
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

237

Manuscript received February 25, 2006.
Manuscript revised February 28 , 2006.

A Logic-based Branch and Bound Algorithm for Resource
Constrained Scheduling Problem

Juyang Zhang, Jigui Sun, Qingyun Yang,

College of Computer Science & Technology, Jilin University, Changchun, 130012
Key Laboratory for Symbolic Computation and Knowledge Engineering of Ministry of Education, Changchun, 130012

Summary

Resource-constrained scheduling problem is one kind of typical
real-life discrete optimization problems, which is one of the
strongest application areas of constraint programming. We
design a new logic-based method for solving the resource-
constrained scheduling problem. In this paper, we propose a way
of describing those constraints with the discrete-variable logic
formula. Based on this model, a logic-based branch and bound
algorithm is designed for solving the discrete variables’ domain.
Comparisons with other constraint handling approaches and
related literature clearly show that our approach can describe the
constraints in the high level and solve the resource-constrained
scheduling problem in the logic framework.

Key words:
Scheduling; Logic; Branch and Bound; Constraint Programming

Introduction

Constraints are powerful tools for modeling many real-
world problems. Constraint programming (CP) [1] is
based on the idea of describing the problem declaratively
by means of constraints and, consequently, finding a
solution satisfying all the constraints, i.e., assigning a
value to each unknown from its respective domain. CP has
a big advantage over other frameworks in declarative
modeling capabilities. The modeling capabilities of CP are
really fascinating and the constraint models are very close
to the description of real-life problems. This simplifies the
maintenance of the models as well as the introduction of
domain dependent heuristics necessary to solve large-scale
problems such as Resource-Constrained Scheduling
Problem (RCSP), which is one of the strongest application
areas of CP [2]. The reason of such success can be found
in a similar character of both scheduling problem and
Constraint Satisfaction Problem (CSP) [3].
Our system “Mingyue” CB-Scheduler [4, 5] is one kink of
CP toolkits, which embed constraints in the object-
oriented programming language C++. Other constraint-
solving toolkits are also quite popular, such as ILOG
solver and scheduler. However, in the typical CP toolkit,

constraint modeling is to list all the assignment
combinations of variables directly in the CSP model. In
this paper, we propose describe and solve the RCSP by
using formula of discrete-variable logic and logic-basic
method, which is more general and brief.
In this paper we omit the description of the system
“Mingyue” CB-Scheduler and emphasize the constraint
solving method in the system. In section 2, we first
describe the definition of RCSP and then we present a
logic-based CSP model of RCSP. The details about
modeling constraints in the discrete-variable logic way are
showed in section 3. In the section 4, we give the logic-
based branch and bound algorithm for solving the
constraints in RCSP. Finally, we draw a conclusion on this
new method.

2. Logic-based constraint modeling in RCSP

Partially based upon the scheduling problems we
encountered in the industry, we define a generic (and
necessarily incomplete) typology of resource-constrained
scheduling as follows:
Given are a set of n tasks T={T1, …, Tn} and a set of m
resources R={R1, …, Rm}. Each task Ti has its certain
time-window [ri, di] (ri denotes the release-date, di
denotes the due-date) and needs some amount of resource
Rj throughout their execution. Each resource Ri has its
certain capacity C. Several tasks can be processed
simultaneously, provided that the total resource
consumption does not exceed capacity C at any time. The
objective is to minimize makespan (the finish time of the
last finished task). A solution schedule is a set of integer
execution times for each task so that all the temporal and
resource constraints are satisfied.
A RCSP can be encoded efficiently as a CSP: two
variables, sti and fti, are associated with each task Ti; they
represent the start time and the finish time of Ti. The
smallest values in the domains (D) of sti and fti are called
the release-date and the earliest finish time of Ti (ri and
efti). Similarly, the greatest values in the domains of sti
and fti are called the latest start time and the due-date of Ti
(lsti and di). The processing time of the task is an
additional variable pti, that is constrained to be lower than

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

238

or equal to the difference between the end and the start
times of the task (most often, processing time is known
and bound to a value duri).
A basic logic-based model of RCSP may be defined in
which models have the following general form:

minimize: Cmax =max{fti ⎪ i=1,…,n}
subject to

ri ≤ sti≤ di-pti (checkable constraint)
ri+pti ≤ fti ≤ di (soluble constraint)
cumulative((st1,..stn),(pt1,…,ptn),(c1,…,cn),C)

 (defined constraint)
fti ∈ Di (solution variable)
sti ∈ Di (search variable)

The key idea for constraint modeling in RCSP is the
distinction of soluble constraints from checkable
constraints. Soluble constraints are those structure makes
them suitable for fast solution by optimization methods.
Checkable constraints are less amenable to efficient
optimization, bur one can easily check whether a given
solution satisfies them, including logical propositions and
the global constraints.
Because a checkable constraint can be evaluated only after
a solution is specified, values for its variables must be
enumerated. One might refer to them as search variables.
The overall structure of the solution algorithm is therefore
to branch on the search variables. Branching is
accomplished by fixing values of variables or partitioning
their domains into smaller sets. The soluble constraints
might be inequalities that are suitable for linear or convex
nonlinear programming. It is not necessary to branch to
obtain feasible or optimal values for their variables. Their
variables can therefore be called solution variables.
Defined constraint cumulative((st1,..stn), (pt1,…,ptn),
(c1,…,cn), C), where the c1,…,cn represent the amount of
resource consumed by task. The constraint enforces the
condition

Cc
duristitsti

j
j ≤∑

+≤≤

, all t

 (1)

3. Multivalent variable and multivalent
resolution

Based on the CSP model of RCSP, the general method of
modeling constraints in it is to list all the assignment
combinations of variables directly. We propose describe
the constraint by using the formula of discrete-variable
logic. In the framework of discrete-variable logic, the
scheduling problem can be solved in the logic way.

3.1 Formulas of Discrete-Variable Logic

We name the time variables (sti and fti) in RCSP
multivalent variables, which have the finite and discrete
domains. An elementary extension of propositional logic
can be developed for multivalent variables. In
propositional logic, the primitive unanalyzed terms are
atomic formulas yj. The analysis can be carried slightly
deeper by supposing that atomic propositions are
themselves predicates that say something about discrete
variables x1,…,xn, which can be regarded as the time
variable in RCSP. For instance, a predicate may have the
values xj can assume. Special cases would be xj=v and
xj≠v, where v is a constant. A number of useful predicates
can be defined in terms of more primitive notation, just as
equivalence ≡ and implication ⊃ are defined in terms of ∨
and ¬ in propositional logic.
The resulting logic is still bivalent in that propositions
have one of two truth values. The variables, however, are
multivalent.
Whereas a limited repertory of connectives appear to be
useful in propositional logic, multivalued variables
multiply the possibilities. The all-different, element,
distribute, and cumulative predicates have proved
especially useful. The idea of a logical clause is also
readily generalized.
• Formulas and Semantics
The atomic propositions yj of propositional logic are
replaced with predicates P(x) = P(x1,…, xn) in discrete
variable logic. Predicates can be combined with logical
connectives in the same way as logical propositions. one
primitive predicate will be sufficient to define all others,
namely P(x)=(xj∈Xj) for X ⊂ Dj.
The semantics are slightly different than in propositional
logic. In the latter, the meaning of a molecular formula is
given by the Boolean function it represents. In discrete
logic, a formula’s meaning is given by a truth function f(x)
of the discrete variables x = (x1,…xn), where each xj∈Dj.
In particular, each predicate is defined by the function f(x)
it represents. For example, the function f(x) for xj∈Yj
takes the value 1 if the value assigned xj belongs to X.
Once the truth values of the predicates are determined, the
truth values of the formulas containing them are computed
in the normal propositional way.
• Multivalent Clauses
Multivalent clauses are a straightforward generalization of
propositional clauses and are completely expressive in an
analogous sense.
A multivalent clause has the form

)(
1 jj

m

j
Xx ∈∨

=

(1)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

239

where each Xj ⊂ Dj. If Xj is empty, the term (xj∈Xj) can
be omitted from (2), but it is convenient to suppose here
that (2) contains a term for each j. If Xj = Dj for some j,
then (2) is a tautology. Note that the literals of a
multivalent clause contain no negations. This brings no
loss of generality, since ¬(xj∈Xj) can be written xj∈Dj\Xj.
Any truth function f(x) = f(x1,…,xn) can be expressed as a
conjunction of multivalent clauses. This is done simply by
ruling out the values of y for which f(x) = 0. Thus, if f(x)
= 0 for x = v1,…, vk, then f(x) is represented by the
formula

)(
11

vi

jj

n

j

k

i
x ≠∧∧

==

(2)

which can be formally written as a multivalent clause:

}){\(
11

vi

jjj

n

j

k

i
Dx ∈∧∧

==

(3)

Because any constraint over finite domains represents
such a function f(y), it is equivalent to a finite set of
multivalent clauses.
One multivalent clause)(1 jjj Xx ∈∨ implies another

)(2 jjj Xx ∈∨ if and only if the one absorbs the other;

that is, jj XX 21 ⊂ for each j. Equivalent multivalent
clauses are identical. Prime implications are defined
precisely as for classical clauses.
Any formula of discrete logic can be converted to a
conjunction of multivalent clauses by using De Morgan’s
laws, distribution, double negation, and the fact that
¬(xj∈Xj) means (xj∈Dj\Xj).

3.2 Multivalent Resolution

Resolution is easily extended to the logic of discrete
variables. Unit resolution also has an analog. Resolution
plays the same role in computing projections as it does in
propositional logic. In [7], we designed a unit resolution
algorithm for multivalent clauses. It is very similar to
classical unit resolution. When a clause Ck becomes a unit
clause xj∈Xkj, the domain of xj can contain only elements
that occur in Xkj. The clause Ci is deleted and the clauses
containing xj adjusted accordingly.
To speed processing, the algorithm keeps track of which
literals remain in each clause. Thus χi contains the
nonempty sets Xij. It also maintains a list Sj of the clauses
that still contain xj; that is, the clauses Ci for which Xij is
nonempty. Whenever Xkj in some clause Ck becomes
empty, Xkj is removed from χk. If this makes Ck a unit
clause, then every Xij in the constraint set must be updated

so that it lies in Xkj. The list Sj makes it possible to locate
quickly the Xij’s that might be affected. The clause Ck is
deleted from the problem and removed from Sj.

4. A logic-based branch-and-bound algorithm

A generic logic-based branch-and-bound algorithm
appears in Table 1. It characterizes each node of the search
tree with a triple (CC, SC, DC, D). CC and SC are sets of
checkable and soluble constraints, respectively. G is a set
of defined constraints. D constrains of the current domains
D1,…,Dn of the search variables st1,…,stn. If the
branching process has fixed a variable stj to some value v,
this is reflected by the fact that its domain Dj is the
singleton {v}. Multivalent resolution[7] can also reduce the
domains.
The search is controlled by the node selection procedure,
which selects a node to explore from the set A of active
nodes. Active nodes are those that have been created but
are yet unsolved. They are created when the algorithm
branches on a variable.
When an active node is selected, multivalent resolution is
applied to CC and the checkable constraints in DC. This
may add checkable and/or soluble constraints, including
no-goods, and it may reduce domains. If some domain is
reduced to the empty set or infeasibility is otherwise
detected then problem is unsatisfiable, and the search
backtracks.
If no unsatisfiablility is detected, a relaxation consisting of
a set R of soluble constraints is formulated. The objective
is to minimize the Cmax. The relaxation receives constraints
from consequents of conditionals whose antecedents are
true, and from relaxations of defined constraints. Solution
of the relaxation can generate no-goods as well as
information that aids branching decisions.
If the optimal value Cmax of the problem is greater than or
equal to than the value maxC of the incumbent solution,
then there is no point in further consideration of the
current node, and the search backtracks. Otherwise an
attempt is made to select values st1,…stn to obtain a
feasible solution(maxC ,st). If this fails, a variable is
selected for branching, using guidelines that were
generated in the course of processing the current node.
The algorithm continues until the set A of active nodes is
exhausted.

Table. 1 A logic-based branch-and-bound algorithm in RCSP

Let CC= {ri ≤ sti≤ di-pti ⎪ i∈1,..n}, SC= {ri+pti ≤ fti ≤ di
⎪ i∈1,…,n}, DC= {cumulative((sti, pti, ci,,C)⎪ i∈1,…n}
Add to DC the defined constraint in CC and SC.
Let D= {D1,…,Dn} be the domains of st1,…,stn.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

240

Let maxC be the upper bound on the optimal value,
initially ∞.
Let A be the set of active nodes, initially with A=
{(CC,SC,DC,D)}.
While A is nonempty:

Node selection: Remove a tuple (CC,SC,DC,D) from A.
Perform Multivalent Resolution.
If no infeasibility is detected then

Perform Relaxation.
If z< maxC then

If some ⎪Dj⎪≠ 1 then perform Completion.
If each ⎪Dj⎪= 1 then let (ft*, D*)= (ft , D) and

maxC = c ft ;
Else perform Branching.

If Cmax*<∞ then (ft*, D*) is an optimal solution;
Else the problem is infeasible.

Procedure Multivalent Resolution.

Apply inference algorithms as desired to CC and DC,
possibly changing CC, SC, DC and D.

Let B the set of branching guidelines generated.

Procedure Relaxation.
Generate soluble relaxations as desired for formulas in

CC and DC add their constraints to SC.
Let R contain the constraints in SC.
Repeat as desired or until R becomes infeasible:

Optimization: Let ft minimize Cmax subject to R.
If R is infeasible set Cmax= ∞.
Else add separating cuts to R.

Add branching guidelines to B.
Add generated constraints and no-goods to CC as

appropriate.

Procedure Completion.
Let D be temporary domains, initially D.
Let TC be the set of constraints in CC.
For all i add to TC constraints that exclude values of y

that violate DC when ft= ft .
Apply an exact or heuristic algorithm to solve the

constraints in TC using domains D .
If each ⎪ jD ⎪= 1 then let D= D .

Procedure Branching.
Variable selection: Use guidelines in B to choose a

branching variable stj and to define subsets DD k
jj ,...,

1 of

Dj.
For l= 1,…,k:

Let DD l
jj = and add (CC,SC,DC,D) to A.

5. Conclusions

Our work focuses on solving the constraints in the logic
way. In the discrete-variable logic, any constraint over
finite domains in RCSP can be represented as a finite set
of multivalent clauses. Using the discrete-variable formula
to describe constraints can heighten the modeling
capabilities of CP. Based on this model, we designed a
branch and bound algorithm in the form of constraint-
based search in the logic framework. In sum, logic-based
modeling not only heightens the problem modeling
capability but also exploits the problem solving method.
Scheduling is really a process of getting the constraints
right. However, designing a constraint model that can be
used to solve real-life large-scale problems is also the
biggest challenge of current Constraint Programming.

Acknowledgments

This paper is supported by the National Natural Science
Foundation Key Project of China (Grant No.60273080,
60473003), the Program for New Century Excellent
Talents in University and the Outstanding Youth
Foundation of Jilin Province of China (Grant
No.20030107).

References
[1] Barták, R.: On-line Guide to Constraint Programming.

Charles University, Prague,
http://kti.mff.cuni.cz/~bartak/constraints/.

[2] Wallace, M., Applying Constraints for Scheduling, in
Constraint Programming[J], Mayoh B. and Penjaak J.(eds.),
NATO ASI Series, Springer Verlag, 1994.

[3] Tsang, E. P. K, Foundations of Constraint Satisfaction[M].
San Diego, Calif.: Academic, 1993, pp.53-63.

[4] Juyang Zhang, Xin Li, Jigui Sun, Research On Constraint-
based Scheduling and Its Implementation[A], Proceeding of
CNCC’03[C], Beijing, P.R.China, The Tsinghua University
Press, Nov., 2003, pp. 80-85.

[5] Jigui Sun, Juyang Zhang, A Generic Mechanism for
Managing Resource Constraints in Preemptive and Non-
Preemptive Scheduling[A], Processing of SCI’04
conference[C], Orlando, U.S.A., July, 2004.

[6] Kim Marriott, Peter J. Stuckey, Programming with
Constraints: An introduction[M], The MIT Press, 1998,
pp.133-134.

[7] Juyang Zhang, Jigui Sun, Qingyun Yang, Logic-based
Constraint handling in Resource-constrained Scheduling
Problem[A], Proceedings of International Conference on
Computational Methods, Singapore, Spring Press, Dec., 2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

241

Juyang Zhang received the M.S.
degrees in Computer Software from Jilin
University in 2003. His research interests
include constraint programming, discrete
optimization and intelligent scheduling..

