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Summary 

Many scheduling algorithms have been studied to guarantee the 
time constraints of real-time processes. Scheduling decision of 
these algorithms is usually based on parameters which are 
assumed to be crisp. However, in many circumstances the values 
of these parameters are vague. The vagueness of parameters 
suggests that we make use of fuzzy logic to decide in what order 
the requests should be executed to better utilize the system and 
as a result reduce the chance of a request being missed. We have 
proposed a new fuzzy algorithm called highest fuzzy priority first. 
The performance of this algorithm is compared with the well-
known earliest deadline first algorithm as well as least laxity first 
algorithm through simulation. The simulations were divided into 
two parts. Firs, the tasks were considered to be preemptable, and 
second tasks were assumed to be non-preemptable.   Simulation 
results show that this fuzzy approach outperforms the EDF and 
LLF. It is concluded that the proposed fuzzy approach is very 
promising and it has the potential to be considered for future 
research. 
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Introduction 
Real-time systems are vital to industrialized infrastructure 
such as command and control, process control, flight 
control, space shuttle avionics, air traffic control systems 
and also mission critical computations [1, 3]. In all cases, 
time has an essential role and having the right answer too 
late is as bad as not having it at all. 

In the literature, these systems have been defined as: 
“systems in which the correctness of the system depends 
not only on the logical results of computation, but also on 
the time at which the results are produced” [1]. Such a 
system must react to the requests within a fixed amount of 
time which is called deadline.  

In general, real-time systems can be categorized into two 
important groups: hard real-time systems and soft real-time 
systems. In hard real-time systems, meeting all deadlines is 

obligatory, while in soft real-time systems missing some 
deadlines is tolerable.  

In both cases, when a new task arrives, the scheduler is to 
schedule it in such a way that guaranties the deadline to be 
met. As stated in [1] scheduling involves allocation of 
resources and time to tasks in such a way that certain 
performance requirements are met. 

These tasks can be classified as periodic or aperiodic. A 
periodic task is a kind of task that occurs at regular 
intervals, and aperiodic task occurs unpredictably. The 
length of the time interval between the arrivals of two 
consecutive requests in a periodic task is called period. 

Another aspect of scheduling theory is to decide whether 
the currently executing task should be allowed to continue 
or it has had enough CPU time for the moment and should 
be suspended. A preemptive scheduler can suspend the 
execution of current executing request in favor of a higher 
priority request. However, a nonpreemptive scheduler 
executes the currently running task to completion before 
selecting another request to be executed. A major problem 
that arises in preemptive systems is the context switching 
overhead. The higher number of preemptions a system has, 
the more context switching needed [5]. 

There are a plenty of real-time scheduling algorithms that 
are proposed in the literature. Each of these algorithms 
bases its decision on certain parameter while attempting to 
schedule tasks to satisfy their time requirements. Some 
algorithms use parameters that are determined statically such 
as the Rate Monotonic algorithm that uses the request interval 
of each task as its priority [7, 15]. Others use parameters that 
are calculated at run time. Laxity and deadline are among 
those parameters that are the most considered. Laxity says 
the task execution must begin within a certain amount of 
time while deadline implies the time instant at which its 
execution must be completed [2]. 

In the following, there are descriptions of two famous 
algorithms which are commonly used in real-time systems 
and are proved to be optimal for uniprocessor systems 
when the system load factor is less than one. System load 
factor is defined as follow: 
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Earliest Deadline First (EDF) is a dynamic algorithm that 
does not require processes to be periodic. Whenever a 
process needs the CPU time, it announces its presence and 
its deadline. This algorithm keeps a list of running 
processes that is sorted on deadlines. It always runs the 
first process on the list that is, the one with the closest 
deadline. When a new process becomes ready, the 
algorithm first checks its deadline. If this deadline occurs 
before the currently running process, then the algorithm 
preempts the current one and starts the new process.  

The Least-Laxity-First (LLF) scheduling algorithm assigns 
higher priority to a task with the least laxity. The algorithm, 
however, is impractical to implement because laxity tie 
results in the frequent context switches among the tasks [4]. 

Static scheduling works perfect when there is enough 
information in advance about what has to be done, but 
dynamic scheduling does not have this restriction. 
Although, the dynamic algorithms focus on timing 
constraints but there are other implicit constraints in the 
environment, such as uncertainty and lack of complete 
knowledge about the environment, dynamicity in the world, 
bounded validity time of information and other resource 
constraints. In real world situations, it would often be more 
realistic to find viable compromises between these 
objectives. For many problems, it makes sense to partially 
satisfy objectives. The satisfaction degree can then be used 
as a parameter for making a decision. One especially 
straightforward method to achieve this is the modeling of 
these constraints through fuzzy constraints. The same 
approach has been applied in [12, 14].  

The scope of the paper is confined to scheduling of 
periodic tasks in soft real-time systems with fuzzy 
constraints. The rest of the paper is organized as follow. In 
section II the fuzzy inference system is discussed. Section 
III covers the proposed model and section IV contains the 
experimental results. Conclusion and future works are 
debated in Sections V. 

2. Fuzzy Inference Systems 
A fuzzy inference system (FIS) tries to derive answers 
from a knowledgebase by using a fuzzy inference engine. 
The inference engine which is considered to be the brain of 
the expert systems provides the methodologies for 
reasoning around the information in the knowledgebase 
and formulating the results. 

Fuzzy logic is an extension of Boolean logic dealing with 
the concept of partial truth that denotes the extent to which 
a proposition is true. Whereas classical logic holds that 
everything can be expressed in binary terms (0 or 1, black 
or white, yes or no), fuzzy logic replaces Boolean truth 
values with the degree of truth. Degree of truth is often 
employed to capture the imprecise modes of reasoning that 
play an essential role in the human ability to make 
decisions in an environment of uncertainty and imprecision. 

The membership function of a fuzzy set corresponds to the 
indicator function of the classical sets. It can be expressed 
in the form of a curve that defines how each point in the 
input space is mapped to a membership value or a degree 
of truth between 0 and 1. The most common shape of a 
membership function is triangular, although trapezoidal 
and bell curves are also used. The input space is 
sometimes referred to as the universe of discourse [6]. 

Fuzzy Inference Systems are conceptually very simple. An 
FIS consists of an input stage, a processing stage, and an 
output stage. The input stage maps the inputs, such as 
deadline, execution time, and so on, to the appropriate 
membership functions and truth values. The processing 
stage invokes each appropriate rule and generates a result 
for each. It then combines the results of the rules. Finally, 
the output stage converts the combined result back into a 
specific output value [6]. 

As discussed earlier, the processing stage, which is called 
the inference engine, is based on a collection of logic rules 
in the form of IF-THEN statements, where the IF part is 
called the "antecedent" and the THEN part is called the 
"consequent". Typical fuzzy inference subsystems have 
dozens of rules. These rules are stored in a knowledgebase. 
An example of fuzzy IF-THEN rules is: IF deadline is 
critical then priority is very high, in which deadline and 
priority are linguistics variables and critical and very high 
are linguistics terms. The five steps toward a fuzzy 
inference are as follows: 

• fuzzifying inputs 

• applying fuzzy operators 

• applying implication methods 

• aggregating outputs 

• defuzzifying results 

Bellow is a quick review of these steps. However, a 
detailed study is not in the scope of this paper. 

Fuzzifying the inputs is the act of determining the degree 
to which they belong to each of the appropriate fuzzy sets 
via membership functions. Once the inputs have been 
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fuzzified, the degree to which each part of the antecedent 
has been satisfied for each rule is known. If the antecedent 
of a given rule has more than one part, the fuzzy operator 
is applied to obtain one value that represents the result of 
the antecedent for that rule. The implication function then 
modifies that output fuzzy set to the degree specified by 
the antecedent. Since decisions are based on the testing of 
all of the rules in the Fuzzy Inference Subsystem (FIS), the 
results from each rule must be combined in order to make 
the final decision. Aggregation is the process by which the 
fuzzy sets that represent the outputs of each rule are 
processes into a single fuzzy set. The input for the 
defuzzification process is the aggregated output fuzzy set 
and the output is then a single crisp value [6]. This can be 
summarized as follows: mapping input characteristics to 
input membership functions, input membership function to 
rules, rules to a set of output characteristics, output 
characteristics to output membership functions, and the 
output membership function to a single crisp valued output. 

There are two common inference methods [6]. The first 
one is called Mamdani's fuzzy inference method proposed 
in 1975 by Ebrahim Mamdani [8] and the second one is 
Takagi-Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference introduced in 1985 [9]. These two methods are 
the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators.  

The main difference between Mamdani and Sugeno is that 
the Sugeno’s output membership functions are either linear 
or constant but Mamdani’s inference expects the output 
membership functions to be fuzzy sets. 

Sugeno’s method has three advantages. Firstly, it is 
computationally efficient, which is an essential benefit to 
real-time systems. Secondly, it works well with 
optimization and adaptive techniques. These adaptive 
techniques provide a method for the fuzzy modeling 
procedure to extract proper knowledge about a data set, in 
order to compute the membership function parameters that 
best allow the associated fuzzy inference system to track 
the given input/output data. The third, advantage of 
Sugeno type inference is that it is well-suited to 
mathematical analysis. However, in this paper we will not 
consider these techniques as we will propose an alternative 
method in the following. 

3. The Proposed Model 
The block diagram of our fuzzy system is presented in 
Figure 1.  

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Inference system block diagram. 

 

In the proposed model, the input stage consists of two 
linguistic variables. The first one is an external priority 
which is the priority assigned to the task from the outside 
world. This priority is static. One possible value can be the 
tasks request interval, as rate monotonic algorithm does [3]. 
For Figure 1, the other input variable is the deadline. This 
input can easily be replaced by laxity, wait time, or so on, 
for other scheduling algorithms. Each parameter may 
cause the system to react in a different way. The only thing 
that should be considered is that by changing the input 
variables the corresponding membership functions may be 
changed accordingly.  

For the simulation purposes, as it is discussed later, two 
situations are recognized: First, by using laxity as a 
secondary parameter and, second, by replacing the laxity 
parameter with deadline. In fact, two algorithms are 
suggested: one with laxity as the second parameter. This 
algorithm is called MFLF1. The other algorithm is with 
deadline as the second parameter. This one is called 
MFDF2. 

The input variables mapped into the fuzzy sets as 
illustrated in Figures 2 and 3. 

The shape of the membership function for each linguistic 
term is determined by the expert. It is very difficult for the 
expert to adjust these membership functions in an optimal 
way. However, there are some techniques for adjusting 
membership functions [10, 13]. In this paper, we will not 
consider these techniques. They can be further studied in a 
separate paper. 

                                                           
1 Minimum fuzzy laxity first 
2 Minimum fuzzy deadline first 
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Fig.2. Fuzzy sets corresponding to external priority 

 

 

 

 

 

 

 

 

 
 

Fig.3. Fuzzy sets corresponding to laxity 

 

 

 

 

 

 

 

 

 

Fig.4. Fuzzy sets corresponding to deadline 

We have produced 11 rules for our proposed system. Some 
of these rules are mentioned here: 

• If (EPriority is high) and (laxity is critical) then 
(Priority is very high) 

• If (EPriority is normal) and (laxity is critical) then 
(Priority is high) 

• If (EPriority is very low) and (laxity is critical) 
then (Priority is normal) 

• If (EPriority is high) and (laxity is sufficient) then 
(Priority is normal) 

• If (EPriority is very low) and (laxity is sufficient) 
then (Priority is very low)  

 

In fuzzy inference systems, the number of rules has a 
direct effect on its time complexity. So, having fewer rules 
may result in a better system performance.  

3.1 The Proposed Algorithms 
The MFLF algorithm is as follows: 

 

 
 

 

 

 

 

 

 

The algorithm for the MFDF is similar to the MFLF with 
laxity replaced by deadline. 

4. Experimental Results 
As we discussed earlier, in simulation two different 
situations have been recognized. First, evaluating the 
systems when the tasks are preemptable and when the task 
are non-preemptable. 

One of the main objectives of scheduling algorithms is to 
decide whether the currently executing task should be 
allowed to continue its execution to completion or it is has 
had enough CPU time for the moment and should be 
suspended for the benefit another task. A preemptive 
scheduler can suspend the execution of currently executing 
request in favor of a more urgent request. However, a non-
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Loop 
1. For each task T, feed its external priority 
and laxity into the inference engine. Consider 
the output of inference module as priority of 
task T. 
2. Execute the task with highest priority until 
an scheduling event occurs (a running task 
finishes, a new task arrives) 

    3. Update the system states (laxity, deadline, 
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End loop 
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preemptive scheduler executes the currently running task 
to completion before selecting another request to be 
executed, no matter what the relative urgency of tasks is. 
Sometimes, the non-preemptive approach is favored 
because: (1) in many practical real-time systems, 
scheduling problems such as I/O scheduling and  
properties of device make preemption impossible or 
prohibitively expensive, (2) non-preemptive scheduling 
algorithms are easier to implement than preemptive 
algorithms, and can exhibit dramatically lower overhead at 
run-time, and (3) non-preemptive scheduling on a 
uniprocessor systems naturally guarantees exclusive access 
to shared resources and data, thus this causes eliminating 
both the need for synchronization and its associated 
overhead [17]. 

In this paper, first we will present our simulation results 
for preemptive scheduling and then the non-preemptive 
one will be discussed.  

4.1 Preemptive Fuzzy Scheduling 
The simulation consists of two parts. First, the system was 
examined for the case where the system load factor is less 
than one. Second, the system was observed in overloaded 
conditions. These divisions are suggested because, first, 
both EDF and LLF algorithms has been proved to be 
optimal in situations where the system load factor is less 
than one. The results of this phase shows whether or not 
the simulation is performed correctly. A correct simulation 
will reveal that there is no task misses for either of EDF 
and LLF algorithms. At the same time, it will show 
whether or not our algorithms perform as well as the EDF 
and LLF. Second, recall that soft real-time systems, as 
their definition implies, can tolerate some deadline misses. 
In real situations, there is no guarantee for soft real-time 
systems not to be overloaded. Evaluating systems in 
overloaded conditions is important in comparing the 
behavior of our scheduling algorithms with the existing 
EDF and LLF algorithms. As it was discussed earlier, LLF 
is impractical to implement so we decided to use a 
modified version of it that solves the problem of frequent 
context switches. This modified algorithm is fully 
discussed in reference [4] and is proved to be optimal.    

To compare these algorithms, we need to automatically 
generate some sample systems. The system generation 
methods will be discussed later.  

Performance metrics, which are used to compare different 
algorithms, must be carefully chosen to reflect the real 
characteristics of a system. These metrics are as follows. 

Response time, which is defined as the amount of time a 
system takes to react to a given input, is one of the most 
important factors in most scheduling algorithms.  

Number of missed deadlines is an influential metric in 
scheduling algorithms for soft real-time systems. 

When task preemption is allowed, another prominent 
metric comes into existence and that is the number of 
preemptions. Each of preemptions requires the system to 
perform a context switching which is a time consuming 
action. 

CPU utilization is also an important metric because the 
main goal of a scheduling algorithm is to assign and 
manage system resources so that a good utilization is 
achieved. 

Yet another metric, which is considered in our study, is the 
number of missed deadlines from the class of highest 
priority tasks. This corresponds to the external priority 
being very high. 

4.1.1 Comparison in Non-overloaded Conditions 

This comparison was mainly performed to show the 
correctness of the simulations.  To do the evaluation, 2500 
test cases with load factors less than one were generated. 
In each test case, the number of tasks and the 
corresponding execution time and request interval 
randomly generated. 
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Fig.5. Response time in non-overloaded conditions 

 

For this simulation phase, the goal is to compare average 
response time. As Figure 5 states all four algorithms show 
approximately the same performance with respect to the 
response time. The results are exactly what we have 
expected.  
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4.1.1 Comparison in Overloaded Conditions 

Comparison parameters which are used here are average 
response time, number of tasks missing their deadlines, 
number of preemptions, and CPU utilization. 

The simulation was done on 2500 test cases. These test 
cases were randomly generated. In each test case, the 
number of tasks and the corresponding execution time and 
request interval randomly generated. Also, each task has 
been assigned a priority according to the rate monotonic 
principle (tasks with shorter request interval are given 
higher priorities) [7]. 

As Figure 6 states, when the load factor is less than one, 
all the algorithms have the similar performance. However, 
when the system becomes overloaded, the response time of 
both EDF and LLF is much tardier than MFLF and MFDF. 
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Fig.6. Response time in overloaded conditions 
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Fig.7. Number of Misses 

 

Figure 7 states that for load factors less than one the 
number of misses is zero. This is because it has already 
been proved that any system with a load factor less than or 
equal to one runs safe under either of EDF and LLF. 

Fortunately, MFLF and MFDF perform as well as either of 
EDF and LLF. In this case, the number of misses is exactly 
zero for all four algorithms. Because in drawing diagrams 
some curve fitting techniques is used, it seems that number 
of misses for algorithms when the load factor is a little bit 
less than one is a positive number. However, we have 
examined the numerical results and confirm that the 
number of misses is exactly zero. 

When the load factor is more than one the MFDF has the 
best performance and MFLF has a performance similar to 
EDF. The LLF has the worse performance among all four 
algorithms. 

As the Figure 8 shows, there is an opposite relation 
between the numbers of preemptions on the one hand and 
response time on the other hand. As the response time gets 
better number of preemptions comes to worse value. 
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Fig.8. Number of Preemptions 

 

MFDF that has the best performance with respect to 
response time has a larger number of preemptions. But 
there is something good about it, and that is, its behavior is 
predictable as it acts in a linear way. Having higher 
number of preemptions is reasonable because it eventually 
leads to having better response time and also better CPU 
utilization. There should be a balance between the number 
of preemptions and other factors. Reference [11] argues 
why such a balance is needed. 
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Figure 9 demonstrates that with the fuzzy methods CPU 
utilization is much higher than non-fuzzy methods. When 
the load factor is about 3, the MFDF and MFLF use about 
80 percent of CPU time while EDF uses 60 percent of 
CPU time and the LLF just uses about 20 percent of CPU 
time. 
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Fig.9. CPU Utilization 

 

Considering the number of missed deadlines from the class 
of highest priority tasks, Figure 10 shows that both MFDF 
and MFLF perform much better than EDF and LLF. 
Comparing Figure 10 with Figure 7 shows that in load 
factor 3 about 80 percent of missed deadlines in both EDF 
and LLF are from the class of highest priority tasks while 
in MFDF and MFLF just about 30 percent of misses are 
among highest priority tasks. This is because external 
priority is considered as a decision parameter in the latter 
two algorithms. It should be mentioned that highest 
priority tasks in this simulation as discussed earlier, are 
those with shorter request intervals. These kinds of tasks 
since their deadline is too short may miss their deadline 
easier than the others. This is why in EDF and LLF about 
80 percent of misses are among these tasks. 
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tasks  

4.1 Non-preemptive Fuzzy Scheduling 
In this part of our experiments we only compared EDF 
with MFDF, because as it was shown in [16] the laxity is 
not a promising factor in non-preemptive fuzzy scheduling. 

In real situations there is no guarantee for soft real-time 
systems not to be overloaded. Therefore, a soft real-time 
system, as its definition implies, can tolerate some deadline 
misses. Evaluating systems in overloaded situations is 
especially important in comparing the behavior of our 
scheduling algorithms with the existing well-known EDF 
algorithm. Overloaded condition is when the system load 
factor is higher than one.  

To compare these algorithms, we need some performance 
metrics. Performance metrics must be carefully chosen to 
reflect the real characteristics of a system. The 
performance metrics in this part of the simulation is like 
the one for preemptive simulation. 
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Fig.11. Number of successfully met deadlines 

 

To do the evaluation, 2500 test cases with load factors less 
than three were generated. In each test case, the number of 
tasks and the corresponding execution time and request 
intervals were randomly generated. The external priority of 
a task was assigned according to the rate monotonic 
principle (i.e., tasks with shorter request interval are given 
higher priorities) [7]. 

Figures 11 and 12 show the number of successfully met 
deadlines and missed deadlines, respectively. As it is 
expected, an algorithm with less number of misses must 
have more competed tasks. These two diagrams reveal that 
MFDF has a better performance over EDF, especially 
when the load factor is more that one. 
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Fig.12. Number of missed deadlines 

 

As Figure 13 shows, CPU utilization of both 
algorithms is approximately the same. For load factors 
higher than one, both algorithms use almost 100 percent of 
the CPU time. 
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Fig.13. CPU Utilization 

 

Figure 14 demonstrate that response time of MFDF is 
better when load factor becomes greater than 1.7. However, 
for load factors between 0.6 and 1.7, EDF shows better 
response time. 

Considering the number of missed deadlines from the class 
of highest priority tasks, Figure 15 shows that HFPF 
algorithm performs much better than EDF. Comparing 
Figure 15 with Figure 12 reviles that for load factor 3 
about 56 percent of missed deadlines in EDF algorithm are 
from the class of highest priority tasks while in HFPF just 
about 40 percent of misses are among the highest priority 
tasks. This is because external priority is considered as a 
decision parameter in the latter algorithm. It should be 
mentioned that highest priority tasks in this simulation as 
discussed earlier, are those with shorter request intervals. 
These kinds of tasks pretend to miss their deadline easier 
than others. 
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5. Conclusion 
Using the fuzzy concept in real-time scheduling, as it was 
shown, has the following advantages: (1) it better utilizes 
system resources such as CPU, (2) it decreases the number 
of missing deadlines, (3) it improves the system response 
time, and (4) it serves more important tasks better. 

In the future, for improving the time complexity of the 
system, rule reduction techniques are going to be applied 
to the system. Also, to improve performance, adjusting 
membership functions with adaptive methods of inference 
is required [10, 13]. 
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