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Summary 
The variable ordering of constraint satisfaction problems affect 
the performance of search algorithms in CSPs. Dynamic Variable 
Ordering (DVO) has more advantage in improving the 
performance of search algorithms than static variable ordering. It 
is a newly developed method recent years that using particle 
swarm algorithm to solve binary constraint satisfaction problems, 
which is a global stochastic optimized algorithm making use of 
swarm to search the whole solution space, and each particle 
represents a candidate solution of the problem. The algorithm 
discovers a solution satisfying condition specified of the solution 
space by acting each other among these particles. We add the 
dynamic variable ordering to the particle swarm algorithm in 
constraint satisfaction problems by improving the evaluation 
function of the particle swarm algorithm, which enhances the 
searching efficiency of particle swarm algorithm in CSPs and 
finds the solution of CSPs faster. Kinds of random constraint 
satisfaction problem experiments indicated that our efforts were 
effective. 
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1. Introduction 

Constraint Satisfaction Problems (CSPs) are the most 
exciting research area of artificial intelligence over last 
decades. In real life, many problems such as timetabling, 
resource allocation, planning, configuration, vision etc. 
can be modeled as some certain type CSPs. It is a powerful 
tool to model and to solve many kinds of combinatorial 
problems, which has attracted widespread commercial 
interest as well. Most of those combinatorial problems are 
NP-Complete in general [1]. Researching into solving 
CSPs has been lasted for a long time and different 
directions of the subject have been approached: finding the 
CSPs’ solutions from the possible solution space 
([2],[3],[4]), reducing a CSP to a simpler or equivalent 
problem ([5],[6],[7],[8].[9]), and synthesizing the CSPs’ 
solutions from partial solutions ([10],[11].[12]). But there 
are no polynomial algorithms to solve CSP so far. The 

dominating idea is backtracking that explores the search 
space in a systematic and complete way. Backtracking 
finds values for variables subject to a set of constraints. It 
improves the performance of the simple depth-first search 
by cutting down the search space [2]. Many surveys on 
backtrack algorithms can be found in [13]. 
The desirable features of system and completeness in 
backtrack search become intractable on hard combinatorial 
problems for the exponential time complexity [14,15,16]. 
This is particularly true when the problem is huge and 
system reduction cannot reduce the problem enough to 
make complete search feasible. Hence, incomplete search 
approaches have been proposed that leave out 
combinatorial explosion.  
Particle Swarm Optimization (PSO) is an efficient 
stochastic global search optimization technique [17], 
which makes use of a particle population to search the 
whole solution space. Each particle represents a candidate 
solution of the problem being solved. The particle swarm 
algorithms find optimal regions of complex search space 
through the interaction of individual particle in the 
population. [18] proposed a discrete version of particle 
swarm algorithm to solve binary CSPs (we call it PS-CSP), 
which redefined the equations presented in basic particle 
swarm algorithm but did not consider the characteristic of 
CSPs themselves. 
The remainder of the paper is organized as follows. 
Section 2 presents Constraint Satisfaction Problem. We 
also provide an overview of PS-CSP. In section 3 we 
propose a hybrid algorithm of particle swarm solving 
binary CSPs with Dynamic Variable Ordering (DVO) [12], 
in which DVO improves the evaluation function on 
selecting more promising particle as the best particle for 
the next iteration. An experimental evaluation on randomly 
generated constraint satisfaction problems is given in 
section 5 and some remarks conclude this paper. 
 
2. Preliminaries 
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A constraint network or constraint satisfaction problem 
(CSP) is a triplet (X, D, C), here X = {x1, x2, … xn} is a set 
of Variables, which may take on values from a set of 
domains D = {D1, D2, … Dn}, and a set of constraints C = 
{C1, C2, … Cm}. Each constraint Ci is a pair (Si, Ri), where 
Ri is relation Ri ⊆  D

is , and D
is  = ⋈

j ix s jD∈ , 

defined on a subset of variables Si⊆X called the scope of 
Ci. The relation denotes all compatible tuples of D

is  
permitted by the constraint. A binary constraint Cij on 
variable Xi and Xj is a set of pairs too, Cij allows for Xi to 
take the value vi and Xj to take the value vj iff (vi, vj) ∈Cij 
and we say the binary constraint is satisfied otherwise it is 
violated. We call a CSP binary constraint satisfaction 
problem iff all the constraints in CSP are binary constraints. 
A solution of a constraint satisfaction problem is an 
assignment of values to the set of X such that all the 
constraints are satisfied simultaneously. Conflicting 
number of x is the number violated in constraints with the 

related variable x, 
| |

1
( ) ( )

C

i
i

conflict x violate c
=

= ∑ . 

 PS-CSP is a discrete particle swarm algorithm based 
on the idea of [19,20], which redefined the operators for 
velocity. PS-CSP throws all the particles into the problem 
space just the same as the basic particle swarm algorithm 
does at the initial phase. Velocity is a real number in basic 
particle swarm algorithm while the subtraction of two 
positions resulting in a velocity in PS-CSP. Supposing 

x
→

and y
→

are positions. Then { }v x y y x
→ → → → →

= = →�  
denotes a velocity. The long arrow indicates the change of 
position. Additional operators need to be redefined for the 
changing of velocity. The addition of a position with a 

velocity results in a position, x v
→ →

⊕ , where suppose x
→

 

is a position and v z y
→ → →

= � . Then x v
→ →

⊕  equals the 

position produced in by i i i

i

z if x y
x v

x otherwise

→ → =⎧
⊕ = ⎨

⎩
. The 

next operator is a velocity add another velocity resulting in 

a new velocity x v
→ →

⊕ , where v b a
→ → →

= � ，w y x
→ → →

= � . 
Then the newly created velocity 

is i i i i

i i

a y if b x
v w

a b otherwise

→ → → =⎧
= ⎨ →⎩

o . The last operation is 

the multiplication of a velocity and a coefficient, according 
to a corresponding position. The multiplication results in a 

velocity vector vϕ
→

⊗ , where v y x
→ → →

= � . The result 
velocity vector produced in 

by i i i

i i

x x if nbconf
v

x y otherwise
ϕ

ϕ
→ → ≤⎧

⊗ = ⎨ →⎩
, inbconf  is 

the conflicting number of position x
→

 with offset i . The 
calculation of conflicting number uses the equation 
defined above. At last the discrete particle swarm 
algorithm can be rewritten as follows: 

1 1

1 2
1 1

( ( )) ( ( ))
t t t

t t t

v p x g x

x x v

ϕ ϕ
− −→ → → → →

− −→ → →

= ⊗ ⊗

= ⊕

� o �
 

and the algorithm’s pseudocode is as follows: 
random initialization of the swarm 

set localbest and globalbest 

while stopping criterion not satisfied 
do  

for i = 0 to swarmSize – 1 do 

 for j=0 to n-1 do 

 nbconf←number of conflicts for 
xij

t-1 in particle i 

 if nbconf  > 1ϕ  then  

 1t
ij ijv bestSoFar x −′ ← �  

 else 1 1t t
ij ijv x x− −′ ← �  

 end if 

 if nbconf  > 2ϕ  then 

 if deflection then 

    1t
ijv Rand x −′′ ← �  

 else 
1t

j ijv globalBest x −′′ ← �  

 end if 

 else 
1 1t t

ij ijv x x− −′′ ← �  

 end if 

 
1 ( )t t

ij ijx x v v− ′ ′′← ⊕ o
 

 end for 

 calculate the evaluation and 
determine the local best particle 

end for 

determine global best particle 

end while 
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3. Particle swarm in binary CSPs with 
dynamic variable ordering  
In the dynamic variable ordering algorithm based on 
back-tracking, the next variable to be instantiated is to find 
the one who has the minimum domain among all the 
uninstantiated variable set. Then give a value within the 
domain to the selected variable. After the instantiation of 
the minimum domain variable, checking consistency can 
be executed for first fail principle. Checking consistency 
can remove redundant inconsistent values from domains to 
reduce domains of variables further. Until all the variables 
instantiated, the algorithm determines whether a solution 
found or not. 
 All variables instantiated in particle swarm algorithm, 
and the particles in swarm are composed of these 
instantiated values. It is a key to the question how to 
confirm the size of domain of a certain variable. We treat 
the variable to be counted domain as a uninstantiated one. 
Then we leave the values to satisfy the constraints related 
to the selecting variable as its domain. We define 
d( ) ( )v k conflict v= −  to hold the selecting variable’s 
domain. Where k is the number of constraints the selecting 
variable relates to, d(v) is the size of domain of variable v 
in the dynamic variable ordering. Use the method above to 
calculate all variables in constraint network. We can get 
the minimum domain variable in the network. 
 Particle swarm algorithm needs to find the global best 
particle to influence the present position of particles and to 
guide the direction of the swarm. The algorithm judges the 
goodness of particles by evaluation function. The particle 
with the minimum evaluation is chosen from the 
population and treated as the global best particle in 
PS-CSP. Less evaluation means more constraints satisfied, 
and more close to the solution of the problem. We still 
make use of conflicting number to evaluate the goodness 
of particles, but use dynamic variable ordering to rewrite 
the evaluation function as follows: 

1
( ) ( ( ) 2) v j

n nbconf
i j

j
fitness x d v n

=

= + −∑  

xi is the ith particle in the swarm, n  is the number of 
variable in the constraint network, ( )jd v  denotes the 
size of domain of variable vj under dynamic variable 
ordering. 

jvnbConf means the conflicting number of 

variable vj. 
 After redefining the evaluation function, particle 
swarm algorithm to solve binary CSPs can be modified as 
follow (we call it DVO-PS-CSP): 
random initialization of the swarm 

set localbest and globalbest 

while stopping criterion not satisfied 
do  

for i = 0 to swarmSize – 1do 

 for j=0 to n-1 do 

update particle velocity and 
position    

end for 

compute variables domain 

 
 

1
( ) ( ( ) 2) v j

n nbconf
i j

j
fitness x d v n

=

= + −∑  

if i bestSoFarfitness fitness<  then 

 i ibestSoFar x←
 

 end if 

 if fitnessi unchanged for noHope 
times then random re-initialization of 
xi 

 end if 

end for 

determine golbalBest 
 
4. Experimental Results 
We compared these algorithms with the classes of 
randomly generated constraint network [21]. Four 
parameters were taken into account: n the number of 
variables, d the number of values per variable, pc the 
probability that a constraint Rij between two variables 
exists, and pu the probability in existing relations Rij that a 
pair of values Rij(a, b) is allowed. The result given for each 
class is the average for ten instances of problems in the 
class so as to be more representative of the class.  
 Particle Swarm is a stochastic searching algorithm. 
We test each instance with 100 times for impartial results 
and treat the average of 100 multiple 10 as the final result. 
To solve a CSP instance is to label each variable a value 
that all constraints are satisfied, thus for showing the 
performance of Particle Swarm, we guarantee the 
randomly generated CSP instances are all solvable by 
performing with systematic algorithm of backtracking. In 
all experiments, we generate constraint graph with 15 
variables having 15 possible values, and swarm size of 50 
is used. As soon as there is a particle satisfying all 
constraints in the constraint network simultaneously then 
the algorithm terminates. If a certain particle reaches the 
maximal iteration while no solution is found then it 
reinitializes the particle named no hope system. The 
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coefficient deflection is 2/n (n is the number of variables 
in the constraint network). 
 pc keeps fix in Fig. 1 and Fig. 2, pu increases 
progressively, larger pu means more candidate value pair 
satisfying constraints in constraint network. pu=1 indicates 
all constraints can be satisfied by all value pair. Thus 
larger pu results in higher probability to find the solution 
for higher possibility the instantiated values of the two 
variables in a constraint satisfying the constraint. From Fig. 
1 and Fig. 2, we can see that both algorithm decrease in 
the iteration when pu increase, but DVO-PS-CSP is more 
efficient than PS-CSP on iteration and time. 
 pc increases progressively in Fig. 3, that is to say that 
increases the number of constraints in the constraint 
network. In order to guarantee each problem can be solved, 
value pairs satisfied constraints increase too while 
increasing the number of constraints. We can see in the Fig. 
3 that after using the dynamic variable ordering, the 
algorithm reduces the iteration greatly. Only one problem 
instance's iteration is close with both algorithms. 
Contrasting runtime with PS-CSP in Fig. 4 we can see that 
the improved algorithm run less time than PS-CSP. But it 
does not have the same effectiveness as the iteration. This 
is because when calculate the evaluation of the particle, 
more complicated than the original one. PS-CSP only 
needs to count the number of conflict, and DVO-PS-CSP 
not only needs to calculate the conflicting number, but also 
needs to compute the number of constraints satisfied that 
each variable related to. Although the computation of 
evaluation is slightly long, this complicated calculation is 
undoubtedly worthy on the average result. 
 
5.Conclusion 
Backtracking is an ordinary way in solving constraint 
satisfaction problems, which selects an unlabelled variable 
to instantiate each time. When the instantiated variable 
doesn’t meet with the constraints, the algorithm backtracks 
to a suitable search point. Backtracking algorithm 
traverses the entire solution space. The system and 
completeness in backtrack search become intractable on 
hard combinatorial problems for the exponential time 
complexity. This is especially true when the problem is 
huge and system reduction cannot reduce the problem 
enough to make complete search feasible. The priority 
order that the variable searches for can influence the 
efficiency of the algorithm, in the search of backtracking, 
the proper variable ordering can reduce the search space. 
Particle Swarm algorithm is a stochastic global search 
technique, which makes use of a particle population to 
search the whole solution space. Each particle represents a 
candidate solution of the problem being solved. The 
particle swarm algorithms find optimal regions of complex 
search space through the interaction of individual particle 
in the population. Each particle is made up of all the 
instantiated values in the constraint network. We proposed 

a hybrid algorithm combining particle swarm algorithm 
with dynamic variable ordering. The hybrid algorithm 
makes it search the solution space by variable ordering so 
as to expect it can find the solution faster. Randomly 
generated problem instances denote the hybrid algorithm 
has stronger search ability, whose search efficiency 
improves averagely at double. 
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Fig. 1. pc=19%, pu increases.Comparison of iteration 
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Fig. 2. pc=19%, pu increases.Comparison of runtime 
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     Fig. 3. Both pc and pu increase.Comparison of iteration 
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Fig. 4. Both pc and pu increase.Comparison of runtime 


