
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

180

Manuscript revised January 2006.

Particle Swarm in Binary CSPs with Dynamic Variable

Ordering

Qingyun Yang ††, Jigui Sun †††, and Juyang Zhang ††

†College of Computer Science and Technology, Jilin University, Changchun 130012 China
††Key Laboratory for Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University,

Changchun 130012 China
†††Open Laboratory for Intelligence Information Processing, Fudan University, Shanghai 200433 China

Summary
The variable ordering of constraint satisfaction problems affect
the performance of search algorithms in CSPs. Dynamic Variable
Ordering (DVO) has more advantage in improving the
performance of search algorithms than static variable ordering. It
is a newly developed method recent years that using particle
swarm algorithm to solve binary constraint satisfaction problems,
which is a global stochastic optimized algorithm making use of
swarm to search the whole solution space, and each particle
represents a candidate solution of the problem. The algorithm
discovers a solution satisfying condition specified of the solution
space by acting each other among these particles. We add the
dynamic variable ordering to the particle swarm algorithm in
constraint satisfaction problems by improving the evaluation
function of the particle swarm algorithm, which enhances the
searching efficiency of particle swarm algorithm in CSPs and
finds the solution of CSPs faster. Kinds of random constraint
satisfaction problem experiments indicated that our efforts were
effective.
Key words:
Discrete Particle Swarm, Constraint Satisfaction Problem,
Dynamic Variable Ordering

1. Introduction

Constraint Satisfaction Problems (CSPs) are the most
exciting research area of artificial intelligence over last
decades. In real life, many problems such as timetabling,
resource allocation, planning, configuration, vision etc.
can be modeled as some certain type CSPs. It is a powerful
tool to model and to solve many kinds of combinatorial
problems, which has attracted widespread commercial
interest as well. Most of those combinatorial problems are
NP-Complete in general [1]. Researching into solving
CSPs has been lasted for a long time and different
directions of the subject have been approached: finding the
CSPs’ solutions from the possible solution space
([2],[3],[4]), reducing a CSP to a simpler or equivalent
problem ([5],[6],[7],[8].[9]), and synthesizing the CSPs’
solutions from partial solutions ([10],[11].[12]). But there
are no polynomial algorithms to solve CSP so far. The

dominating idea is backtracking that explores the search
space in a systematic and complete way. Backtracking
finds values for variables subject to a set of constraints. It
improves the performance of the simple depth-first search
by cutting down the search space [2]. Many surveys on
backtrack algorithms can be found in [13].
The desirable features of system and completeness in
backtrack search become intractable on hard combinatorial
problems for the exponential time complexity [14,15,16].
This is particularly true when the problem is huge and
system reduction cannot reduce the problem enough to
make complete search feasible. Hence, incomplete search
approaches have been proposed that leave out
combinatorial explosion.
Particle Swarm Optimization (PSO) is an efficient
stochastic global search optimization technique [17],
which makes use of a particle population to search the
whole solution space. Each particle represents a candidate
solution of the problem being solved. The particle swarm
algorithms find optimal regions of complex search space
through the interaction of individual particle in the
population. [18] proposed a discrete version of particle
swarm algorithm to solve binary CSPs (we call it PS-CSP),
which redefined the equations presented in basic particle
swarm algorithm but did not consider the characteristic of
CSPs themselves.
The remainder of the paper is organized as follows.
Section 2 presents Constraint Satisfaction Problem. We
also provide an overview of PS-CSP. In section 3 we
propose a hybrid algorithm of particle swarm solving
binary CSPs with Dynamic Variable Ordering (DVO) [12],
in which DVO improves the evaluation function on
selecting more promising particle as the best particle for
the next iteration. An experimental evaluation on randomly
generated constraint satisfaction problems is given in
section 5 and some remarks conclude this paper.

2. Preliminaries

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

181

A constraint network or constraint satisfaction problem
(CSP) is a triplet (X, D, C), here X = {x1, x2, … xn} is a set
of Variables, which may take on values from a set of
domains D = {D1, D2, … Dn}, and a set of constraints C =
{C1, C2, … Cm}. Each constraint Ci is a pair (Si, Ri), where
Ri is relation Ri ⊆ D

is , and D
is = ⋈

j ix s jD∈ ,

defined on a subset of variables Si⊆X called the scope of
Ci. The relation denotes all compatible tuples of D

is
permitted by the constraint. A binary constraint Cij on
variable Xi and Xj is a set of pairs too, Cij allows for Xi to
take the value vi and Xj to take the value vj iff (vi, vj) ∈Cij
and we say the binary constraint is satisfied otherwise it is
violated. We call a CSP binary constraint satisfaction
problem iff all the constraints in CSP are binary constraints.
A solution of a constraint satisfaction problem is an
assignment of values to the set of X such that all the
constraints are satisfied simultaneously. Conflicting
number of x is the number violated in constraints with the

related variable x,
| |

1
() ()

C

i
i

conflict x violate c
=

= ∑ .

 PS-CSP is a discrete particle swarm algorithm based
on the idea of [19,20], which redefined the operators for
velocity. PS-CSP throws all the particles into the problem
space just the same as the basic particle swarm algorithm
does at the initial phase. Velocity is a real number in basic
particle swarm algorithm while the subtraction of two
positions resulting in a velocity in PS-CSP. Supposing

x
→

and y
→

are positions. Then { }v x y y x
→ → → → →

= = →�
denotes a velocity. The long arrow indicates the change of
position. Additional operators need to be redefined for the
changing of velocity. The addition of a position with a

velocity results in a position, x v
→ →

⊕ , where suppose x
→

is a position and v z y
→ → →

= � . Then x v
→ →

⊕ equals the

position produced in by i i i

i

z if x y
x v

x otherwise

→ → =⎧
⊕ = ⎨

⎩
. The

next operator is a velocity add another velocity resulting in

a new velocity x v
→ →

⊕ , where v b a
→ → →

= � ，w y x
→ → →

= � .
Then the newly created velocity

is i i i i

i i

a y if b x
v w

a b otherwise

→ → → =⎧
= ⎨ →⎩

o . The last operation is

the multiplication of a velocity and a coefficient, according
to a corresponding position. The multiplication results in a

velocity vector vϕ
→

⊗ , where v y x
→ → →

= � . The result
velocity vector produced in

by i i i

i i

x x if nbconf
v

x y otherwise
ϕ

ϕ
→ → ≤⎧

⊗ = ⎨ →⎩
, inbconf is

the conflicting number of position x
→

 with offset i . The
calculation of conflicting number uses the equation
defined above. At last the discrete particle swarm
algorithm can be rewritten as follows:

1 1

1 2
1 1

(()) (())
t t t

t t t

v p x g x

x x v

ϕ ϕ
− −→ → → → →

− −→ → →

= ⊗ ⊗

= ⊕

� o �

and the algorithm’s pseudocode is as follows:
random initialization of the swarm

set localbest and globalbest

while stopping criterion not satisfied
do

for i = 0 to swarmSize – 1 do

 for j=0 to n-1 do

 nbconf←number of conflicts for
xij

t-1 in particle i

 if nbconf > 1ϕ then

 1t
ij ijv bestSoFar x −′ ← �

 else 1 1t t
ij ijv x x− −′ ← �

 end if

 if nbconf > 2ϕ then

 if deflection then

 1t
ijv Rand x −′′ ← �

 else
1t

j ijv globalBest x −′′ ← �

 end if

 else
1 1t t

ij ijv x x− −′′ ← �

 end if

1 ()t t

ij ijx x v v− ′ ′′← ⊕ o

 end for

 calculate the evaluation and
determine the local best particle

end for

determine global best particle

end while

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

182

3. Particle swarm in binary CSPs with
dynamic variable ordering
In the dynamic variable ordering algorithm based on
back-tracking, the next variable to be instantiated is to find
the one who has the minimum domain among all the
uninstantiated variable set. Then give a value within the
domain to the selected variable. After the instantiation of
the minimum domain variable, checking consistency can
be executed for first fail principle. Checking consistency
can remove redundant inconsistent values from domains to
reduce domains of variables further. Until all the variables
instantiated, the algorithm determines whether a solution
found or not.
 All variables instantiated in particle swarm algorithm,
and the particles in swarm are composed of these
instantiated values. It is a key to the question how to
confirm the size of domain of a certain variable. We treat
the variable to be counted domain as a uninstantiated one.
Then we leave the values to satisfy the constraints related
to the selecting variable as its domain. We define
d() ()v k conflict v= − to hold the selecting variable’s
domain. Where k is the number of constraints the selecting
variable relates to, d(v) is the size of domain of variable v
in the dynamic variable ordering. Use the method above to
calculate all variables in constraint network. We can get
the minimum domain variable in the network.
 Particle swarm algorithm needs to find the global best
particle to influence the present position of particles and to
guide the direction of the swarm. The algorithm judges the
goodness of particles by evaluation function. The particle
with the minimum evaluation is chosen from the
population and treated as the global best particle in
PS-CSP. Less evaluation means more constraints satisfied,
and more close to the solution of the problem. We still
make use of conflicting number to evaluate the goodness
of particles, but use dynamic variable ordering to rewrite
the evaluation function as follows:

1
() (() 2) v j

n nbconf
i j

j
fitness x d v n

=

= + −∑

xi is the ith particle in the swarm, n is the number of
variable in the constraint network, ()jd v denotes the
size of domain of variable vj under dynamic variable
ordering.

jvnbConf means the conflicting number of

variable vj.
 After redefining the evaluation function, particle
swarm algorithm to solve binary CSPs can be modified as
follow (we call it DVO-PS-CSP):
random initialization of the swarm

set localbest and globalbest

while stopping criterion not satisfied
do

for i = 0 to swarmSize – 1do

 for j=0 to n-1 do

update particle velocity and
position

end for

compute variables domain

1
() (() 2) v j

n nbconf
i j

j
fitness x d v n

=

= + −∑

if i bestSoFarfitness fitness< then

 i ibestSoFar x←

 end if

 if fitnessi unchanged for noHope
times then random re-initialization of
xi

 end if

end for

determine golbalBest

4. Experimental Results
We compared these algorithms with the classes of
randomly generated constraint network [21]. Four
parameters were taken into account: n the number of
variables, d the number of values per variable, pc the
probability that a constraint Rij between two variables
exists, and pu the probability in existing relations Rij that a
pair of values Rij(a, b) is allowed. The result given for each
class is the average for ten instances of problems in the
class so as to be more representative of the class.
 Particle Swarm is a stochastic searching algorithm.
We test each instance with 100 times for impartial results
and treat the average of 100 multiple 10 as the final result.
To solve a CSP instance is to label each variable a value
that all constraints are satisfied, thus for showing the
performance of Particle Swarm, we guarantee the
randomly generated CSP instances are all solvable by
performing with systematic algorithm of backtracking. In
all experiments, we generate constraint graph with 15
variables having 15 possible values, and swarm size of 50
is used. As soon as there is a particle satisfying all
constraints in the constraint network simultaneously then
the algorithm terminates. If a certain particle reaches the
maximal iteration while no solution is found then it
reinitializes the particle named no hope system. The

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

183

coefficient deflection is 2/n (n is the number of variables
in the constraint network).
 pc keeps fix in Fig. 1 and Fig. 2, pu increases
progressively, larger pu means more candidate value pair
satisfying constraints in constraint network. pu=1 indicates
all constraints can be satisfied by all value pair. Thus
larger pu results in higher probability to find the solution
for higher possibility the instantiated values of the two
variables in a constraint satisfying the constraint. From Fig.
1 and Fig. 2, we can see that both algorithm decrease in
the iteration when pu increase, but DVO-PS-CSP is more
efficient than PS-CSP on iteration and time.
 pc increases progressively in Fig. 3, that is to say that
increases the number of constraints in the constraint
network. In order to guarantee each problem can be solved,
value pairs satisfied constraints increase too while
increasing the number of constraints. We can see in the Fig.
3 that after using the dynamic variable ordering, the
algorithm reduces the iteration greatly. Only one problem
instance's iteration is close with both algorithms.
Contrasting runtime with PS-CSP in Fig. 4 we can see that
the improved algorithm run less time than PS-CSP. But it
does not have the same effectiveness as the iteration. This
is because when calculate the evaluation of the particle,
more complicated than the original one. PS-CSP only
needs to count the number of conflict, and DVO-PS-CSP
not only needs to calculate the conflicting number, but also
needs to compute the number of constraints satisfied that
each variable related to. Although the computation of
evaluation is slightly long, this complicated calculation is
undoubtedly worthy on the average result.

5.Conclusion
Backtracking is an ordinary way in solving constraint
satisfaction problems, which selects an unlabelled variable
to instantiate each time. When the instantiated variable
doesn’t meet with the constraints, the algorithm backtracks
to a suitable search point. Backtracking algorithm
traverses the entire solution space. The system and
completeness in backtrack search become intractable on
hard combinatorial problems for the exponential time
complexity. This is especially true when the problem is
huge and system reduction cannot reduce the problem
enough to make complete search feasible. The priority
order that the variable searches for can influence the
efficiency of the algorithm, in the search of backtracking,
the proper variable ordering can reduce the search space.
Particle Swarm algorithm is a stochastic global search
technique, which makes use of a particle population to
search the whole solution space. Each particle represents a
candidate solution of the problem being solved. The
particle swarm algorithms find optimal regions of complex
search space through the interaction of individual particle
in the population. Each particle is made up of all the
instantiated values in the constraint network. We proposed

a hybrid algorithm combining particle swarm algorithm
with dynamic variable ordering. The hybrid algorithm
makes it search the solution space by variable ordering so
as to expect it can find the solution faster. Randomly
generated problem instances denote the hybrid algorithm
has stronger search ability, whose search efficiency
improves averagely at double.

Acknowledgment

This work was supported in part by the National Natural
Science Foundation of China under grant no. 60273080
and no. 60473003. This work also was supported in part
by the Outstanding Youth Foundation of Jilin province of
China under grant no. 20030107.

References
[1] M. R. Garey and D. S. Johnson. Computers and Intractability.

A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[2] E.C. Freuder. A sufficient condition for backtrack-free search.
J. ACM, 1982, 29(1): 24-32.

[3] E.C. Freuder. A sufficient condition for backtrack-bounded
search. J.ACM, 1985, 32(4): 755-761.

[4] R. Dechter, J. Pearl. Tree clustering for constraint networks.
Artificial Intelligence, 1989, 38(3) 353-366.

[5] A. K. Mackworth, E. C. Freuder. The complexity of some
polynomial consistency algorithms for constraint
satisfaction problems. Artificial Intelligence, 1985, 25:
65-74.

[6] Romuald Debruyne, Christian Bessière. Domain Filtering
Consistencies. Journal of Artificial Intelligence Research,
2001, 14: 205-230.

[7] Christian Bessière, Jean-Charles Régin. Refining the Basic
Constraint Propagation Algorithm. IJCAI 2001. 309-315.

[8] C.Han, C.Lee. Comments on Mohr and Henderson's path
consistency algorithm. Artificial Intelligence, 1988, 36:
125-130.

[9] R.Morh, T.Henderson. Arc and path consistency revisited.
Artificial Intelligence, 1986, 28: 225-233.

[10]E.Freuder. Synthesizing constraint expressions.
Communications of the ACM, 1978, 21(11): 958-966.

[11] Wanlin Pang, Scott D. Goodwin: A Graph Based Synthesis
Algorithm for Solving CSPs. FLAIRS Conference 2003.
197-201.

[12] E.Tsang. Foundations of constraint satisfaction. Academic
Press, San Diego, CA, 1993.

[13] R. Dechter, D. Frost. Backtracking algorithms for constraint
satisfaction problems; a survey. in Constraints,
International Journal, 1998.

[14] J.R.Bitner, E.Reingold. Backtrack programming techniques.
Communications of the ACM, 1975, 18(11): 651-656.

[15] G. Kondrak, Peter van Beek. A Theoretical Evaluation of
Selected Backtracking Algorithms. Artificial Intelligence
Journal, 1997, 89(1-2): 365-387.

[16] R. Dechter, D. Frost. Backtracking algorithms for constraint
satisfaction problems. Technical report, University of
California, Irvine, 1999.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

184

[17] J. Kennedy, R. C. Eberhart. Particle Swarm Optimization. In:
IEEE International Conference on Neural Networks, Perch,
Australia. 1995. 1942-1948.

[18] L. Schoofs, B. Naudts. Swarm intelligence on the binary
constraint satisfaction problem. In: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2002),
Honolulu, Hawaii USA. 2002. 1444-1449.

[19] J. Kennedy and R. C. Eberhart. A discrete binary version of
the particle swarm algorithm. In International Conference
on Systems. Man, and Cybernetics, 1997.

[20] M. Clerc. Discrete particle swarm optimization: A fuzzy
combinatiorial black box. In
http://clerc.maurice.free.fr/PSO/, 2000.

[21] C. Bessière. Arc-consistency and arc-consistency again.
Artificial Intelligence 65(1994): 179-190.

Qingyun Yang received the B.E. degree from
Jiangxi Univ. of Science and Technology in
2000, and received M.Sc degree from Jilin Univ.
in 2003. He studies as Ph. D candidate since
2003. His research interest includes constraint
satisfaction problem, swarm intelligence,
scheduling, artificial life.

Jigui Sun received the B.E., M.Sc and Dr.
degrees from .Jilin Univ. in 1987, 1990 and
1993, respectively. He has been a professor
(from 1997) and Ph.D superior in the JiLin Univ.
since 2000. His research interest includes
automation reasoning, constraint programming,
decision support system, GIS, computation

intelligence.

Juyang Zhang received the B.E. degree
from East China Institute of Technology in
2000, and received M.Sc degree from Jilin Univ.
in 2003. He studies as Ph.D candidate since
2003. His research interest includes constraint
based scheduling, constraint satisfaction
problem, constraint logic programming.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

185

0

10000

20000

30000

40000

50000

60000

70000

80000

13. 33 15. 56 17. 78 20 22. 22 24. 44 26. 67

pu(%)

ite
ra

tio
ns

PS-CSP
DVO-PS-CSP

pc=19%

Fig. 1. pc=19%, pu increases.Comparison of iteration

0

50000

100000

150000

200000

250000

300000

350000

13.33 15.56 17.78 20 22.22 24.44 26.67

pu(%)

tim
e(

m
ill

is
ec

on
d)

PS-CSP

DVO-PS-CSP

pc=19%

Fig. 2. pc=19%, pu increases.Comparison of runtime

0

20000

40000

60000

80000

100000

120000

140000

23
.81

/2
2.2

2

28
.57

/3
1.1

1

33
.33

/3
5.5

6

38
.10

/4
2.2

2

42
.86

/4
7.6

7

47
.62

/5
1.1

1

52
.38

/5
5.5

6

57
.14

/6
0.0

0

61
.90

/6
4.4

4

pc/ pu

ite
ra

tio
ns

PS- CSP
DVO- PS- CSP

 Fig. 3. Both pc and pu increase.Comparison of iteration

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2, February 2006

186

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

23
.81

/22
.22

28
.57

/31
.11

33
.33

/35
.56

38
.10

/42
.22

42
.86

/47
.67

47
.62

/51
.11

52
.38

/55
.56

57
.14

/60
.00

61
.90

/64
.44

pc/pu

tim
e(

m
ill

is
ec

on
d)

PS-CSP

DVO-PS-CSP

Fig. 4. Both pc and pu increase.Comparison of runtime

