
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

142

Manuscript revised January 2006.

New High Speed Normalized Neural Networks for Fast

Pattern Discovery on Web Pages

Hazem M. EL-Bakry

Faculty of Computer Science & Information Systems, Masnoura University, EGYPT

Summary
Neural networks have shown good results for detection of a
certain pattern in a given image. In our previous paper, a fast
algorithm for object/face detection was presented. Such
algorithm was designed based on cross correlation in the
frequency domain between the input image and the weights of
neural networks. In this paper, a simple design for solving the
problem of local subimage normalization in the frequency
domain is presented. Furthermore, the effect of image
normalization on the speed up ratio of pattern detection is
presented. Simulation results show that local subimage
normalization through weight normalization is faster than
subimage normalization in the spatial domain. Moreover, the
overall speed up ratio of the detection process is increased as the
normalization of weights is done off line.

Key words:
Fast Neural Networks, Cross Correlation, Image Normalization
in the Frequency Domain

1. Introduction

Pattern detection is a fundamental step before pattern
recognition. Its reliability and performance have a major
influence in a whole pattern recognition system.
Nowadays, neural networks have shown very good results
for detecting a certain pattern in a given image [3,6,10].
But the problem with neural networks is that the
computational complexity is very high because the
networks have to process many small local windows in the
images [5,7]. In our pervious papers, we presented fast
neural networks based on applying cross correlation in the
frequency domain between the input image and the input
weights of neural networks. It was proved that the speed of
these networks is much faster than conventional neural
networks [1-4]. It was also proved that fast neural
networks introduced by previous authors [9,11,12] are not
correct. The reasons for this were given in [2].

The problem of subimage (local) normalization in the
Fourier space was presented in [8]. Here, a simple method
for solving this problem is presented. By using the

proposed algorithm, the number of computation steps
required for weight normalization becomes less than that
needed for image normalization. Furthermore, the effect of
weight normalization on the speed up ratio is theoretically
and practically discussed. Mathematical calculations prove
that the new idea of weight normalization, instead of
image normalization, provides good results and increases
the speed up ratio. This is because weight normalization
requires fewer computation steps than subimage
normalization. Moreover, for neural networks,
normalization of weights can be easily done off line before
starting the search process.

In section 2, fast neural networks for pattern detection are
described. Subimage normalization in the frequency
domain through normalization of weights is presented in
section 3. The effect of weight normalization on the speed
up ratio is presented in section 4.

2. Theory of Fast Neural Networks Based on
Cross Correlation in the Frequency Domain
For Pattern Detection

Finding a certain pattern in the input image is a search
problem. Each subimage in the input image is tested for
the presence or absence of the required pattern. At each
pixel position in the input image each subimage is
multiplied by a window of weights, which has the same
size as the subimage. The outputs of neurons in the
hidden layer are multiplied by the weights of the output
layer. A high output implies that the tested subimage
contains the required pattern and vice versa. Thus, we may
conclude that this searching problem is cross correlation
between the image under test and the weights of the
hidden neurons.

The convolution theorem in mathematical analysis says
that a convolution of f with h is identical to the result of
the following steps: let F and H be the results of the
Fourier transformation of f and h in the frequency domain.
Multiply F and H in the frequency domain point by point

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

143

and then transform this product into spatial domain via the
inverse Fourier transform [1]. As a result, these cross
correlations can be represented by a product in the
frequency domain. Thus, by using cross correlation in the
frequency domain a speed up in an order of magnitude can
be achieved during the detection process
[6,8,9,10,11,12,13,14,15,16].

In the detection phase, a subimage X of size mxn (sliding
window) is extracted from the tested image, which has a
size PxT, and fed to the neural network. Let Wi be the
vector of weights between the input subimage and the
hidden layer. This vector has a size of mxn and can be
represented as mxn matrix. The output of hidden neurons
h(i) can be calculated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+∑
=

=
m

1j ibk)k)X(j,(j,
n

1k iWgih (1)

where g is the activation function and b(i) is the bias of
each hidden neuron (i). Eq.1 represents the output of each
hidden neuron for a particular subimage I. It can be
computed for the whole image Ψ as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
−=

∑
−=

+++

=

m/2

m/2j

n/2

n/2k i bk)vj,(uΨ k)(j,iWg

v)(u,ih

 (2)

Eq. (2) represents a cross correlation operation. Given any
two functions f and g, their cross correlation can be
obtained by:

⎟
⎠
⎞

⎜
⎝
⎛ ∑

∞

∞−=
∑
∞

∞−=
++

=⊗

m n
n)n)g(m,ym,f(x

y)g(x,y)f(x,

 (3)

Therefore, Eq. (2) can be written as follows:

()ibiWΨgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u,v)
is the activity of the hidden unit (i) when the sliding
window is located at position (u,v) in the input image Ψ
and (u,v)∈[P-m+1,T-n+1].

Now, the above cross correlation can be expressed in terms
of the Fourier Transform:

() ()()iW*FF1FiWΨ Ψ •−=⊗ (5)

(*) means the conjugate of the FFT for the weight matrix.
Hence, by evaluating this cross correlation, a speed up
ratio can be obtained comparable to conventional neural
networks. Also, the final output of the neural network can
be evaluated as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
=

+=
q

1i
obv)(u,ih (i)oWgv)O(u, (6)

where q is the number of neurons in the hidden layer.
O(u,v) is the output of the neural network when the sliding
window located at the position (u,v) in the input image Ψ.
Wo is the weight matrix between hidden and output layer.
The complexity of cross correlation in the frequency
domain can be analyzed as follows:
1. For a tested image of NxN pixels, the 2D-FFT requires a
number equal to N2log2N2 of complex computation steps.
Also, the same number of complex computation steps is
required for computing the 2D-FFT of the weight matrix
for each neuron in the hidden layer.
2. At each neuron in the hidden layer, the inverse 2D-FFT
is computed. So, q backward and (1+q) forward
transforms have to be computed. Therefore, for an image
under test, the total number of the 2D-FFT to compute is
(2q+1)N2log2 N2.
3. The input image and the weights should be multiplied in
the frequency domain. Therefore, a number of complex
computation steps equal to qN2 should be added.

4. The number of computation steps required by the faster
neural networks is complex and must be converted into a
real version. It is known that the two dimensions Fast
Fourier Transform requires (N2/2)log2N2 complex
multiplications and N2log2N2 complex additions [13,14].
Every complex multiplication is realized by six real
floating point operations and every complex addition is
implemented by two real floating point operations. So, the
total number of computation steps required to obtain the
2D-FFT of an NxN image is:

ρ=6((N2/2)log2N2) + 2(N2log2N2) (7)

which may be simplified to:

ρ=N2log2N2 (8)

Performing complex dot product in the frequency domain
also requires 6qN2 real operations.

5. In order to perform cross correlation in the frequency
domain, the weight matrix must have the same size as the
input image. So, a number of zeros = (N2-n2) must be
added to the weight matrix. This requires a total real
number of computation steps = q(N2-n2) for all neurons.
Moreover, after computing the 2D-FFT for the weight

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

144

matrix, the conjugate of this matrix must be obtained. So, a
real number of computation steps =qN2 should be added in
order to obtain the conjugate of the weight matrix for all
neurons. Also, a number of real computation steps equal
to N is required to create butterflies complex numbers
(e-jk(2Πn/N)), where 0<K<L. These (N/2) complex numbers
are multiplied by the elements of the input image or by
previous complex numbers during the computation of the
2D-FFT. To create a complex number requires two real
floating point operations. So, the total number of
computation steps required for the faster neural networks
becomes:

σ=(2q+1)(5N2log2N2) +6qN2+q(N2-n2)+qN2 +N (9)

which can be reformulated as:

σ=(2q+1)(5N2log2N2) +q(8N2-n2) +N (10)

6. Using a sliding window of size nxn for the same image
of NxN pixels, q(2n2-1)(N-n+1)2 computation steps are
required when using traditional neural networks for
face/object detection process. The theoretical speed up
factor η can be evaluated as follows:

 N)2n-2q(8N)2N2log21)(5N(2q

 2 1)n-1)(N-2q(2nη
+++

+
= (11)

The theoretical speed up ratio (Eq. 11) with different sizes
of the input image and different in size weight matrices is
listed in Table 1. Practical speed up ratio for manipulating
images of different sizes and different in size weight
matrices is listed in Table 2 using 700 MHz processor and
MATLAB ver 5.3.

In practical implementation, the multiplication process
consumes more time than the addition one. The effect of
the number of multiplications required for conventional
neural networks in the speed up ratio (Eq. 11) is more than
the number of of multiplication steps required by the faster
neural networks. In order to clear this, the following
equation (ηm) describes the relation between the number of
multiplication steps required by conventional and faster
neural networks:

22
2

2

22

6qN)Nlog1)(3N(2q
1)n(Nqn

mη ++

+−
= (12)

The results listed in Table 3 prove that the effect of the
number of multiplication steps in case of conventional
neural networks is more than faster neural networks and
this the reason why practical speed up ratio is larger than
theoretical speed up ratio.

For general fast cross correlation the speed up ratio
becomes in the following form:

τ)(N)2n-2τ)q(8(N)2τ)(N2log2τ)1)(5(N(2q

21)N2q(2n

η

+++++++

−

=
 (13)

where τ is a small number depends on the size of the
weight matrix. General cross correlation means that the
process starts from the first element in the input matrix.
The theoretical speed up ratio for general fast cross
correlation Eq. (13) is shown in Table 4. Compared with
MATLAB cross correlation function (xcorr2), experimental
results show that the our proposed algorithm is faster than
this function as shown in Table 5.
The authors in [9,11,12] have proposed a multilayer
perceptron (MLP) algorithm for fast face/object detection.
The same authors claimed incorrect equation for cross
correlation between the input image and the weights of the
neural networks. They introduced formulas for the number
of computation steps needed by conventional and faster
neural networks. Then, they established an equation for the
speed up ratio. Unfortunately, these formulas contain many
errors which lead to invalid speed up ratio. Other authors
developed their work based on these incorrect equations
[1,2]. So, the fact that these equations are not valid must
be cleared to all researchers. It is not only very important
but also urgent to notify other researchers not to do
research based on wrong equations.
The authors in [9,11,12] analyzed their proposed fast
neural network as follows: For a tested image of NxN
pixels, the 2D-FFT requires O(N2(log2N)2) computation
steps. For the weight matrix Wi, the 2D-FFT can be
computed off line since these are constant parameters of
the network independent of the tested image. The 2D-FFT
of the tested image must be computed. As a result, q
backward and one forward transforms have to be
computed. Therefore, for a tested image, the total number
of the 2D-FFT to compute is (q+1)N2(log2N)2 [9,12]. In
addition, the input image and the weights should be
multiplied in the frequency domain. Therefore,
computation steps of (qN2) should be added. This yields a
total of O((q+1)N2(log2N)2+qN2) computation steps for the
fast neural network [9,11].
 Using sliding window of size nxn, for the same image of
NxN pixels, qN2n2 computation steps are required when
using traditional neural networks for the face detection
process. They evaluated theoretical speed up factor η as
follows [9]:

N21)log(q

2qnη
+

= (14)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

145

The speed up factor introduced in [9] and given by Eq.14
is not correct for the following reasons:

a) The number of computation steps required for the
2D-FFT is O(N2log2N2) and not O(N2log2N) as presented in
[9,11]. Also, this is not a typing error as the curve in
Fig.2 in [9] realizes Eq.7, and the curves in Fig.15 in [11]
realizes Eq.31 and Eq.32 in [11].

b) Also, the speed up ratio presented in [9] not only
contains an error but also is not precise. This is because for
faster neural networks, the term (6qN2) corresponds to
complex dot product in the frequency domain must be
added. Such term has a great effect on the speed up ratio.
Adding only qN2 as stated in [11] is not correct since a one
complex multiplication requires six real computation steps.

c) For conventional neural networks, the number of
operations is (q(2n2-1)(N-n+1)2) and not (qN2n2). The term
n2 is required for multiplication of n2 elements (in the input
window) by n2 weights which results in another new n2

elements. Adding these n2 elements, requires another (n2-1)
steps. So, the total computation steps needed for each
window is (2n2-1). The search operation for a face in the
input image uses a window with nxn weights. This
operation is done at each pixel in the input image.
Therefore, such process is repeated (N-n+1)2 times and not
N 2 as stated in [9,12].

d) Before applying cross correlation, the 2D-FFT of the
weight matrix must be computed. Because of the dot
product, which is done in the frequency domain, the size
of weight matrix should be increased to be the same as the
size of the input image. Computing the 2D-FFT of the
weight matrix off line as stated in [9,11,12] is not practical.
In this case, all of the input images must have the same
size. As a result, the input image will have only a one fixed
size. This means that, the testing time for an image of size
50x50 pixels will be the same as that image of size
1000x1000 pixels and of course, this is unreliable.
e) It is not valid to compare number of complex
computation steps by another of real computation steps
directly. The number of computation steps given by
pervious authors [9,11,12] for conventional neural
networks is for real operations while that is required by the
faster neural networks is for complex operations. To obtain
the speed up ratio, the authors in [9,11,12] have divided
the two formulas directly without converting the number
of computation steps required by the faster neural
networks into a real version.
f) Furthermore, there are critical errors in Eq.4 (equation of
cross correlation) in [9] and also Eq.13 in [11]. Eq. 4 in [9]
which was defined by:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∞

∞−=
∑
∞

∞−=
++=

⊗

m n
n)ym,n)g(xf(m,

y)g(x,y)f(x,

 (15)

is not correct because the definition of cross correlation is
as given by Eq.3 here in this paper. Then, Eq.4 given by
those authors in [9,11,12] which is:

 ()ibΨiWgih +⊗= (16)

is also not correct and should be written as Eq. 4 given
here in this paper. Therefore, the cross correlation in the
frequency domain given by (Eq.5 in their paper [9]) does
not represent Eq. 16 (Eq.4 in their paper [9]) This is
because the fact that the operation of cross correlation is
not commutative (W⊗Ψ ≠ Ψ⊗W). As a result, Eq. 16
(Eq.4 in their paper [9]) does not give the same correct
results as conventional neural networks. This error leads
the researchers who consider the references [9,11,12] to
think about how to modify the operation of cross
correlation so that Eq. 16 (Eq.4 in their paper [9]) can give
the same correct results as conventional neural networks.
Therefore, errors in these equations must be cleared to all
the researchers. In [2], the authors proved that a symmetry
condition must be found in input matrices (images and the
weights of neural networks) so that faster neural networks
can give the same results as conventional neural networks.
In case of symmetry W⊗Ψ=Ψ⊗W, the cross correlation
becomes commutative and this is a valuable achievement.
In this case, the cross correlation is performed without any
constrains on the arrangement of matrices. A practical
proof for this achievement is explained by examples
shown in appendix "A". As presented in [1], this symmetry
condition is useful for reducing the number of patterns that
neural networks will learn. This is because the image is
converted into symmetric shape by rotating it down and
then the up image and its rotated down version are tested
together as one (symmetric) image. If a pattern is detected
in the rotated down image, then, this means that this
pattern is found at the relative position in the up image. So,
if conventional neural networks are trained for up and
rotated down examples of the pattern, faster neural
networks will be trained only to up examples. As the
number of trained examples is reduced, the number of
neurons in the hidden layer will be reduced and the neural
network will be faster in the test phase compared with
conventional neural networks.

g) Moreover, the authors in [9,11,12] stated that the
activity of each neuron in the hidden layer Eq. 16 (Eq.4 in
their paper [9]) can be expressed in terms of convolution
between a bank of filter (weights) and the input image.
This is not correct because the activity of the hidden

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

146

neuron is a cross correlation between the input image and
the weight matrix. It is known that the result of cross
correlation between any two functions is different from
their convolution. As we proved in [1,2] the two results
will be the same, only when the two matrices are
symmetric or at least the weight matrix is symmetric. A
practical example which proves that for any two matrices
the result of their cross correlation is different from their
convolution unless that they are symmetric or at least the
second matrix is symmetric as shown in appendix "B".

h) Images are tested for the presence of a face (object) at
different scales by building a pyramid of the input image
which generates a set of images at different resolutions.
The face detector is then applied at each resolution and
this process takes much more time as the number of
processing steps will be increased. In [9,11,12], the authors
stated that the Fourier transforms of the new scales do not
need to be computed. This is due to a property of the
Fourier transform. If z(x,y) is the original and a(x,y) is the
sub-sampled by a factor of 2 in each direction image then:

z(2x,2y)y)a(x, = (17)

y))FT(z(x,v)Z(u, = (18)

⎟
⎠
⎞

⎜
⎝
⎛==

2
v,

2
uZ

4
1v)A(u,y))FT(a(x, (19)

 This implies that we do not need to recompute the
Fourier transform of the sub-sampled images, as it can be
directly obtained from the original Fourier transform. But
experimental results have shown that Eq.17 is valid only
for images in the following form:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

............Y.........YXXSS

............Y.........YXXSS
.
.
.
.

....................CCBBAA

....................CCBBAA

Ψ (20)

 In [9], the author claimed that the processing needs
O((q+2)N2log2N) additional number of computation steps.
Thus the speed up ratio will be [9]:

N2)log(q
qn

2

2
η

+
= (21)

Of course this is not correct, because the inverse of the
Fourier transform is required to be computed at each
neuron in the hidden layer (for the resulted matrix from the
dot product between the Fourier matrix in two dimensions
of the input image and the Fourier matrix in two
dimensions of the weights, the inverse of the Fourier
transform must be computed). So, the term (q+2) in Eq.21
should be (2q+1) because the inverse 2D-FFT in two
dimensions must be done at each neuron in the hidden
layer. In this case, the number of computation steps
required to perform 2D-FFT for the faster neural networks
will be:

ϕ=(2q+1)(5N2log2N2)+(2q)5(N/2)2log2(N/2)2 (22)

In addition, a number of computation steps equal to
6q(N/2)2+q((N/2)2-n2)+q(N/2)2 must be added to the
number of computation steps required by the faster neural
networks.

3. Subimage Normalization in the Frequency
Domain
In [6], the authors stated that image normalization to avoid
weak or strong illumination could not be done in the
frequency space. This is because the image normalization
is local and not easily computed in the Fourier space of the
whole image. Here, a simple method for image
normalization is presented. Normalizing the image can be
obtained by centering and normalizing the weights as
follows [4]:

Let X rc
_

 be the zero-mean centered subimage located at
(r,c) in the input image ψ:

rcxrcXrcX −= (23)

where, xrc is the mean value of the sub image located at
position (r,c). We are interested in computing the dot
multiplication between the subimage Xrc and the weights
Wi the of hidden layer as follows:

iWrcxiWrcXiWrcX •−•=• (24)

where,

2n

n

1jk,
j)(k,

rc
X

rcx

∑
=

= (25)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

147

1. The dot multiplication denoted by (•) is not a matrix
multiplication but is done element-wise (multiply each
element in the first matrix by its corresponding element at
the same position in the second matrix and sum up the
results to obtain a one final value).

2. Combining Eq. (24) and Eq. (25), we get the following
expression:

iW2n

n

1jk,
j)(k,rcX

iWrcXiWrcX •

∑
=

−•=• (26)

For any two matrices with the same size, multiplying the
first matrix dot by the mean of the second and summing
the results the same as multiplying the second matrix dot
by the mean of the first one and summing the results of
multiplication. Therefore, Eq. (26) can be written as:

2n

n

1jk,
j)(k,iW

rcXiWrcXiWrcX

∑
=

•−•=• (27)

The zero mean weights are given by:

2n

n

1jk,
j)(k,iW

iWiW

∑
=

−= (28)

Also, Eq. (27) can be written as:

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
∑
=

−•=•
2n

n

1jk,
j)(k,iW

iWrcXiWrcX (29)

So, we may conclude that:

iWrcXiWrcX •=• (30)

which means that multiplying a normalized image with a
non-normalized weight matrix dot multiplication is equal
to the dot multiplication of the non – normalized image
with the non-normalized weight matrix.

4. Effect of Weight Normalization on the
Speed up Ratio

Normalization of subimages in the spatial domain (in case
of using traditional neural networks) requires 2n2(N-n+1)2
computation steps. On the other hand, normalization of
subimages in the frequency domain through normalizing
the weights of the neural networks requires 2qn2 operations.
This proves that local image normalization in the
frequency domain is faster than that in the spatial one. By
using weight normalization, the speed up ratio for image
normalization Γ can be calculated as:

q
1)n(N

Γ
2+−

= (31)

The speed up ratio of the normalization process for images
of different sizes is listed in Table 6. As a result, we may
conclude that:
1- Using this technique, normalization in the frequency

domain can be done through normalizing the weights in
spatial domain.

2- Normalization of an image through normalization of
weights is faster than normalization of each subimage.

3- Normalization of weights can be done off line. So, the
speed up ratio in the case of weight normalization can be
calculated as follows:

a) For Conventional Neural Networks:
The speed up ratio equals the number of computation steps
required by conventional neural networks with image
normalization divided by the number of computation steps
needed by conventional neural networks with weight
normalization, which is done off line. The speed up ratio ηc
in this case can be given by:

22

2222

c
1)n1)(Nq(2n

1)n(N2n1)n1)(Nq(2n
η

+−−

+−++−−
= (32)

which can be simplified to:

1)q(2n
2n1η 2

2

c −
+= (33)

b) For Fast Neural Networks:
The over all speed up ratio equals the number of
computation steps required by conventional neural
networks with image normalization divided by the number
of computation steps needed by fast neural networks with
weight normalization, which is done off line. The over all
speed up ratio ηo can be given by:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

148

 N)n-q(8N)Nlog1)(5N(2q
1)n-(N2n1)n1)(Nq(2n η 222

2
2

2222

o
+++
+++−−

= (34)

which can be simplified to:

 N)n-q(8N)Nlog1)(5N(2q
)2n1)q(2n (1)n(N

η

222
2

2

222
o

+++
+−+−

=

 (35)

The relation between the speed up ratio before (η) and
after (ηo) the normalization process can be summed up as:

 N)n-q(8N)Nlog1)(5N(2q
1)n(N2n

ηη

222
2

2

22
o

+++

+−
+

=

 (36)

The overall speed up ratio (Eq. 36) with images of
different sizes and different sizes of windows is listed in
Table 7. We can easily note that the speed up ratio in case
of image normalization through weight normalization is
larger than the speed up ratio (without normalization)
listed in Table 1. This means that the search process with
normalized faster neural networks is done faster than
conventional neural networks with or without
normalization of the input image. The overall practical
speed up ratio (Eq. 36) after normalization of weights off
line is listed in Table 8.

5. Conclusion
Normalized neural networks for fast pattern detection in a
given image have been presented. It has been proved
mathematically and practically that the speed of the
detection process becomes faster than conventional neural
networks. This has been accomplished by applying cross
correlation in the frequency domain between the input
image and the normalized input weights of the neural
networks. Furthermore, a new general formulas for fast
cross correlation as well as the speed up ratio have been
given. Also, the problem of local subimage normalization
in the frequency space has been solved. Moreover, it has
been generally proved that the speed up ratio in the case of
image normalization through normalization of weights is
faster than subimage normalization in the spatial domain.
This speed up ratio is faster than the one obtained without
normalization. Simulation results have confirmed the
theoretical computations by using MATLAB. The proposed
approach can be applied to detect the presence/absence of
any other object in an image.

Appendix “A”

An example proves that the cross correlation
between any two matrices is not commutative

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and ,Let

Then, the cross correlation between X and W can be
obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

73
15

89
56

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85819591
8355879351659761

53576367

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

40539
4911869
155342

On the other hand, the cross correlation the cross
correlation between W and X can be computed as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
56

73
15

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

76753635
7916783915563855

19591858

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

425315
6311849
95340

which proves that X⊗W ≠ W⊗X.

Also, when one of the two matrices is symmetric the cross
correlation between the two matrices is non commutative
as shown in the following example:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
53
35

X and,Let

Then, the cross correlation between X and W can be
obtained as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

149

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥
⎦

⎤
⎢
⎣

⎡
=⊗

89
56

53
35

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

56553635
5936583935563855

39593858

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

304315
6311249
276940

On the other hand, the cross correlation the cross
correlation between W and X can be computed as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

53
35

89
56

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

85839593
8355859353659563

53556365

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
4911263
154330

which proves that X⊗W ≠ W⊗X.

The cross correlation between any two matrices is
commutative only when the two matrices are symmetric as
shown in the following example.

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
98

W
53
35

X and,Let

Then, the cross correlation between X and W can be
obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

89
98

53
35

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

58839539
3859583939583859

39385958

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
6912269
276940

On the other hand, the cross correlation between W and X
can be computed as follows:

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

53
35

89
98

XW

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

58593839
5938583939583859

39385985

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

406927
6912269
276940

which proves that the cross correlation is commutative
(X⊗W = W⊗X) only under the condition when the two
matrices X and W are symmetric.

Appendix “B”

An example proves that the cross correlation
between any two matrices is different from

their convolution

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

89
56

W
73
15

X and ,Let ,

the result of their c ross correlation can be computed as
illustrated from the previous example (first result) in
appendix "A". The convolution between X and W can be
obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
◊⎥

⎦

⎤
⎢
⎣

⎡
=◊

65
98

73
15

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839
7518763519583659

15165556

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

677
3063

130

582
416
53

 which proves that X⊗W ≠ X◊W.

When the second matrix W is symmetric, the cross
correlation between X and W can be computed as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

150

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=⊗

565345
711067

8740

78793839
9718781939583859

1918598

89
98

73
15

WX

9
9

5

while the convolution can be between X and W can be
obtained as follows:

⎥
⎦

⎤
⎢
⎣

⎡
◊⎥
⎦

⎤
⎢
⎣

⎡
=◊

89
98

73
15

WX

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

××+××
×+××+×+×+××+×

××+××
=

78793839
9718781939583859

1918598 5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

565345
711067

8740
9

9

which proves that under the condition that the second
matrix is symmetric (or the two matrices are symmetric)
the cross correlation between the two matrices equals to
their convolution.

References
[1] Hazem M. El-Bakry, and Qiangfu Zhao ”A New

Symmetric Form for Fast Sub-Matrix (Object/Face)
Detection Using Neural Networks and FFT,” accepted
for publication in the International Journal of Signal
Processing.

[2] Hazem M. El-Bakry, "Comments on Using MLP and FFT for
Fast Object/Face Detection," Proc. of IEEE IJCNN'03,
Portland, Oregon, pp. 1284-1288, July, 20-24, 2003.

[3] Hazem M. El-Bakry, "Human Iris Detection Using Fast
Cooperative Modular Neural Networks and Image
Decomposition," Machine Graphics & Vision Journal
(MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[4] Hazem M. El-Bakry, "Face detection using fast neural
networks and image decomposition," Neurocomputing
Journal, vol. 48, 2002, pp. 1039-1046.

[5] S. Srisuk and W. Kurutach, "A New Robust Face Detection
in Color Images", Proc. of IEEE Computer Society
International Conference on Automatic Face
and Gesture Recognition (AFGR'02), Washington D.C.,
USA, May 20-21, 2002, pp. 306-311.

[6] Hazem M. El-Bakry, "Automatic Human Face Recognition
Using Modular Neural Networks," Machine Graphics &
Vision Journal (MG&V), vol. 10, no. 1, 2001, pp. 47-73.

[7] Ying Zhu, Stuart Schwartz, and Michael Orchard, "Fast Face
Detection Using Subspace Discriminate Wavelet Features,"
Proc. of IEEE Computer Society International Conference
on Computer Vision and Pattern Recognition (CVPR'00),
South Carolina, June 13 - 15, 2000, vol.1, pp. 1636-1643.

[8] R. Feraud, O. Bernier, J. E. Viallet, and M. Collobert, "A Fast
and Accurate Face Detector for Indexation of Face Images,"
Proceedings of the Fourth IEEE International Conference on
Automatic Face and Gesture Recognition, Grenoble, France,
28-30 March, 2000.

[9] S. Ben-Yacoub, B. Fasel, and J. Luettin, "Fast Face Detection
using MLP and FFT," in Proc. of the Second International
Conference on Audio and Video-based Biometric Person
Authentication (AVBPA'99)", 1999.

[10] S. Baluja, H. A. Rowley, and T. Kanade, "Neural Network -
Based Face Detection," IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 20, No. 1, pp. 23-38, 1998.

[11] Beat Fasel, "Fast Multi-Scale Face Detection," IDIAP-Com
98-04, 1998.

[12] S. Ben-Yacoub, "Fast Object Detection using MLP and
FFT," IDIAP-RR 11, IDIAP, 1997.

[13] James W. Cooley and John W. Tukey, "An algorithm for the
machine calculation of complex Fourier series," Math.
Comput. 19, 297–301 (1965).

[14] J.P. Lewis, “Fast Normalized Cross Correlation”, Available
from:<http://www.idiom.com/~zilla/
Papers/nvisionInterface/nip.html >

Hazem Mokhtar El-Bakry
(Mansoura, EGYPT 20-9-1970)
received B.Sc. degree in Electronics
Engineering, and M.Sc. in Electrical
Communication Engineering from
the Faculty of Engineering,
Mansoura University – Egypt, in
1992 and 1995 respectively. Since
1997, he has been an assistant
lecturer at the Faculty of Computer
Science and Information Systems –
Mansoura University – Egypt.

His research interests include neural networks, pattern
recognition, image processing, biometrics, cooperative intelligent
systems and electronic circuits. In these areas, he has published
more than 39 papers as a single author in major international
journals and conferences. He is the first author in 12 refereed
international journal papers and more than 70 refereed
international conference papers.
Eng. El-Bakry has the patent No. 2003E 19442 DE HOL / NUR,
Magnetic Resonance, SIEMENS Company, Erlangen, Germany,
2003. He is a referee for IEEE Transactions on Signal Processing,
the International Journal of Machine Graphics & Vision,
Enformatika Journals, and many IEEE international conferences.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

151

Table 1: The theoretical speed up ratio for images with different sizes.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 3.67 5.04 6.34
200x200 4.01 5.92 8.05
300x300 4.00 6.03 8.37
400x400 3.95 6.01 8.42
500x500 3.89 5.95 8.39
600x600 3.83 5.88 8.33
700x700 3.78 5.82 8.26
800x800 3.73 5.76 8.19
900x900 3.69 5.70 8.12

1000x1000 3.65 5.65 8.05
1100x1100 3.62 5.60 7.99
1200x1200 3.58 5.55 7.93
1300x1300 3.55 5.51 7.93
1400x1400 3.53 5.47 7.82
1500x1500 3.50 5.43 7.77
1600x1600 3.48 5.43 7.72
1700x1700 3.45 5.37 7.68
1800x1800 3.43 5.34 7.64
1900x1900 3.41 5.31 7.60
2000x2000 3.40 5.28 7.56

Table 2: Practical Speed up ratio for images with different sizes Using
MATLAB ver 5.3.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 7.88 10.75 14.69
200x200 6.21 9.19 13.17
300x300 5.54 8.43 12.21
400x400 4.78 7.45 11.41
500x500 4.68 7.13 10.79
600x600 4.46 6.97 10.28
700x700 4.34 6.83 9.81
800x800 4.27 6.68 9.60
900x900 4.31 6.79 9.72

1000x1000 4.19 6.59 9.46
1100x1100 4.24 6.66 9.62
1200x1200 4.20 6.62 9.57
1300x1300 4.17 6.57 9.53
1400x1400 4.13 6.53 9.49
1500x1500 4.10 6.49 9.45
1600x1600 4.07 6.45 9.41
1700x1700 4.03 6.41 9.37
1800x1800 4.00 6.38 9.32
1900x1900 3.97 6.35 9.28
2000x2000 3.94 6.31 9.25

Table 3: A comparison between the number of multiplication steps
required for conventional and faster neural networks to manipulate

images with different sizes (n=20, q=30).

Image size Conventional
Neural Nets

 Fast Neural
Nets

Speed up ratio
(ηm)

100x100 7.8732e+007 2.6117e+007 3.01
200x200 3.9313e+008 1.1911e+008 3.30
300x300 9.4753e+008 2.8726e+008 3.29
400x400 1.7419e+009 5.3498e+008 3.26
500x500 2.7763e+009 8.6537e+008 3.21
600x600 4.0507e+009 1.2808e+009 3.16
700x700 5.5651e+009 1.7832e+009 3.12
800x800 7.3195e+009 2.3742e+009 3.08
900x900 9.3139e+009 3.0552e+009 3.05

1000x1000 1.1548e+010 3.8275e+009 3.02
1100x1100 1.4023e+010 4.6921e+009 3.00
1200x1200 1.6737e+010 5.6502e+009 2.96
1300x1300 1.9692e+010 6.7026e+009 2.94
1400x1400 2.2886e+010 7.8501e+009 2.92
1500x1500 2.6320e+010 9.0935e+009 2.90
1600x1600 2.9995e+010 1.0434e+010 2.87
1700x1700 3.3909e+010 1.1871e+010 2.86
1800x1800 3.8064e+010 1.3407e+010 2.84
1900x1900 4.2458e+010 1.5041e+010 2.82
2000x2000 4.7092e+010 1.6774e+010 2.81

Table 4: The theoretical speed up ratio for the general fast cross
correlation algorithm.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 7.8732e+007 2.6117e+007 3.01
200x200 3.9313e+008 1.1911e+008 3.30
300x300 9.4753e+008 2.8726e+008 3.29
400x400 1.7419e+009 5.3498e+008 3.26
500x500 2.7763e+009 8.6537e+008 3.21
600x600 4.0507e+009 1.2808e+009 3.16
700x700 5.5651e+009 1.7832e+009 3.12
800x800 7.3195e+009 2.3742e+009 3.08
900x900 9.3139e+009 3.0552e+009 3.05

1000x1000 1.1548e+010 3.8275e+009 3.02
1100x1100 1.4023e+010 4.6921e+009 3.00
1200x1200 1.6737e+010 5.6502e+009 2.96
1300x1300 1.9692e+010 6.7026e+009 2.94
1400x1400 2.2886e+010 7.8501e+009 2.92
1500x1500 2.6320e+010 9.0935e+009 2.90
1600x1600 2.9995e+010 1.0434e+010 2.87
1700x1700 3.3909e+010 1.1871e+010 2.86
1800x1800 3.8064e+010 1.3407e+010 2.84
1900x1900 4.2458e+010 1.5041e+010 2.82
2000x2000 4.7092e+010 1.6774e+010 2.81

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

152

Table 5: Simulation results of the speed up ratio for the general fast
cross correlation compared with the MATLAB cross correlation function

(xcorr2).

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 10.14 13.05 16.49
200x200 9.17 11.92 14.33
300x300 8.25 10.83 13.41
400x400 7.91 9.62 12.65
500x500 6.77 9.24 11.77
600x600 6.46 8.89 11.19
700x700 5.99 8.47 10.96
800x800 5.48 8.74 10.32
900x900 5.31 8.43 10.66

1000x1000 5.91 8.66 10.51
1100x1100 5.77 8.61 10.46
1200x1200 5.68 8.56 10.40
1300x1300 5.62 8.52 10.35
1400x1400 5.58 8.47 10.31
1500x1500 5.54 8.43 10.26
1600x1600 5.50 8.39 10.22
1700x1700 5.46 8.33 10.18
1800x1800 5.42 8.28 10.14
1900x1900 5.38 8.24 10.10
2000x2000 5.34 8.20 10.06

Table 6: The speed up ratio of the normalization process for images of
different sizes (n=20,q=30).

Image size Speed up ratio

100x100 219
200x200 1092
300x300 2632
400x400 4839
500x500 7712
600x600 11252
700x700 15459
800x800 20332
900x900 25872

1000x1000 32079
1100x1100 38952
1200x1200 46492
1300x1300 54699
1400x1400 63572
1500x1500 73112
1600x1600 83319
1700x1700 94192
1800x1800 105732
1900x1900 117939
2000x2000 130812

Table 7: Theoretical results for the speed up ratio in case of image
normalization by normalizing the input weights.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 3.79 5.21 6.55
200x200 4.14 6.12 8.32
300x300 4.13 6.23 8.65
400x400 4.08 6.21 8.70
500x500 4.02 6.15 8.67
600x600 3.96 6.08 8.61
700x700 3.90 6.01 8.53
800x800 3.86 5.95 8.46
900x900 3.81 5.89 8.39

1000x1000 3.77 5.84 8.32
1100x1100 3.74 5.79 8.26
1200x1200 3.70 5.74 8.20
1300x1300 3.67 5.70 8.14
1400x1400 3.64 5.65 8.08
1500x1500 3.62 5.62 8.03
1600x1600 3.59 5.58 7.99
1700x1700 3.57 5.55 7.94
1800x1800 3.55 5.51 7.90
1900x1900 3.53 5.48 7.86
2000x2000 3.51 5.45 7.82

Table 8: Simulation results for the speed up ratio in case of image
normalization by normalizing the input weights.

Image size Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 8.91 12.03 16.74
200x200 7.43 10.42 15.39
300x300 6.72 9.72 14.45
400x400 5.99 8.61 13.59
500x500 5.75 8.32 12.94
600x600 5.61 8.09 11.52
700x700 5.49 7.97 11.04
800x800 5.41 7.83 10.74
900x900 5.32 7.71 10.56

1000x1000 5.29 7.58 10.45
1100x1100 5.41 7.83 10.81
1200x1200 5.36 7.77 10.76
1300x1300 5.32 7.71 10.71
1400x1400 5.28 7.65 10.66
1500x1500 5.24 7.60 10.62
1600x1600 5.21 7.56 10.58
1700x1700 5.18 7.52 10.52
1800x1800 5.14 7.48 10.47
1900x1900 5.11 7.44 10.43
2000x2000 5.08 7.41 10.38

