
IJCSNS International Journal of  Computer Science and Network Security, VOL.6 No.2A, February 2006 
 
 

 

142 

Manuscript revised  January 2006. 

 

 

 
New High Speed Normalized Neural Networks for Fast 

Pattern Discovery on Web Pages  
 
 

Hazem M. EL-Bakry 
 

Faculty of Computer Science & Information Systems, Masnoura University, EGYPT 
 

 

 
Summary 
Neural networks have shown good results for detection of a 
certain pattern in a given image.  In our previous paper, a fast 
algorithm for object/face detection was presented. Such 
algorithm was designed based on cross correlation in the 
frequency domain between the input image and the weights of 
neural networks. In this paper, a simple design for solving the 
problem of local subimage normalization in the frequency 
domain is presented. Furthermore, the effect of image 
normalization on the speed up ratio of pattern detection is 
presented. Simulation results show that local subimage 
normalization through weight normalization is faster than 
subimage normalization in the spatial domain. Moreover, the 
overall speed up ratio of the detection process is increased as the 
normalization of weights is done off line.   

Key words: 
Fast Neural Networks, Cross Correlation, Image Normalization 
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1. Introduction 

Pattern detection is a fundamental step before pattern 
recognition. Its reliability and performance have a major 
influence in a whole pattern recognition system. 
Nowadays, neural networks have shown very good results 
for detecting a certain pattern in a given image [3,6,10]. 
But the problem with neural networks is that the 
computational complexity is very high because the 
networks have to process many small local windows in the 
images [5,7]. In our pervious papers, we presented fast 
neural networks based on applying cross correlation in the 
frequency domain between the input image and the input 
weights of neural networks. It was proved that the speed of 
these networks is much faster than conventional neural 
networks [1-4]. It was also proved that fast neural 
networks introduced by previous authors [9,11,12] are not 
correct. The reasons for this were given in [2]. 

The problem of subimage (local) normalization in the 
Fourier space was presented in [8]. Here, a simple method 
for solving this problem is presented. By using the 

proposed algorithm, the number of computation steps 
required for weight normalization becomes less than that 
needed for image normalization. Furthermore, the effect of 
weight normalization on the speed up ratio is theoretically 
and practically discussed. Mathematical calculations prove 
that the new idea of weight normalization, instead of 
image normalization, provides good results and increases 
the speed up ratio. This is because weight normalization 
requires fewer computation steps than subimage 
normalization. Moreover, for neural networks, 
normalization of weights can be easily done off line before 
starting the search process.  

In section 2, fast neural networks for pattern detection are 
described. Subimage normalization in the frequency 
domain through normalization of weights is presented in 
section 3. The effect of weight normalization on the speed 
up ratio is presented in section 4. 

 
2. Theory of Fast Neural Networks Based on 
Cross Correlation in the Frequency Domain 
For Pattern Detection 
 
Finding a certain pattern in the input image is a search 
problem. Each subimage in the input image is tested for 
the presence or absence of the required pattern. At each 
pixel position in the input image each subimage is 
multiplied by a window of weights, which has the same 
size as the subimage.  The outputs of neurons in the 
hidden layer are multiplied by the weights of the output 
layer. A high output implies that the tested subimage 
contains the required pattern and vice versa. Thus, we may 
conclude that this  searching problem is cross correlation 
between the image under test and the weights of the 
hidden neurons.   

The convolution theorem in mathematical analysis says 
that a convolution of f with h is identical to the result of 
the following steps: let F and H be the results of the 
Fourier transformation of f and h in the frequency domain. 
Multiply F and H in the frequency domain point by point 
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and then transform this product into spatial domain via the 
inverse Fourier transform [1]. As a result, these cross 
correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in the 
frequency domain a speed up in an order of magnitude can 
be achieved during the detection process 
[6,8,9,10,11,12,13,14,15,16].      

In the detection phase, a subimage X of size mxn (sliding 
window) is extracted from the tested image, which has a 
size PxT, and fed to the neural network. Let Wi be the 
vector of weights between the input subimage and the 
hidden layer. This vector has a size of mxn and can be 
represented as mxn matrix. The output of hidden neurons 
h(i) can be calculated as follows:  
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where g is the activation function and b(i) is the bias of 
each hidden neuron (i). Eq.1 represents the output of each 
hidden neuron for a particular subimage I. It can be 
computed for the whole image Ψ as follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−=

∑
−=

+++

=

m/2

m/2j

n/2

n/2k  i bk)vj,(uΨ  k)(j,iWg

v)(u,ih

 (2) 

Eq. (2) represents a cross correlation operation. Given any 
two functions f and g, their cross correlation can be 
obtained by: 
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Therefore, Eq. (2) can be written as follows: 

( )ibiWΨgih +⊗=            (4) 

where hi is the output of the hidden neuron (i) and hi (u,v) 
is the activity of the hidden unit (i) when the sliding 
window is located at position (u,v) in the input image Ψ 
and (u,v)∈[P-m+1,T-n+1].  

Now, the above cross correlation can be expressed in terms 
of the Fourier Transform: 

( ) ( )( )iW*FF1FiWΨ Ψ •−=⊗      (5) 

(*) means the conjugate of the FFT for the weight matrix. 
Hence, by evaluating this cross correlation, a speed up 
ratio can be obtained comparable to conventional neural 
networks. Also, the final output of the neural network can 
be evaluated as follows:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

+=
q

1i
obv)(u,ih (i)oWgv)O(u,       (6) 

where q is the number of neurons in  the hidden layer. 
O(u,v) is the output of the neural network when the sliding 
window located at the position (u,v) in the input image Ψ. 
Wo is the weight matrix between hidden and output layer. 
The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 
1. For a tested image of NxN pixels, the 2D-FFT requires a 
number equal to N2log2N2 of complex computation steps. 
Also, the same number of complex computation steps is 
required for computing the 2D-FFT of the weight matrix 
for each neuron in the hidden layer.  
2. At each neuron in the hidden layer, the inverse 2D-FFT 
is computed. So, q backward and (1+q) forward 
transforms have to be computed. Therefore, for an image 
under test, the total number of the 2D-FFT to compute is 
(2q+1)N2log2 N2. 
3. The input image and the weights should be multiplied in 
the frequency domain. Therefore, a number of complex 
computation steps equal to qN2 should be added.  

4. The number of computation steps required by the faster 
neural networks is complex and must be converted into a 
real version. It is known that the two dimensions Fast 
Fourier Transform requires (N2/2)log2N2 complex 
multiplications and N2log2N2 complex additions [13,14]. 
Every complex multiplication is realized by six real 
floating point operations and every complex addition is 
implemented by two real floating point operations. So, the 
total number of computation steps required to obtain the 
2D-FFT of an NxN image is: 

ρ=6((N2/2)log2N2) + 2(N2log2N2)      (7) 

which may be simplified to: 

ρ=N2log2N2               (8) 

Performing complex dot product in the frequency domain 
also requires 6qN2 real operations. 

5. In order to perform cross correlation in the frequency 
domain, the weight matrix must have the same size as the 
input image. So, a number of zeros = (N2-n2) must be 
added to the weight matrix. This requires a total real 
number of computation steps = q(N2-n2) for all neurons. 
Moreover, after computing the 2D-FFT for the weight 
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matrix, the conjugate of this matrix must be obtained. So, a 
real number of computation steps =qN2 should be added in 
order to obtain the conjugate of the weight matrix for all 
neurons.  Also, a number of real computation steps equal 
to N is required to create butterflies complex numbers 
(e-jk(2Πn/N)), where 0<K<L. These (N/2) complex numbers 
are multiplied by the elements of the input image or by 
previous complex numbers during the computation of the 
2D-FFT. To create a complex number requires two real 
floating point operations. So, the total number of 
computation steps required for the faster neural networks 
becomes: 

σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N  (9) 

which can be reformulated as: 

σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N        (10) 

6. Using a sliding window of size nxn for the same image 
of NxN pixels, q(2n2-1)(N-n+1)2 computation steps are 
required when using traditional neural networks for 
face/object detection process. The theoretical speed up 
factor η can be evaluated as follows: 

   N )2n-2q(8N )2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++
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=    (11) 

The theoretical speed up ratio (Eq. 11) with different sizes 
of the input image and different in size weight matrices is 
listed in Table 1. Practical speed up ratio for manipulating 
images of different sizes and different in size weight 
matrices is listed in Table 2 using 700 MHz processor and 
MATLAB ver 5.3.  

In practical implementation, the multiplication process 
consumes more time than the addition one. The effect of 
the number of multiplications required for conventional 
neural networks in the speed up ratio (Eq. 11) is more than 
the number of of multiplication steps required by the faster 
neural networks. In order to clear this, the following 
equation (ηm) describes the relation between the number of 
multiplication steps required by conventional and faster 
neural networks: 
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The results listed in Table 3 prove that the effect of the 
number of multiplication steps in case of conventional 
neural networks is more than faster neural networks and 
this the reason why practical speed up ratio is larger than 
theoretical speed up ratio. 

For general fast cross correlation the speed up ratio 
becomes in the following form: 
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where τ is a small number depends on the size of the 
weight matrix. General cross correlation means that the 
process starts from the first element in the input matrix. 
The theoretical speed up ratio for general fast cross 
correlation Eq. (13) is shown in Table 4. Compared with 
MATLAB cross correlation function (xcorr2), experimental 
results show that the our proposed algorithm is faster than 
this function as shown in Table 5. 
The authors in [9,11,12] have proposed a multilayer 
perceptron (MLP) algorithm for fast face/object detection. 
The same authors claimed incorrect equation for cross 
correlation between the input image and the weights of the 
neural networks. They introduced formulas for the number 
of computation steps needed by conventional and faster 
neural networks. Then, they established an equation for the 
speed up ratio. Unfortunately, these formulas contain many 
errors which lead to invalid speed up ratio. Other authors 
developed their work based on these incorrect equations 
[1,2]. So, the fact that these equations are not valid must 
be cleared to all researchers. It is not only very important 
but also urgent to notify other researchers not to do 
research based on wrong equations.  
The authors in [9,11,12] analyzed their proposed fast 
neural network as follows: For a tested image of NxN 
pixels, the 2D-FFT requires O(N2(log2N)2) computation 
steps. For the weight matrix Wi, the 2D-FFT can be 
computed off line since these are constant parameters of 
the network independent of the tested image. The 2D-FFT 
of the tested image must be computed. As a result, q 
backward and one forward transforms have to be 
computed. Therefore, for a tested image, the total number 
of the 2D-FFT to compute is (q+1)N2(log2N)2 [9,12]. In 
addition, the input image and the weights should be 
multiplied in the frequency domain. Therefore, 
computation steps of (qN2) should be added. This yields a 
total of O((q+1)N2(log2N)2+qN2) computation steps for the 
fast neural network [9,11]. 
 Using sliding window of size nxn, for the same image of 
NxN pixels, qN2n2 computation steps are required when 
using traditional neural networks for the face detection 
process. They evaluated theoretical speed up factor η as 
follows [9]: 

N21)log(q

2qnη
+

=          (14) 
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The speed up factor introduced in [9] and given by Eq.14 
is not correct for the following reasons: 

a) The number of computation steps required for the 
2D-FFT is O(N2log2N2) and not O(N2log2N) as presented in 
[9,11].  Also, this is not a typing error as the curve in 
Fig.2 in [9] realizes Eq.7, and the curves in Fig.15 in [11] 
realizes Eq.31 and Eq.32 in [11]. 

b) Also, the speed up ratio presented in [9] not only 
contains an error but also is not precise. This is because for 
faster neural networks, the term (6qN2) corresponds to 
complex dot product in the frequency domain must be 
added. Such term has a great effect on the speed up ratio. 
Adding only qN2 as stated in [11] is not correct since a one 
complex multiplication requires six real computation steps. 

c) For conventional neural networks, the number of 
operations is (q(2n2-1)(N-n+1)2) and not (qN2n2). The term 
n2 is required for multiplication of n2 elements (in the input 
window) by n2 weights which results in another new n2 

elements. Adding these n2 elements, requires another (n2-1) 
steps. So, the total computation steps needed for each 
window is (2n2-1). The search operation for a face in the 
input image uses a window with nxn weights. This 
operation is done at each pixel in the input image. 
Therefore, such process is repeated (N-n+1)2 times and not 
N 2 as stated in [9,12]. 

d) Before applying cross correlation, the 2D-FFT of the 
weight matrix must be computed. Because of the dot 
product, which is done in the frequency domain, the size 
of weight matrix should be increased to be the same as the 
size of the input image. Computing the 2D-FFT of the 
weight matrix off line as stated in [9,11,12] is not practical. 
In this case, all of the input images must have the same 
size. As a result, the input image will have only a one fixed 
size. This means that, the testing time for an image of size 
50x50 pixels will be the same as that image of size 
1000x1000 pixels and of course, this is unreliable. 
e) It is not valid to compare number of complex 
computation steps by another of real computation steps 
directly. The number of computation steps given by 
pervious authors [9,11,12] for conventional neural 
networks is for real operations while that is required by the 
faster neural networks is for complex operations. To obtain 
the speed up ratio, the authors in [9,11,12] have divided 
the two formulas directly without converting the number 
of computation steps required by the faster neural 
networks into a real version.  
f) Furthermore, there are critical errors in Eq.4 (equation of 
cross correlation) in [9] and also Eq.13 in [11]. Eq. 4 in [9] 
which was defined by:  
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is not correct because the definition of cross correlation is 
as given by Eq.3 here in this paper. Then, Eq.4 given by 
those authors in [9,11,12] which is: 

 ( )ibΨiWgih +⊗=            (16) 

is also not correct and should be written as Eq. 4 given 
here in this paper. Therefore, the cross correlation in the 
frequency domain given by (Eq.5 in their paper [9]) does 
not represent Eq. 16 (Eq.4 in their paper [9]) This is 
because the fact that the operation of cross correlation is 
not commutative (W⊗Ψ ≠ Ψ⊗W). As a result, Eq. 16 
(Eq.4 in their paper [9]) does not give the same correct 
results as conventional neural networks. This error leads 
the researchers who consider the references [9,11,12] to 
think about how to modify the operation of cross 
correlation so that Eq. 16 (Eq.4 in their paper [9]) can give 
the same correct results as conventional neural networks. 
Therefore, errors in these equations must be cleared to all 
the researchers. In [2], the authors proved that a symmetry 
condition must be found in input matrices (images and the 
weights of neural networks) so that faster neural networks 
can give the same results as conventional neural networks. 
In case of symmetry W⊗Ψ=Ψ⊗W, the cross correlation 
becomes commutative and this is a valuable achievement. 
In this case, the cross correlation is performed without any 
constrains on the arrangement of matrices. A practical 
proof for this achievement is explained by examples 
shown in appendix "A". As presented in [1], this symmetry 
condition is useful for reducing the number of patterns that 
neural networks will learn. This is because the image is 
converted into symmetric shape by rotating it down and 
then the up image and its rotated down version are tested 
together as one (symmetric) image. If a pattern is detected 
in the rotated down image, then, this means that this 
pattern is found at the relative position in the up image. So, 
if conventional neural networks are trained for up and 
rotated down examples of the pattern, faster neural 
networks will be trained only to up examples. As the 
number of trained examples is reduced, the number of 
neurons in the hidden layer will be reduced and the neural 
network will be faster in the test phase compared with 
conventional neural networks.  

g) Moreover, the authors in [9,11,12] stated that the 
activity of each neuron in the hidden layer Eq. 16 (Eq.4 in 
their paper [9]) can be expressed in terms of convolution 
between a bank of filter (weights) and the input image. 
This is not correct because the activity of the hidden 
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neuron is a cross correlation between the input image and 
the weight matrix. It is known that the result of cross 
correlation between any two functions is different from 
their convolution. As we proved in [1,2] the two results 
will be the same, only when the two matrices are 
symmetric or at least the weight matrix is symmetric. A 
practical example which proves that for any two matrices 
the result of their cross correlation is different from their 
convolution unless that they are symmetric or at least the 
second matrix is symmetric as shown in appendix "B". 

h) Images are tested for the presence of a face (object) at 
different scales by building a pyramid of the input image 
which generates a set of images at different resolutions. 
The face detector is then applied at each resolution and 
this process takes much more time as the number of 
processing steps will be increased. In [9,11,12], the authors 
stated that the Fourier transforms of the new scales do not 
need to be computed. This is due to a property of the 
Fourier transform. If z(x,y) is the original and a(x,y) is the 
sub-sampled by a factor of 2 in each direction image then: 

z(2x,2y)y)a(x, =            (17) 
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      This implies that we do not need to recompute the 
Fourier transform of the sub-sampled images, as it can be 
directly obtained from the original Fourier transform. But 
experimental results have shown that Eq.17 is valid only 
for images in the following form: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

............Y.........YXXSS

............Y.........YXXSS
.
.
.
.

....................CCBBAA

....................CCBBAA

Ψ         (20) 

      In [9], the author claimed that the processing needs 
O((q+2)N2log2N) additional number of computation steps. 
Thus the speed up ratio will be [9]: 

N2)log(q
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Of course this is not correct, because the inverse of the 
Fourier transform is required to be computed at each 
neuron in the hidden layer (for the resulted matrix from the 
dot product between the Fourier matrix in two dimensions 
of the input image and the Fourier matrix in two 
dimensions of the weights, the inverse of the Fourier 
transform must be computed). So, the term (q+2) in Eq.21 
should be (2q+1) because the inverse 2D-FFT in two 
dimensions must be done at each neuron in the hidden 
layer. In this case, the number of computation steps 
required to perform 2D-FFT for the faster neural networks 
will be: 

ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2      (22) 

In addition, a number of computation steps equal to 
6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must be added to the 
number of computation steps required by the faster neural 
networks. 
 
3. Subimage Normalization in the Frequency 
Domain 
In [6], the authors stated that image normalization to avoid 
weak or strong illumination could not be done in the 
frequency space. This is because the image normalization 
is local and not easily computed in the Fourier space of the 
whole image. Here, a simple method for image 
normalization is presented. Normalizing the image can be 
obtained by centering and normalizing the weights as 
follows [4]: 

Let X rc
_

 be the zero-mean centered subimage located at 
(r,c) in the input image ψ: 

rcxrcXrcX −=          (23) 

where, xrc  is the mean value of the sub image located at 
position (r,c). We are interested in computing the dot 
multiplication between the subimage Xrc  and the weights 
Wi the of hidden layer as follows: 

iWrcxiWrcXiWrcX •−•=•    (24) 
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1. The dot multiplication denoted by (•) is not a matrix 
multiplication but is done element-wise (multiply each 
element in the first matrix by its corresponding element at 
the same position in the second matrix and sum up the 
results to obtain a one final value). 

 

2. Combining Eq. (24) and Eq. (25), we get the following 
expression: 

iW2n

n

1jk,
j)(k,rcX

iWrcXiWrcX •

∑
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−•=•   (26) 

For any two matrices with the same size, multiplying the 
first matrix dot by the mean of the second and summing 
the results the same as multiplying the second matrix dot 
by the mean of the first one and summing the results of 
multiplication. Therefore, Eq. (26) can be written as: 
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The zero mean weights are given by: 
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Also, Eq. (27) can be written as: 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
∑
=

−•=•
2n

n

1jk,
j)(k,iW

iWrcXiWrcX           (29) 

So, we may conclude that: 

iWrcXiWrcX •=•                (30) 

which means that multiplying a normalized image with a 
non-normalized weight matrix dot multiplication is equal 
to the dot multiplication of the non – normalized image 
with the non-normalized weight matrix. 
 

4. Effect of Weight Normalization on the 
Speed up Ratio 
 
Normalization of subimages in the spatial domain (in case 
of using traditional neural networks) requires 2n2(N-n+1)2 
computation steps. On the other hand, normalization of 
subimages in the frequency domain through normalizing 
the weights of the neural networks requires 2qn2 operations. 
This proves that local image normalization in the 
frequency domain is faster than that in the spatial one. By 
using weight normalization, the speed up ratio for image 
normalization Γ can be calculated as:  

 

q
1)n(N

Γ
2+−
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The speed up ratio of the normalization process for images 
of different sizes is listed in Table 6. As a result, we may 
conclude that: 
1- Using this technique, normalization in the frequency 

domain can be done through normalizing the weights in 
spatial domain.  

2- Normalization of an image through normalization of 
weights is faster than normalization of each subimage.  

3- Normalization of weights can be done off line. So, the 
speed up ratio in the case of weight normalization can be 
calculated as follows: 

 
a) For Conventional Neural Networks:  
The speed up ratio equals the number of computation steps 
required by conventional neural networks with image 
normalization divided by the number of computation steps 
needed by conventional neural networks with weight 
normalization, which is done off line. The speed up ratio ηc 
in this case can be given by: 

22
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c
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which can be simplified to: 

1)q(2n
2n1η 2

2

c −
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b) For Fast Neural Networks: 
The over all speed up ratio equals the number of 
computation steps required by conventional neural 
networks with image normalization divided by the number 
of computation steps needed by fast neural networks with 
weight normalization, which is done off line. The over all 
speed up ratio ηo can be given by: 
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which can be simplified to: 
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The relation between the speed up ratio before (η) and 
after (ηo) the normalization process can be summed up as: 
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The overall speed up ratio (Eq. 36) with images of 
different sizes and different sizes of windows is listed in 
Table 7. We can easily note that the speed up ratio in case 
of image normalization through weight normalization is 
larger than the speed up ratio (without normalization) 
listed in Table 1. This means that the search process with 
normalized faster neural networks is done faster than 
conventional neural networks with or without 
normalization of the input image. The overall practical 
speed up ratio (Eq. 36) after normalization of weights off 
line is listed in Table 8.  

 
5. Conclusion 
Normalized neural networks for fast pattern detection in a 
given image have been presented. It has been proved 
mathematically and practically that the speed of the 
detection process becomes faster than conventional neural 
networks. This has been accomplished by applying cross 
correlation in the frequency domain between the input 
image and the normalized input weights of the neural 
networks. Furthermore, a new general formulas for fast 
cross correlation as well as the speed up ratio have been 
given. Also, the problem of local subimage normalization 
in the frequency space has been solved. Moreover, it has 
been generally proved that the speed up ratio in the case of 
image normalization through normalization of weights is 
faster than subimage normalization in the spatial domain. 
This speed up ratio is faster than the one obtained without 
normalization. Simulation results have confirmed the 
theoretical computations by using MATLAB. The proposed 
approach can be applied to detect the presence/absence of 
any other object in an image. 

Appendix “A” 

An example proves that the cross correlation 
between any two matrices is not commutative 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and   ,Let  

Then, the cross correlation between X and W can be 
obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

73
15

89
56

XW  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85819591
8355879351659761

53576367

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

40539
4911869
155342

 

On the other hand, the cross correlation the cross 
correlation between W and X can be computed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
56

73
15

WX  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

76753635
7916783915563855

19591858

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

425315
6311849
95340

 

which proves that X⊗W ≠ W⊗X.  

Also, when one of the two matrices is symmetric the cross 
correlation between the two matrices is non commutative 
as shown in the following example: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
53
35

X and,Let  

Then, the cross correlation between X and W can be 
obtained as follows: 
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⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥
⎦

⎤
⎢
⎣

⎡
=⊗

89
56

53
35

WX  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

56553635
5936583935563855

39593858
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

304315
6311249
276940

 

On the other hand, the cross correlation the cross 
correlation between W and X can be computed as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

53
35

89
56

XW  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85839593
8355859353659563

53556365

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
4911263
154330

 

which proves that X⊗W ≠ W⊗X.  
 
The cross correlation between any two matrices is 
commutative only when the two matrices are symmetric as 
shown in the following example.  

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
98

W
53
35

X and,Let  

Then, the cross correlation between X and W can be 
obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
98

53
35

WX  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

58839539
3859583939583859

39385958

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
6912269
276940

 

On the other hand, the cross correlation between W and X 
can be computed as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

53
35

89
98

XW  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

58593839
5938583939583859

39385985

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
6912269
276940

 

which proves that the cross correlation is commutative       
(X⊗W = W⊗X) only under the condition when the two 
matrices X and W are symmetric. 

Appendix “B” 

An example proves that the cross correlation 
between any two matrices is different from 

their convolution 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and   ,Let ,  

the result of their c ross correlation can be computed as 
illustrated from the previous example (first result ) in 
appendix "A". The convolution between X and W can be 
obtained as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
◊⎥

⎦

⎤
⎢
⎣

⎡
=◊

65
98

73
15

WX  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839
7518763519583659

15165556

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

677
3063

130

582
416
53

 

 which proves that X⊗W ≠ X◊W.  

When the second matrix W is symmetric, the cross 
correlation between X and W can be computed as follows: 



IJCSNS International Journal of  Computer Science and Network Security, VOL.6 No.2A, February 2006 
 
 

 

150 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

⎥
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⎦
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⎡
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711067
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9
9

5

 

while the convolution can be between X and W can be 
obtained as follows: 
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⎡
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⎤
⎢
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⎥
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⎢
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⎣

⎡

××+××
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

565345
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9

9
  

 

which proves that under the condition that the second 
matrix is symmetric (or the two matrices are symmetric) 
the cross correlation between the two matrices equals to 
their convolution. 
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Table 1: The theoretical speed up ratio for images with different sizes. 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.67 5.04 6.34 
200x200 4.01 5.92 8.05 
300x300 4.00 6.03 8.37 
400x400 3.95 6.01 8.42 
500x500 3.89 5.95 8.39 
600x600 3.83 5.88 8.33 
700x700 3.78 5.82 8.26 
800x800 3.73 5.76 8.19 
900x900 3.69 5.70 8.12 

1000x1000 3.65 5.65 8.05 
1100x1100 3.62 5.60 7.99 
1200x1200 3.58 5.55 7.93 
1300x1300 3.55 5.51 7.93 
1400x1400 3.53 5.47 7.82 
1500x1500 3.50 5.43 7.77 
1600x1600 3.48 5.43 7.72 
1700x1700 3.45 5.37 7.68 
1800x1800 3.43 5.34 7.64 
1900x1900 3.41 5.31 7.60 
2000x2000 3.40 5.28 7.56 

 

 

 

Table 2: Practical Speed up ratio for images with different sizes Using 
MATLAB ver 5.3. 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 7.88 10.75 14.69 
200x200 6.21 9.19 13.17 
300x300 5.54 8.43 12.21 
400x400 4.78 7.45 11.41 
500x500 4.68 7.13 10.79 
600x600 4.46 6.97 10.28 
700x700 4.34 6.83 9.81 
800x800 4.27 6.68 9.60 
900x900 4.31 6.79 9.72 

1000x1000 4.19 6.59 9.46 
1100x1100 4.24 6.66 9.62 
1200x1200 4.20 6.62 9.57 
1300x1300 4.17 6.57 9.53 
1400x1400 4.13 6.53 9.49 
1500x1500 4.10 6.49 9.45 
1600x1600 4.07 6.45 9.41 
1700x1700 4.03 6.41 9.37 
1800x1800 4.00 6.38 9.32 
1900x1900 3.97 6.35 9.28 
2000x2000 3.94 6.31 9.25 

 

 

 

 

Table 3: A comparison between the number of multiplication steps 
required for conventional and faster neural networks to manipulate 

images with different sizes (n=20, q=30). 

Image size Conventional 
Neural Nets

 Fast Neural 
Nets 

Speed up ratio 
(ηm) 

100x100 7.8732e+007 2.6117e+007 3.01 
200x200 3.9313e+008 1.1911e+008 3.30 
300x300 9.4753e+008 2.8726e+008 3.29 
400x400 1.7419e+009 5.3498e+008 3.26 
500x500 2.7763e+009 8.6537e+008 3.21 
600x600 4.0507e+009 1.2808e+009 3.16 
700x700 5.5651e+009 1.7832e+009 3.12 
800x800 7.3195e+009 2.3742e+009 3.08 
900x900 9.3139e+009 3.0552e+009 3.05 

1000x1000 1.1548e+010 3.8275e+009 3.02 
1100x1100 1.4023e+010 4.6921e+009 3.00 
1200x1200 1.6737e+010 5.6502e+009 2.96 
1300x1300 1.9692e+010 6.7026e+009 2.94 
1400x1400 2.2886e+010 7.8501e+009 2.92 
1500x1500 2.6320e+010 9.0935e+009 2.90 
1600x1600 2.9995e+010 1.0434e+010 2.87 
1700x1700 3.3909e+010 1.1871e+010 2.86 
1800x1800 3.8064e+010 1.3407e+010 2.84 
1900x1900 4.2458e+010 1.5041e+010 2.82 
2000x2000 4.7092e+010 1.6774e+010 2.81 

 
 

Table 4: The theoretical speed up ratio for the general fast cross 
correlation algorithm. 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 7.8732e+007 2.6117e+007 3.01 
200x200 3.9313e+008 1.1911e+008 3.30 
300x300 9.4753e+008 2.8726e+008 3.29 
400x400 1.7419e+009 5.3498e+008 3.26 
500x500 2.7763e+009 8.6537e+008 3.21 
600x600 4.0507e+009 1.2808e+009 3.16 
700x700 5.5651e+009 1.7832e+009 3.12 
800x800 7.3195e+009 2.3742e+009 3.08 
900x900 9.3139e+009 3.0552e+009 3.05 

1000x1000 1.1548e+010 3.8275e+009 3.02 
1100x1100 1.4023e+010 4.6921e+009 3.00 
1200x1200 1.6737e+010 5.6502e+009 2.96 
1300x1300 1.9692e+010 6.7026e+009 2.94 
1400x1400 2.2886e+010 7.8501e+009 2.92 
1500x1500 2.6320e+010 9.0935e+009 2.90 
1600x1600 2.9995e+010 1.0434e+010 2.87 
1700x1700 3.3909e+010 1.1871e+010 2.86 
1800x1800 3.8064e+010 1.3407e+010 2.84 
1900x1900 4.2458e+010 1.5041e+010 2.82 
2000x2000 4.7092e+010 1.6774e+010 2.81 
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Table 5:  Simulation results of the speed up ratio for the general fast 
cross correlation compared with the MATLAB cross correlation function 

(xcorr2). 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 10.14  13.05   16.49  
200x200 9.17  11.92  14.33   
300x300 8.25  10.83  13.41  
400x400 7.91  9.62  12.65  
500x500 6.77  9.24  11.77  
600x600 6.46  8.89  11.19  
700x700 5.99  8.47  10.96  
800x800 5.48  8.74  10.32  
900x900 5.31  8.43  10.66  

1000x1000 5.91  8.66  10.51  
1100x1100 5.77 8.61 10.46 
1200x1200 5.68 8.56 10.40 
1300x1300 5.62 8.52 10.35 
1400x1400 5.58 8.47 10.31 
1500x1500 5.54 8.43 10.26 
1600x1600 5.50 8.39 10.22 
1700x1700 5.46 8.33 10.18 
1800x1800 5.42 8.28 10.14 
1900x1900 5.38 8.24 10.10 
2000x2000 5.34 8.20 10.06 

 

 

Table 6:  The speed up ratio of the normalization process for images of 
different sizes (n=20,q=30). 

Image size Speed up ratio  

100x100 219 
200x200 1092  
300x300 2632 
400x400 4839  
500x500 7712 
600x600 11252 
700x700 15459 
800x800 20332 
900x900 25872 

1000x1000 32079 
1100x1100 38952 
1200x1200 46492 
1300x1300 54699 
1400x1400 63572 
1500x1500 73112 
1600x1600 83319 
1700x1700 94192 
1800x1800 105732 
1900x1900 117939 
2000x2000 130812 

 

 

 

 

 

Table 7: Theoretical results for the speed up ratio in case of image 
normalization by normalizing the input weights. 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 3.79 5.21 6.55 
200x200 4.14 6.12 8.32 
300x300 4.13 6.23 8.65 
400x400 4.08 6.21 8.70 
500x500 4.02 6.15 8.67 
600x600 3.96 6.08 8.61 
700x700 3.90 6.01 8.53 
800x800 3.86 5.95 8.46 
900x900 3.81 5.89 8.39 

1000x1000 3.77 5.84 8.32 
1100x1100 3.74 5.79 8.26 
1200x1200 3.70 5.74 8.20 
1300x1300 3.67 5.70 8.14 
1400x1400 3.64 5.65 8.08 
1500x1500 3.62 5.62 8.03 
1600x1600 3.59 5.58 7.99 
1700x1700 3.57 5.55 7.94 
1800x1800 3.55 5.51 7.90 
1900x1900 3.53 5.48 7.86 
2000x2000 3.51 5.45 7.82 

 

 

Table 8: Simulation results for the speed up ratio in case of image 
normalization by normalizing the input weights. 

Image size Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 8.91 12.03 16.74 
200x200 7.43 10.42 15.39 
300x300 6.72 9.72 14.45 
400x400 5.99 8.61 13.59 
500x500 5.75 8.32 12.94 
600x600 5.61 8.09 11.52 
700x700 5.49 7.97 11.04 
800x800 5.41 7.83 10.74 
900x900 5.32 7.71 10.56 

1000x1000 5.29 7.58 10.45 
1100x1100 5.41 7.83 10.81 
1200x1200 5.36 7.77 10.76 
1300x1300 5.32 7.71 10.71 
1400x1400 5.28 7.65 10.66 
1500x1500 5.24 7.60 10.62 
1600x1600 5.21 7.56 10.58 
1700x1700 5.18 7.52 10.52 
1800x1800 5.14 7.48 10.47 
1900x1900 5.11 7.44 10.43 
2000x2000 5.08 7.41 10.38 

 


