
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

227

A Fuzzy Algorithm for Real-Time Scheduling of Soft Periodic Tasks

Mojtaba Sabeghi,† and Mahmoud Naghibzadeh††,

 Ferdowsi University of Mashhad, Mashhad, Iran

Summary

Many scheduling algorithms have been studied to guarantee the
time constraints of real-time processes. Scheduling decision of
these algorithms is usually based on parameters which are
assumed to be crisp. However, in many circumstances the values
of these parameters are vague. The vagueness of parameters
suggests that we make use of fuzzy logic to decide in what order
the requests should be executed to better utilize the system and
as a result reduce the chance of a request being missed. We have
proposed a new fuzzy algorithm called highest fuzzy priority first.
The performance of this algorithm is compared with the well-
known earliest deadline first algorithm as well as least laxity first
algorithm through simulation. The simulations were divided into
two parts. Firs, the tasks were considered to be preemptable, and
second tasks were assumed to be non-preemptable. Simulation
results show that this fuzzy approach outperforms the EDF and
LLF. It is concluded that the proposed fuzzy approach is very
promising and it has the potential to be considered for future
research.

Key words:

Fuzzy real time scheduling, EDF, LLF, MFDF, MFLF.

Introduction
Real-time systems are vital to industrialized infrastructure
such as command and control, process control, flight
control, space shuttle avionics, air traffic control systems
and also mission critical computations [1, 3]. In all cases,
time has an essential role and having the right answer too
late is as bad as not having it at all.

In the literature, these systems have been defined as:
“systems in which the correctness of the system depends
not only on the logical results of computation, but also on
the time at which the results are produced” [1]. Such a
system must react to the requests within a fixed amount of
time which is called deadline.

In general, real-time systems can be categorized into two
important groups: hard real-time systems and soft real-time
systems. In hard real-time systems, meeting all deadlines is

obligatory, while in soft real-time systems missing some
deadlines is tolerable.

In both cases, when a new task arrives, the scheduler is to
schedule it in such a way that guaranties the deadline to be
met. As stated in [1] scheduling involves allocation of
resources and time to tasks in such a way that certain
performance requirements are met.

These tasks can be classified as periodic or aperiodic. A
periodic task is a kind of task that occurs at regular
intervals, and aperiodic task occurs unpredictably. The
length of the time interval between the arrivals of two
consecutive requests in a periodic task is called period.

Another aspect of scheduling theory is to decide whether
the currently executing task should be allowed to continue
or it has had enough CPU time for the moment and should
be suspended. A preemptive scheduler can suspend the
execution of current executing request in favor of a higher
priority request. However, a nonpreemptive scheduler
executes the currently running task to completion before
selecting another request to be executed. A major problem
that arises in preemptive systems is the context switching
overhead. The higher number of preemptions a system has,
the more context switching needed [5].

There are a plenty of real-time scheduling algorithms that
are proposed in the literature. Each of these algorithms
bases its decision on certain parameter while attempting to
schedule tasks to satisfy their time requirements. Some
algorithms use parameters that are determined statically such
as the Rate Monotonic algorithm that uses the request interval
of each task as its priority [7, 15]. Others use parameters that
are calculated at run time. Laxity and deadline are among
those parameters that are the most considered. Laxity says
the task execution must begin within a certain amount of
time while deadline implies the time instant at which its
execution must be completed [2].

In the following, there are descriptions of two famous
algorithms which are commonly used in real-time systems
and are proved to be optimal for uniprocessor systems
when the system load factor is less than one. System load
factor is defined as follow:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

228

L=∑
=

n

i
ii re

1
/

Earliest Deadline First (EDF) is a dynamic algorithm that
does not require processes to be periodic. Whenever a
process needs the CPU time, it announces its presence and
its deadline. This algorithm keeps a list of running
processes that is sorted on deadlines. It always runs the
first process on the list that is, the one with the closest
deadline. When a new process becomes ready, the
algorithm first checks its deadline. If this deadline occurs
before the currently running process, then the algorithm
preempts the current one and starts the new process.

The Least-Laxity-First (LLF) scheduling algorithm assigns
higher priority to a task with the least laxity. The algorithm,
however, is impractical to implement because laxity tie
results in the frequent context switches among the tasks [4].

Static scheduling works perfect when there is enough
information in advance about what has to be done, but
dynamic scheduling does not have this restriction.
Although, the dynamic algorithms focus on timing
constraints but there are other implicit constraints in the
environment, such as uncertainty and lack of complete
knowledge about the environment, dynamicity in the world,
bounded validity time of information and other resource
constraints. In real world situations, it would often be more
realistic to find viable compromises between these
objectives. For many problems, it makes sense to partially
satisfy objectives. The satisfaction degree can then be used
as a parameter for making a decision. One especially
straightforward method to achieve this is the modeling of
these constraints through fuzzy constraints. The same
approach has been applied in [12, 14].

The scope of the paper is confined to scheduling of
periodic tasks in soft real-time systems with fuzzy
constraints. The rest of the paper is organized as follow. In
section II the fuzzy inference system is discussed. Section
III covers the proposed model and section IV contains the
experimental results. Conclusion and future works are
debated in Sections V.

2. Fuzzy Inference Systems
A fuzzy inference system (FIS) tries to derive answers
from a knowledgebase by using a fuzzy inference engine.
The inference engine which is considered to be the brain of
the expert systems provides the methodologies for
reasoning around the information in the knowledgebase
and formulating the results.

Fuzzy logic is an extension of Boolean logic dealing with
the concept of partial truth that denotes the extent to which
a proposition is true. Whereas classical logic holds that
everything can be expressed in binary terms (0 or 1, black
or white, yes or no), fuzzy logic replaces Boolean truth
values with the degree of truth. Degree of truth is often
employed to capture the imprecise modes of reasoning that
play an essential role in the human ability to make
decisions in an environment of uncertainty and imprecision.

The membership function of a fuzzy set corresponds to the
indicator function of the classical sets. It can be expressed
in the form of a curve that defines how each point in the
input space is mapped to a membership value or a degree
of truth between 0 and 1. The most common shape of a
membership function is triangular, although trapezoidal
and bell curves are also used. The input space is
sometimes referred to as the universe of discourse [6].

Fuzzy Inference Systems are conceptually very simple. An
FIS consists of an input stage, a processing stage, and an
output stage. The input stage maps the inputs, such as
deadline, execution time, and so on, to the appropriate
membership functions and truth values. The processing
stage invokes each appropriate rule and generates a result
for each. It then combines the results of the rules. Finally,
the output stage converts the combined result back into a
specific output value [6].

As discussed earlier, the processing stage, which is called
the inference engine, is based on a collection of logic rules
in the form of IF-THEN statements, where the IF part is
called the "antecedent" and the THEN part is called the
"consequent". Typical fuzzy inference subsystems have
dozens of rules. These rules are stored in a knowledgebase.
An example of fuzzy IF-THEN rules is: IF deadline is
critical then priority is very high, in which deadline and
priority are linguistics variables and critical and very high
are linguistics terms. The five steps toward a fuzzy
inference are as follows:

• fuzzifying inputs

• applying fuzzy operators

• applying implication methods

• aggregating outputs

• defuzzifying results

Bellow is a quick review of these steps. However, a
detailed study is not in the scope of this paper.

Fuzzifying the inputs is the act of determining the degree
to which they belong to each of the appropriate fuzzy sets
via membership functions. Once the inputs have been

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

229

fuzzified, the degree to which each part of the antecedent
has been satisfied for each rule is known. If the antecedent
of a given rule has more than one part, the fuzzy operator
is applied to obtain one value that represents the result of
the antecedent for that rule. The implication function then
modifies that output fuzzy set to the degree specified by
the antecedent. Since decisions are based on the testing of
all of the rules in the Fuzzy Inference Subsystem (FIS), the
results from each rule must be combined in order to make
the final decision. Aggregation is the process by which the
fuzzy sets that represent the outputs of each rule are
processes into a single fuzzy set. The input for the
defuzzification process is the aggregated output fuzzy set
and the output is then a single crisp value [6]. This can be
summarized as follows: mapping input characteristics to
input membership functions, input membership function to
rules, rules to a set of output characteristics, output
characteristics to output membership functions, and the
output membership function to a single crisp valued output.

There are two common inference methods [6]. The first
one is called Mamdani's fuzzy inference method proposed
in 1975 by Ebrahim Mamdani [8] and the second one is
Takagi-Sugeno-Kang, or simply Sugeno, method of fuzzy
inference introduced in 1985 [9]. These two methods are
the same in many respects, such as the procedure of
fuzzifying the inputs and fuzzy operators.

The main difference between Mamdani and Sugeno is that
the Sugeno’s output membership functions are either linear
or constant but Mamdani’s inference expects the output
membership functions to be fuzzy sets.

Sugeno’s method has three advantages. Firstly, it is
computationally efficient, which is an essential benefit to
real-time systems. Secondly, it works well with
optimization and adaptive techniques. These adaptive
techniques provide a method for the fuzzy modeling
procedure to extract proper knowledge about a data set, in
order to compute the membership function parameters that
best allow the associated fuzzy inference system to track
the given input/output data. The third, advantage of
Sugeno type inference is that it is well-suited to
mathematical analysis. However, in this paper we will not
consider these techniques as we will propose an alternative
method in the following.

3. The Proposed Model
The block diagram of our fuzzy system is presented in
Figure 1.

Fig.1. Inference system block diagram.

In the proposed model, the input stage consists of two
linguistic variables. The first one is an external priority
which is the priority assigned to the task from the outside
world. This priority is static. One possible value can be the
tasks request interval, as rate monotonic algorithm does [3].
For Figure 1, the other input variable is the deadline. This
input can easily be replaced by laxity, wait time, or so on,
for other scheduling algorithms. Each parameter may
cause the system to react in a different way. The only thing
that should be considered is that by changing the input
variables the corresponding membership functions may be
changed accordingly.

For the simulation purposes, as it is discussed later, two
situations are recognized: First, by using laxity as a
secondary parameter and, second, by replacing the laxity
parameter with deadline. In fact, two algorithms are
suggested: one with laxity as the second parameter. This
algorithm is called MFLF1. The other algorithm is with
deadline as the second parameter. This one is called
MFDF2.

The input variables mapped into the fuzzy sets as
illustrated in Figures 2 and 3.

The shape of the membership function for each linguistic
term is determined by the expert. It is very difficult for the
expert to adjust these membership functions in an optimal
way. However, there are some techniques for adjusting
membership functions [10, 13]. In this paper, we will not
consider these techniques. They can be further studied in a
separate paper.

1 Minimum fuzzy laxity first
2 Minimum fuzzy deadline first

Deadline (3)

EPriority (2)

f(u)

Priority (5)

Fuzzy
Inference
Engine

(sugeno)

11 rules

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

230

Fig.2. Fuzzy sets corresponding to external priority

Fig.3. Fuzzy sets corresponding to laxity

Fig.4. Fuzzy sets corresponding to deadline

We have produced 11 rules for our proposed system. Some
of these rules are mentioned here:

• If (EPriority is high) and (laxity is critical) then
(Priority is very high)

• If (EPriority is normal) and (laxity is critical) then
(Priority is high)

• If (EPriority is very low) and (laxity is critical)
then (Priority is normal)

• If (EPriority is high) and (laxity is sufficient) then
(Priority is normal)

• If (EPriority is very low) and (laxity is sufficient)
then (Priority is very low)

In fuzzy inference systems, the number of rules has a
direct effect on its time complexity. So, having fewer rules
may result in a better system performance.

3.1 The Proposed Algorithms
The MFLF algorithm is as follows:

The algorithm for the MFDF is similar to the MFLF with
laxity replaced by deadline.

4. Experimental Results
As we discussed earlier, in simulation two different
situations have been recognized. First, evaluating the
systems when the tasks are preemptable and when the task
are non-preemptable.

One of the main objectives of scheduling algorithms is to
decide whether the currently executing task should be
allowed to continue its execution to completion or it is has
had enough CPU time for the moment and should be
suspended for the benefit another task. A preemptive
scheduler can suspend the execution of currently executing
request in favor of a more urgent request. However, a non-

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

EPriority

D
eg

re
e

of
 m

em
be

rs
hi

p

VeryLow Low Normal High VeryHigh

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Laxity

D
eg

re
e

of
 m

em
be

rs
hi

p

Critical Short Sufficient

Algorithm MFLF

Loop
1. For each task T, feed its external priority
and laxity into the inference engine. Consider
the output of inference module as priority of
task T.
2. Execute the task with highest priority until
an scheduling event occurs (a running task
finishes, a new task arrives)

 3. Update the system states (laxity, deadline,
etc)
End loop

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Deadline

D
eg

re
e

of
 m

em
be

rs
hi

p

Critical Short Sufficient

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

231

preemptive scheduler executes the currently running task
to completion before selecting another request to be
executed, no matter what the relative urgency of tasks is.
Sometimes, the non-preemptive approach is favored
because: (1) in many practical real-time systems,
scheduling problems such as I/O scheduling and
properties of device make preemption impossible or
prohibitively expensive, (2) non-preemptive scheduling
algorithms are easier to implement than preemptive
algorithms, and can exhibit dramatically lower overhead at
run-time, and (3) non-preemptive scheduling on a
uniprocessor systems naturally guarantees exclusive access
to shared resources and data, thus this causes eliminating
both the need for synchronization and its associated
overhead [17].

In this paper, first we will present our simulation results
for preemptive scheduling and then the non-preemptive
one will be discussed.

4.1 Preemptive Fuzzy Scheduling
The simulation consists of two parts. First, the system was
examined for the case where the system load factor is less
than one. Second, the system was observed in overloaded
conditions. These divisions are suggested because, first,
both EDF and LLF algorithms has been proved to be
optimal in situations where the system load factor is less
than one. The results of this phase shows whether or not
the simulation is performed correctly. A correct simulation
will reveal that there is no task misses for either of EDF
and LLF algorithms. At the same time, it will show
whether or not our algorithms perform as well as the EDF
and LLF. Second, recall that soft real-time systems, as
their definition implies, can tolerate some deadline misses.
In real situations, there is no guarantee for soft real-time
systems not to be overloaded. Evaluating systems in
overloaded conditions is important in comparing the
behavior of our scheduling algorithms with the existing
EDF and LLF algorithms. As it was discussed earlier, LLF
is impractical to implement so we decided to use a
modified version of it that solves the problem of frequent
context switches. This modified algorithm is fully
discussed in reference [4] and is proved to be optimal.

To compare these algorithms, we need to automatically
generate some sample systems. The system generation
methods will be discussed later.

Performance metrics, which are used to compare different
algorithms, must be carefully chosen to reflect the real
characteristics of a system. These metrics are as follows.

Response time, which is defined as the amount of time a
system takes to react to a given input, is one of the most
important factors in most scheduling algorithms.

Number of missed deadlines is an influential metric in
scheduling algorithms for soft real-time systems.

When task preemption is allowed, another prominent
metric comes into existence and that is the number of
preemptions. Each of preemptions requires the system to
perform a context switching which is a time consuming
action.

CPU utilization is also an important metric because the
main goal of a scheduling algorithm is to assign and
manage system resources so that a good utilization is
achieved.

Yet another metric, which is considered in our study, is the
number of missed deadlines from the class of highest
priority tasks. This corresponds to the external priority
being very high.

4.1.1 Comparison in Non-overloaded Conditions

This comparison was mainly performed to show the
correctness of the simulations. To do the evaluation, 2500
test cases with load factors less than one were generated.
In each test case, the number of tasks and the
corresponding execution time and request interval
randomly generated.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

EDF
LLF
MFDF
MFLF

R
es

po
ns

e
Ti

m
e

Load Factor
Fig.5. Response time in non-overloaded conditions

For this simulation phase, the goal is to compare average
response time. As Figure 5 states all four algorithms show
approximately the same performance with respect to the
response time. The results are exactly what we have
expected.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

232

4.1.1 Comparison in Overloaded Conditions

Comparison parameters which are used here are average
response time, number of tasks missing their deadlines,
number of preemptions, and CPU utilization.

The simulation was done on 2500 test cases. These test
cases were randomly generated. In each test case, the
number of tasks and the corresponding execution time and
request interval randomly generated. Also, each task has
been assigned a priority according to the rate monotonic
principle (tasks with shorter request interval are given
higher priorities) [7].

As Figure 6 states, when the load factor is less than one,
all the algorithms have the similar performance. However,
when the system becomes overloaded, the response time of
both EDF and LLF is much tardier than MFLF and MFDF.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

MFLF
MFDF
EDF
LLF

MFDF

MFLF

LLF

EDF

R
es

po
ns

e
Ti

m
e

Load Factor
Fig.6. Response time in overloaded conditions

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

MFLF
MFDF
EDF
LLF

LLF

EDF

MFLF

MFDF

M
is

se
s

Load Factor
Fig.7. Number of Misses

Figure 7 states that for load factors less than one the
number of misses is zero. This is because it has already
been proved that any system with a load factor less than or
equal to one runs safe under either of EDF and LLF.

Fortunately, MFLF and MFDF perform as well as either of
EDF and LLF. In this case, the number of misses is exactly
zero for all four algorithms. Because in drawing diagrams
some curve fitting techniques is used, it seems that number
of misses for algorithms when the load factor is a little bit
less than one is a positive number. However, we have
examined the numerical results and confirm that the
number of misses is exactly zero.

When the load factor is more than one the MFDF has the
best performance and MFLF has a performance similar to
EDF. The LLF has the worse performance among all four
algorithms.

As the Figure 8 shows, there is an opposite relation
between the numbers of preemptions on the one hand and
response time on the other hand. As the response time gets
better number of preemptions comes to worse value.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

MFLF
MFDF
EDF
LLF

MFDF

MFLF

LLF

EDF

P
re

em
pt

io
ns

Load Factor
Fig.8. Number of Preemptions

MFDF that has the best performance with respect to
response time has a larger number of preemptions. But
there is something good about it, and that is, its behavior is
predictable as it acts in a linear way. Having higher
number of preemptions is reasonable because it eventually
leads to having better response time and also better CPU
utilization. There should be a balance between the number
of preemptions and other factors. Reference [11] argues
why such a balance is needed.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

233

Figure 9 demonstrates that with the fuzzy methods CPU
utilization is much higher than non-fuzzy methods. When
the load factor is about 3, the MFDF and MFLF use about
80 percent of CPU time while EDF uses 60 percent of
CPU time and the LLF just uses about 20 percent of CPU
time.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MFLF
MFDF
EDF
LLF

LLF

EDF

MFLF

MFDF

Load Factor

C
P

U
 U

til
iz

at
io

n

Fig.9. CPU Utilization

Considering the number of missed deadlines from the class
of highest priority tasks, Figure 10 shows that both MFDF
and MFLF perform much better than EDF and LLF.
Comparing Figure 10 with Figure 7 shows that in load
factor 3 about 80 percent of missed deadlines in both EDF
and LLF are from the class of highest priority tasks while
in MFDF and MFLF just about 30 percent of misses are
among highest priority tasks. This is because external
priority is considered as a decision parameter in the latter
two algorithms. It should be mentioned that highest
priority tasks in this simulation as discussed earlier, are
those with shorter request intervals. These kinds of tasks
since their deadline is too short may miss their deadline
easier than the others. This is why in EDF and LLF about
80 percent of misses are among these tasks.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80
EDF
LLF
MFLF
MFDF

Load Factor

M
is

se
s

Fig.10. Number of missed deadlines from the class of highest priority

tasks

4.1 Non-preemptive Fuzzy Scheduling
In this part of our experiments we only compared EDF
with MFDF, because as it was shown in [16] the laxity is
not a promising factor in non-preemptive fuzzy scheduling.

In real situations there is no guarantee for soft real-time
systems not to be overloaded. Therefore, a soft real-time
system, as its definition implies, can tolerate some deadline
misses. Evaluating systems in overloaded situations is
especially important in comparing the behavior of our
scheduling algorithms with the existing well-known EDF
algorithm. Overloaded condition is when the system load
factor is higher than one.

To compare these algorithms, we need some performance
metrics. Performance metrics must be carefully chosen to
reflect the real characteristics of a system. The
performance metrics in this part of the simulation is like
the one for preemptive simulation.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

234

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600
MFDF
EDF

C
om

pl
et

ed

Load Factor
Fig.11. Number of successfully met deadlines

To do the evaluation, 2500 test cases with load factors less
than three were generated. In each test case, the number of
tasks and the corresponding execution time and request
intervals were randomly generated. The external priority of
a task was assigned according to the rate monotonic
principle (i.e., tasks with shorter request interval are given
higher priorities) [7].

Figures 11 and 12 show the number of successfully met
deadlines and missed deadlines, respectively. As it is
expected, an algorithm with less number of misses must
have more competed tasks. These two diagrams reveal that
MFDF has a better performance over EDF, especially
when the load factor is more that one.

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

EDF
MFDF

M
is

se
s

Load Factor
Fig.12. Number of missed deadlines

As Figure 13 shows, CPU utilization of both
algorithms is approximately the same. For load factors
higher than one, both algorithms use almost 100 percent of
the CPU time.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

MFDF
EDF

 C
P

U
 U

til
iz

at
io

n

Load Factor
Fig.13. CPU Utilization

Figure 14 demonstrate that response time of MFDF is
better when load factor becomes greater than 1.7. However,
for load factors between 0.6 and 1.7, EDF shows better
response time.

Considering the number of missed deadlines from the class
of highest priority tasks, Figure 15 shows that HFPF
algorithm performs much better than EDF. Comparing
Figure 15 with Figure 12 reviles that for load factor 3
about 56 percent of missed deadlines in EDF algorithm are
from the class of highest priority tasks while in HFPF just
about 40 percent of misses are among the highest priority
tasks. This is because external priority is considered as a
decision parameter in the latter algorithm. It should be
mentioned that highest priority tasks in this simulation as
discussed earlier, are those with shorter request intervals.
These kinds of tasks pretend to miss their deadline easier
than others.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

235

0 0.5 1 1.5 2 2.5 3
0

5

10

15
MFDF
EDF

R
es

po
ns

e
Ti

m
e

Load Factor
Fig.14. CPU Utilization

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600
EDF
MFDF

M
is

se
s

Load Factor
Fig.15. Number of missed deadlines from the class of highest priority

tasks

5. Conclusion
Using the fuzzy concept in real-time scheduling, as it was
shown, has the following advantages: (1) it better utilizes
system resources such as CPU, (2) it decreases the number
of missing deadlines, (3) it improves the system response
time, and (4) it serves more important tasks better.

In the future, for improving the time complexity of the
system, rule reduction techniques are going to be applied
to the system. Also, to improve performance, adjusting
membership functions with adaptive methods of inference
is required [10, 13].

References
[1] Ramamritham K., Stankovic J. A., Scheduling algorithms and
operating systems support for real-time systems, Proceedings of
the IEEE, Vol. 82, No. 1, pp. 55--67, January 1994.

[2] Hong J., Tan X., Towsley D., A Performance Analysis of
Minimum Laxity and Earliest Deadline Scheduling in a Real-
Time System, IEEE Trans. on Comp., Vol. 38, No. 12, Dec.
1989

[3] Sha, L. and Goodenough, J. B., Real-Time Scheduling
Theory and Ada, IEEE Computer, Vol. 23, No. 4, pp. 53-62
(April 1990).

[4] Oh S.-H., Yang S.-M., A Modified Least-Laxity-First
Scheduling Algorithm for Real-Time Tasks, rtcsa, p. 31, Fifth
International Conference on Real-Time Computing Systems and
Applications (RTCSA'98), 1998.

[5] Tanenbaum A. S., Modern Operating Systems, Second
Edition, Prentice-Hall, 2001.

[6] Wang Lie-Xin, A course in fuzzy systems and control,
Prentice Hall, Paperback, Published August 1996.

[7] Liu C. L., Layland J. W., Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Journal of
the ACM, 20(1):46-61, 1973.

[8] Mamdani E.H., Assilian S., An experiment in linguistic
synthesis with a fuzzy logic controller, International Journal of
Man-Machine Studies, Vol. 7, No. 1, pp. 1-13, 1975.

[9] Sugeno, M., Industrial applications of fuzzy control, Elsevier
Science Inc., New York, NY, 1985.

[10] Jang, J.-S. R., ANFIS: Adaptive-Network-based Fuzzy
Inference Systems, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 23, No. 3, pp. 665-685, May 1993.

[11] Hamidzadeh B., Shekhar S., Specification and Analysis of
Real-time Problem Solvers, IEEE Transactions on Software
Engineering, Vol. 19, pages 788-803, 1993

[12] Sabeghi M., Naghibzadeh M., Taghavi T., A Fuzzy
Algorithm for Scheduling Soft Periodic Tasks in Preemptive
Real-Time Systems, International Joint Conferences on
Computer, Information, and Systems Sciences, and Engineering
(CISSE), 2005

 [13] Simon D, Training fuzzy systems with the extended
Kalman filter, Fuzzy Sets and Systems, Vol. 132, No. 2, 1, pp.
189-199, December 2002.

[14] Sabeghi M., Naghibzadeh M., Taghavi T., A Fuzzy
Algorithm for Real-Time Scheduling of Soft Periodic Tasks on
Multiprocessor Systems, IADIS International Conference on
Applied Computing, February 2006

 [15] Naghibzadeh M, Kim K. H. , A Modified Version of Rate-
Monotonic Scheduling Algorithm and its Efficiency
Assessment, Seventh IEEE International Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS'02), 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

236

 [16] Sabeghi M., Naghibzadeh M., Deadline vs. Laxity as a
Decision Parameter in Fuzzy Real-Time Scheduling, 2nd IEEE
International Conference on Information & Communication
Technologies: From Theory to Applications, April 2006

[17] Jeffay K., Stanat D. F., Martel C.U., On non-preemptive
scheduling of periodic and sporadic tasks, In Proceedings of the
12th IEEE Symposium on Real-Time Systems, pp129-139, 1991.

