KiK , it follows that 1+K is a member 
of the compatible coalition. Let k deviate by announcing 

⎟
⎠
⎞⎜

⎝
⎛ ′′

kk xg , where kg′  is efficient for kS and kx′ such 

that  

( ) ( ) ( ) ( ) kkkkkkj

n

kk
k ugvxgvgvSsa −′<′<′+′− ∑

+=
+

1
1 .

     (11) 
It follows that the compatible coalition after k’s deviation 
in a set of kS , and will therefore, always contain k. 

Let ( )nuu ,.....,1 be the net payoffs to the agents of nΓ . 
The fact that an efficient forms follows from the 

observation that ( )Nsaui

n

i
=∑

=1
.  

For any NS ⊂ , let ( ){ }jiSSjig S ≠×∈= ,  be 

the collection of all elements in SS × excluding those of 
the form ( )ii, . We can think of Ng as the complete 

directed graph on A, which is some subset of Ng . The 

element ( )ji,  of g is referred to as the link from i to j 

and denoted by ( )ij . Let { }SS gggG ⊂=  be the set 
of all graphs involving links only between members of S. 
A path from i to j in g is a sequence of distinct agents 
{ }Kii ,.....,0 such that jiii K == ,0 and 

( ) gii kk ∈+1 for all 1,....,0 −= Kk . The utility function 

of i is given by ( ) ( ) iii xgvgU −= , where ( )gvi  is i’ 

s gross benefit from g and ix is his cost share. The 
coalition S is compatible with the announcement 

( ){ }n
iii xgw 1, == , if for all Si∈ , Si Gg ∈ . 

If ( )gcxi
Si

≥∑
∈

, where iSi gg ∈= U . 

The compatible coalition is in the set { }nSS ,.....,, 1⊗ . 
Immunity to deviations by coalition is a desirable property 
of any mechanism. For all Ni∈ , for all NGgg ∈′, , 

if ( ) ( )ggCh ′∈ I  and ( )hNi∈ , then 

( ) ( )gvgv ii ′= , where says that an agent’s gross utility 
depends on the connected component to which she belongs 
and is not affected by link formation outside this 
component.  
 For all NGg ∈ , ( )

( )
( )hcgc

gCh
∑
∈

= , where rules out 

cost externalities among connected components. The 
stand-alone value of a coalition is true reflection of the 
power of that coalition. In such a situation, the core 
( )saN ,  represents allocations that cannot be improved 
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upon by any coalition. Value function was the natural 
analogue of the characteristic function. An allocation rule 
could be designed so, that agents acting in their own 
interest would form an efficient network. Explicitly costs 
of link formation and also the payoffs but the approach for 
the most part has been to analyze games which are 
regarded as stylized descriptions of actual network 
formation processes.  
 
3. Informational connections 
 
Productivity varies across agents worker-firm matches, 
and firms have limited information on the productivity of a 
agents. Krauth (2004) suppose small change in 
neighborhood composition led to a large deterioration on 
employment conditions through a vicious cycle of 
increased unemployment and further weakening of job 
networks. Individuals randomly discover job vacancies, 
and currently networks facilitate the transmission of 
information on productivity.  
Actual networks are unlikely to be simple, so it is 
important to know the impact of network structures. A 
worker’s productivity is determined by his capital as well 
as a match-specific component, which is differs across 
worker-firm matching. Let ia be the human capital, and 

( )tm f
i   be the quality of the match between worker i and 

firm f . The worker’s output at the firm is 
( ) ( ) ( )tntmaty f

i
f

ii
f

i = ,   (12) 

where ( )tn f
i  is the amount of labor supplied to firm f. 

The quality of a match between a particular worker and 
firm changes over time, and the random variable ( )tm f

i  

is across workers, firms, and time, with continuous mF : 

( ) ( )( )xtmxF f
im ≤= Pr .   (13) 

The firm can acquire more information on a worker by 
either observation, or referrals, and the information 
received is complete and cost-less. Let ( )( )tmE f

if  be 

the expected value of ( )tm f
i  based on firm f’ 

s information at the beginning of period t.  
Agents are risk and maximize current expected utility in 
each period. This allows analysis of the behavior of the 
economy for a wide class of networks, if agents do not 
discount the future, each job match provides current output 
and future matches to the firm. The number of these future 
matches depends on the state of the economy, and the state 
of the network and the identity of each agent. The efficient 
allocation of labor ( ){ } Ff

f
i tn ∈  is defined as follows 

( )
( ){ }

( )( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

≥
tnhtntmEaty f

i
f

i
f

f
i

f
ifi

tn
i f

i

1max
0

.

     (14) 
A competitive equilibrium is a set of match –specific 
wages { }f

iw  and allocations { }f
in  such that, the 

allocations solve each firm’s utility maximizing problem 

( ){ }
( ) ( ) ( )( ) ( )⎟

⎠

⎞
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑∑

≥
tntmEatntwi f

i
f

ifi
i

f
i

f
i

tn f
i 0
max ,

     (15) 
and the worker’s utility maximization problem: 

( ) ( )

( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∑
∑∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤≥

tnhtntw f
i

f
i

f
i

f
i

ftntn f
i

f

f
i

1max
1,0

     (16) 
This implies that the worker’s utility maximization 
problem corresponds any competitive equilibrium 
allocation is also an efficient allocation. 
There are economic rents associated with a worker’s 
highest-productivity match because its expected output can 
be higher than any alternative. The Nash bargaining 
solution has basic properties a match occurs if it is 
efficient , and each participant receives utility from a 
match at least to his opportunity cost, and the worker 
receives an fraction β  of the surplus and the firm 
receives β−1 , where β  is interpreted as the worker’s 
bargaining power. Nash bargaining corresponds to the 
equilibrium outcome of a wide variety of bargaining 
games, any bargaining process corresponding to the Nash 
solution will have each efficient match occurring, so the 
equilibrium allocation will correspond to the efficient 
allocation.  
If binding offers and the labor market corresponds to a set 
of independent sealed-bid first-price, and firm’s bid is 
increasing in ( )f

if mE  so the equilibrium allocation will 
correspond to the efficient allocation.  
 
4. Group selection 
 
We start with a population of N agents subdivided into 
groups j, each with jn  members. Henrich (2004) suppose 

variable jx gives the frequency of the trait/allele in 

sub-population j, jx′  represents the same frequency in the 
next period. The average change in the frequency of the 
trait expresses xΔ , and Nnq jj /= . The proportion of 
the population accounted for in group j, and the proportion 
in the next time step, jq′ , means 
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∑∑ −′′=Δ jjjj
j

xqxqx .   (17) 

Noting that jjj xxx −′=Δ  gives us 

( ) jj
j

jjj
j

xqxxqx ∑∑ −Δ+′=Δ .  (18) 

We can comparing the fitness of group j, jw , to the mean 
fitness across all groups: 

w
wq

q jj
j =′ , and we arrive at the following expression: 

( ) ∑ ∑∑∑ Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−Δ+=Δ

j
j

j
j

j

j
jjjj

j
jj

jj

j
x

w
w

q
w
w

xqxqxx
w
wq

x 1 .

     (19) 
If jw , the fitness of group j, positively 

covariance ( )jj xwCov , with the frequency of the trait in 

group ( )jxj , then will increase the average value of the 

trait in the population. Expectations ( )jj xwE Δ  show 

selection within groups. The frequency of an allele is ijx in 
agent i and takes on the values of 1 (present) or 0 (absent). 
We have  

( ) ( ) ( )( )ijijijijjjj xwExwCovExwCovxw Δ++=Δ ,, ,
     (20) 
where the first term present selection between groups. The 
second term present selection and transmission within 
groups.  
 Individuals live in different area, θ  is a distribution of 
quality across individuals. Aruka (2004) suppose variance 

2
θσ , iθ  is the individual i’ s quality, assumed to be 

constant across areas. iX represents individual-level 
characteristics. The idiosyncratic tastes of individual i may 
then be written: 

( )iii Xf+=Θ θ ,    (21) 
the marginal utility of the individual’s i action, and his 
neighbor’s action 1−iA : 

( ) ( ) ( )21
2

1 2
11

2
1,, −− −−−−Θ=Θ iiiiiiii AAAAAAU αα .

     (22) 
Agents may live in their areas j on the real line. The choice 
of action by individual i is based either on his taste for the 
action his predecessor 1−i on the domain. Agent i 
chooses an action iA  based on their idiosyncratic tastes 

iΘ , and their predecessor’s action level 1−iA is defined: 

( ) 1−++= iiii AXfA αθ .   (23) 

Let jA  be the mean action level in area j, and 

( ) ( ) ( )jijiiji AAXfXfAA −+−+=− −1αθ , (24) 

where α is regarded as the coefficient of iA  with 

respect to 1−iA . We can then calculate the variance of 

ji AA − , in equilibrium it is: 

( ) ( )jiji AAVarAAVar −=− −1 .  (25) 
( )Xf

jVar represents the variance of ( )Xf within area j, 
and 

( ) ( ) ( )
( )

2

2

1
2

1 α
σ

ασ θ
θ −

+
=−++=− −

Xf
j

ji
Xf

jji

Var
AAVarVarAAVar .

     (26) 
It seems us difficult to find a condition on group selection 
towards a cooperative system. 
The market-maker’s it involves optimization over a large 
set of hierarchical structures and assignments of assets to 
agents, and also over an infinite set of agents’.  
The small factor holdings assumption nn lλλ = , where 

λ goes to zero and the probability distributions of 
{ } Nnn ,.....,1=l preserving many of the economic insights. 
We determine agents’ optimal decision rules for a 
hierarchical structure, and then determine the optimal 
hierarchical structure.  
There exists a selection of optimal decision rules, with 
parameter λ , such that for each agent j: 

( ) ( ) ( )[ ]2
2 1 λσ

σ
μ

++= jf
a

jx nn ,  (27) 

for ( )jAn M∈ , and 

( ) ( ) ( )21 λσ++= jgjy ii ,   (28) 

for ( )jSi ,....,1= , where ( )jfn  and ( )jgi  contain 

first and second-degree terms in ( )jγ , we set  

( )
( )

n
jAn N

j λ∑
∈

=Λ .    (29) 

( )jΛ  represents the factor loading of agents j’ portfolio 

for small λ , and receive the investment 2/ σμ a . The 
portfolio’s factor loading is  

( )
( )

( ) ( ) ( )11 22 σ
σ
μσλ

σ
μλ +Λ=+= ∑

∈

j
aa

j n
jAn n

. 

(30) 
Suppose there exists a selection of optimal decision rules 
such that for each agent j, ( )jxn and ( )jyi  with  

( ) ( ) ( )2λσλ +Λ−= jjf nn ,   (31) 
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and  

( ) ( )
( ) ( ) ( )[ ] ( )2,

,
, λσ+Λ−Λ

Λ
−= ijj

ijN
ijjgi .  (32) 

The investment of agent 1 is 

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +

+
−+−== 2

3
21

2112111 2
11,111 λσλλλλλλ

σ
μ

a
xyx

 ,     (33) 
where agent 1 adjusts agent 1.1 investment to take into 
account the factor loading 3λ  . Agent 1 does not know 

1λ , which is ( ) 2/21 λλ + . 
Proceedings as for agent 1we find that the investment of 
the top agent is 

( ) ( )⎥⎦
⎤

⎢⎣
⎡ +

++
−

+
−+−= 2

4
321

3
21

21121 32
1 λσλλλλλλλλλλ

σ
μ

a
x .

     (34) 
The difference between the organization’s investment in an 
asset nxn,  , and the first-best investment , *

nx  reflects 
the organization’s decision-making error.  
A hierarchical structure that maximizes expected utility for 
small λ , must minimize 

( )∑
=

N

n
neE

1

2 , 

where is a sum over assets of the expected error for each 
asset. This measures the distance between the firm’s 
decision rule and the first-best decision rule. An optimal 
hierarchical structure must minimize this distance. Then 

( )
( )

( )[ ] ( ) ( )[ ]ijNjNijNeE
jS

iJj
n

N

n
,1,

1

42

1
−−= ∑∑∑

=∈=
λσ

.     (35) 
Consider an agent j, and an asset a to the portfolio of j’ s i 
–th subordinate agent j ,i. 
The interaction term is the sum of the factor loading of the 
( ) ( )ijNjN ,−   asset that are under the control of j but 

not of j, i. Since for random variables { } Nnn ,...,1=λ , we 
have 

N
N

N
E

N

n
n 12

2

1
1

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
∑
=

λσ
λ

λ ,  (36) 

the expected aggregation loss terms by the ( )ijN , assets 
in i’ s portfolio and summing over i and j. 
In any optimal hierarchical structure: agents must have 
subordinate. Agents must handle K assets or portfolios, 
except at most agent.  
In optimal hierarchical structure, and all agents handling 

K assets. The intuition which arises from the processing 
constraint reduces decision quality.. The benefit of placing 
a high-ability agent at the top of the hierarchy and the 
agent process more dis-aggregated information equal to 
the benefit of placing the agent at the bottom.  The 
characterization of agent’s optimal decision rules, we show 
that these can be computed when the hierarchical structure 
and probability distribution of factor loading.   
 
 
 
5. Informational strategies  
 
The interactions between an agent with imperfect 
self-knowledge and an informed market-maker who 
chooses an incentive structure. There are an agent and 
market maker. The agent selects a continuous action or 
effort level e that impacts his and market maker’s utilities. 
Bénabou and Tirole (2003) suppose that market maker 
knows a parameter β , such as the difficulty of the task or 
the agent’s ability to perform it, that affects the agent’s 
payoffs from e.  Thus informed marker maker selects a 
policy p prior to the agent’s choice of action, this may be a 
disclosure of information, the agent behavior. The agent’s 
and the market maker’s payoffs are denoted ( )peU A ,,β  

and ( )peUP ,,β . Prior to his decision, the agent may 
receive a signal σ that is informative about β . The 
market maker has information relevant to the agent’s 
perception of himself, that the market maker be uncertain 
about the agent’s motivation.  
The market maker learns the parameter β and selects a 
policy p. After observing the policy chosen by the market 
maker and learning σ , the agent chooses an action e. The 
agent ‘s participation in the relationship  and the market 
maker’s expected payoff from choosing a policy p when 
she has information β is 

( )( )( )[ ]βσββσ pppeUE P ,,ˆ,, * .  (38) 
The market maker’s choice of policy takes effects into 
consideration: 

0ˆ

**

=⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂ ββ

βσ p
e

e
U

p
e

e
U

p
UE PPP

&&
, (39) 

If the policy is the direct cost of this compensation, 
keeping the agent’s behavior. The second term corresponds 
to the direct impact of p on the agent’s behavior. The 
market maker’s choice of policy is guided by private 
information, the agent will update his beliefs in reaction to 
the choice of p. The market maker must then take into 
account how the agent’s interpretation of her choice will 
affect his self-confidence affects the agent’s decision 
making. . His perceived prospects from undertaking the 
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task. When the agent’s type, on which the market maker 
has private information, enters the market maker’s 
objective function in a way that would lead her to offer 
different policies to different agents. The market maker 
will then, delegate more to agents. The market maker’s 
private knowledge concerns the cost of accomplishing the 
task, and not on her own payoff. The trust effect, arises 
when the market maker’s private information such as the 
cost of accomplishing the task. A market maker who has 
bad information about the agent’s parameter β  will be 
pessimistic about the agent’s own signal. 
Providing be will not be motivated enough to exert effort 
on the absence of added incentives. Providing stronger 
incentives, will at least reveal the market market’s 
damaging information signal σ  There must be some 
uncertainty σ on the part of the market maker about the 
incentives perceived by the agent. The latter’s response 
( )pβ̂  to any policy p would be predictable, and the 

market maker would maximize ( )( )( )pppeUP ,ˆ,, * ββ . 
However, that the agent does receive a private signal, 
causing the market maker to worry about his motivation. 
The agent’s own initial perception as he starts performing 
the task. The market maker’s payoff function can be 
written as ( ) ( )pepeUP ,,, ββ Λ= . The agent’s 
equilibrium effort e, and the function Λ is the market 
maker ‘s expected payoff when 1=e . The utility effect 
is then governed by the sorting condition 

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Λ
Λ

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂
∂∂

∂
∂

p
pe

eU
pU P

P

P

,
,

/
/

β
β

ββ
,  (40) 

which is a form of complement-arity. Under conditions on 
( )peU A ,,β  and the distribution ( )βσG , the agent 

receives a signal σ better than some threshold ( )p*σ  
which depends on the policy p. The market maker’s 
expected utility can then be written as 

( )( )[ ] ( )ppG Λ− βσ *1 . 

The agent’s action threshold *σ as the effort variable, that 
the market maker is trying to influence through her policy 
p. This yields 

( )
( )

( )
( )p

p
g
G

U
pU

P

P

Λ
Λ′

×⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂
∂∂

∂
∂

βσ
βσ

βσβ *

*

*

1
/
/

.(41) 

A market maker who observes a bad β is worried that the 
agent will receive a bad signal σ , so she feels compelled 
to offer him a higher p.  
The agent dis-utility of effort is denoted c. If the task is 
successful it yields payoffs V to the agent and W to the 
market maker. Let ( ]1,0∈θ  denote the probability of 

success when the agent exerts effort. The asymmetry 
concerns the cost that the agent will bear if he decides to 
undertake the task. The agent knows that c is drawn from a 
cumulative distribution function ( )cF  with a density 

( )cf  that has support. He learns a signal [ ]1,0∈σ  

with conditional distribution ( )cG σ and density 

( )cg σ . For all 1σ and 2σ with 
( )
( )cg

cg

2

1
21 ,

σ
σ

σσ >  

is decreasing in c. The agent to perform the task, the 
market maker can offer a reward that on effort if she 
observes it. The probability of success θ  is common 
knowledge, we shall therefore focus the exposition on 
contract where the market maker a reward Wb ≤ . 
The agent’s net benefit is thus bV +  and the market 
maker’s is bW − , and policy decision for the market 
maker thus the choice of a b could with slight 
modifications. Were the agent to know his cost c, he would 
choose to exert effort if  
( ) cbV ≥+θ .    (42) 

When the agent has same information as the market maker 
observes c. The agent receives a signal σ about c. When 
offered a reward b, the agent updates his beliefs about c 
using the market maker’s equilibrium strategy. Let 
( ) { }bcbc ,,ˆ σσ Ε=  denote the agent’s assessment of 

the task’s difficulty. This expectations is a weakly 
decreasing function of the signal σ . Letting [ ]1,0∈e  
denote the agent’s effort, his utility is 

( ) ( )[ ]bcbVU A ,ˆ σθ −+= , and there exists a threshold 

signal ( )b*σ  in [ ]1,0  such that: 

( ) ( ) ( )bifbVbc *,ˆ σσθσ ≥+≤ .  (43) 
The market maker’s payoff if she offers the performance b 
when her information is c is thus 

[ ] ( )( )[ ][ ]bWcbGUE P −−= *1 σθσ ,  (44) 
which she maximizes over b. Delegate equilibrium are 
ruled out when ( ) cWV >+ by offering a below W., the 
market maker can ensure that the agent works.  
In equilibrium rewards are positive short-term reinforces if 

21 bb < , then ( ) ( )2
*

1
* bb σσ > . If 1b is a reward 

offered when the market maker knows the task’s difficulty 
to be 1c , and 2b is offered when she knows it to be 

12 cc > , then 12 bb ≥ . 
Rewards undermine the agent’s assessment of the task’s 
attractiveness, for all ( )21,σσ  and all equilibrium 

rewards 21 bb < , 
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[ ] [ ]2211 ,, bcbc σσ Ε<Ε .   (45) 
 Assessments of task attractiveness are also reduced by an 
increase in the reward: the expectation of c conditional on 

b,σ , the action and the outcome is decreasing in b 

regardless of σ , the action and the outcome. Since ib is 

optimal given ic , it must be that  

( )[ ][ ] ( )[ ][ ]jijiii bWcGbWcG −−≥−− σθσθ 11 ,
     (46) 
hence 

( )
( )

( )
( )22

21

1

2

12

11

1
1

1
1

cG
cG

bW
bW

cG
cG

σ
σ

σ
σ

−
−

≥
−
−

≥
−
−

. (47) 

Hence 21 bb ≤  since ( ).*σ  is decreasing. We 
demonstrates the market maker’s expectation of what 
views the agent is likely to hold, which in turn shapes the 
optimal contract. A higher reward is, in equilibrium, 
associated with a less attractive task. 
The probability of effort, ( )( )cbG *1 σ− , and the 

probability of success, ( )( )[ ]cbG *1 σθ − , are decreasing 
in c, which is known to the market maker.  
Let U denote his outside reservation utility, which we 
assume to be independent of the attractiveness of the task, 
if ( ) ( )( ) UbbcEbV ≥−+ ,*σθ , the participation 

constraint is not binding.  
The information conveyed by incentives, and rewards may 
have an negative impact when performance measurement 
is contingent. The agent learns, before making his decision, 
whether he is likely to be caught, and to escape detection. 
When the market maker has private information about the 
agent’s ability θ  rather than the cost of implementing the 
task, this profitability effect, when it is present depend on 
the type of contract allowed. The market maker observes 
θ  exactly, the agent receives an signal σ , with 
conditional distribution ( )θσG  and density ( )θσg , 

but with a higher σ now signaling a higher θ . In the 
market maker ‘s function ( )bWeUP −= θ , the 
marginal rate of substitution between b and e is 
independent of θ . The market maker’s private 
information and the agent’s noisy signal bear on the 
agent’s probability of success θ  rather than on the task’s 
difficulty c. We denote by { }HLkbk ,,* ∈ , the 
minimum feasible incentives that induces effort when the 
agent is fully informed about his ability, 

⎭
⎬
⎫

⎩
⎨
⎧

−= Vcb
k

k θ
,0max* ,   (49) 

then Wbb LH <<= **0 . The agent’s reservation utility 
characterizing all perfect Bayesian equilibrium and 
identifying a unique equilibrium.  
In any equilibrium, the market maker offers a low 
incentives *

Lbb < to a more able agent and randomizes 

between the incentives b and *
Lb when dealing with a less 

able agent. 
Incentives are the same as under symmetric information, 
the agent’s utility is now higher than under symmetric 
information. It still implies that the distribution of rewards 
across a population of agents due to the management 
problem. The utility effect to which it gives rise when the 
market maker’s private information is θ , and analysis 
distinguishing between the trust and profitability effects 
makes motive will be reflected in equilibrium contracts. 
The agent would then just be assumed to exhibit an 
instinctive reaction threatened with a punishment. While 
agents do not really compute Bayesian equilibrium when 
interpreting signals from their environment. Under 
symmetric information motivations can be cleanly 
separated, under asymmetric information decreases future 
motivation. For all { }1,0∈θ , 

( )
( ) 0

0

1 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ
θ

θ W
W

d
d

,   

more over   

 
( )
( )

( )
( )1
11

0
0

0

1

0

1

W
W

W
W

<< . (50) 

The market maker does not want to delegate the task to an 
agent, and prefers to delegate the task to a very talented 
agent. This implies that there is exists a *θ in ( )1,0  
under symmetric information, it is efficient to delegate if 

*θθ > , and to monitor if *θθ < . 
For all ( )10 ,σσ  with 10 σσ > , the elasticity of the 

ratio ( )( ) ( )( )θσθσ 10 1/1 GG −−  with respect to θ  

is less than that of ( ) ( )θθ 01 /WW . 
The agent is unsure about his ability, suppose that the 
market maker offers to contribute at private cost b, and the 
agent decides to undertake the task. The market maker ‘s 
payoff is: 

( )( )[ ] ( )[ ]hWhPbGUP −−= ,1 * θθσ , where the agent 
‘s undertaking the task.  
 



IJCSNS International Journal of  Computer Science and Network Security, VOL.6 No.2A, February 2006 
 
 

 

141

 

 
6. Conclusion 
 
We have examined a model of network formation with 
costs where agent benefits from network formation are not 
known to the market-maker. The cost function is assumed 
to be common knowledge in the economy. The only 
restrictions imposed on the cost function, agents move 
sequentially. Each agent’s announcement is consisting of 
the set of agents with whom he wants to form links. A 
contribution, interpreted as the agent’s contribution 
towards the cost of network formation. The mechanism 
ensures the formation of an efficient network in all perfect 
Nash equilibrium, however the net payoffs to the agents 
are asymmetric. The agents moving earlier are better off 
than agents moving later. The mechanism corrects for this 
asymmetry and ensures not only the formation of efficient 
networks but also equitable net payoffs. We discuss 
condition under which the mechanisms we propose are 
immune to coalition-al deviations. 
In the long run, by undermining agent’s confidence in their 
abilities. 
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