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Summary 

Resource-constrained scheduling problem is one kind of typical 
real-life discrete optimization problems, which is one of the 
strongest application areas of constraint programming. We 
design a new logic-based method for solving the resource-
constrained scheduling problem. In this paper, we propose a way 
of describing those constraints with the discrete-variable logic 
formula. Based on this model, a logic-based branch and bound 
algorithm is designed for solving the discrete variables’ domain. 
Comparisons with other constraint handling approaches and 
related literature clearly show that our approach can describe the 
constraints in the high level and solve the resource-constrained 
scheduling problem in the logic framework. 
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Introduction 

Constraints are powerful tools for modeling many real-
world problems. Constraint programming (CP) [1] is 
based on the idea of describing the problem declaratively 
by means of constraints and, consequently, finding a 
solution satisfying all the constraints, i.e., assigning a 
value to each unknown from its respective domain. CP has 
a big advantage over other frameworks in declarative 
modeling capabilities. The modeling capabilities of CP are 
really fascinating and the constraint models are very close 
to the description of real-life problems. This simplifies the 
maintenance of the models as well as the introduction of 
domain dependent heuristics necessary to solve large-scale 
problems such as Resource-Constrained Scheduling 
Problem (RCSP), which is one of the strongest application 
areas of CP [2]. The reason of such success can be found 
in a similar character of both scheduling problem and 
Constraint Satisfaction Problem (CSP) [3]. 
Our system “Mingyue” CB-Scheduler [4, 5] is one kink of 
CP toolkits, which embed constraints in the object-
oriented programming language C++. Other constraint-
solving toolkits are also quite popular, such as ILOG 
solver and scheduler. However, in the typical CP toolkit, 

constraint modeling is to list all the assignment 
combinations of variables directly in the CSP model. In 
this paper, we propose describe and solve the RCSP by 
using formula of discrete-variable logic and logic-basic 
method, which is more general and brief. 
In this paper we omit the description of the system 
“Mingyue” CB-Scheduler and emphasize the constraint 
solving method in the system. In section 2, we first 
describe the definition of RCSP and then we present a 
logic-based CSP model of RCSP. The details about 
modeling constraints in the discrete-variable logic way are 
showed in section 3. In the section 4, we give the logic-
based branch and bound algorithm for solving the 
constraints in RCSP. Finally, we draw a conclusion on this 
new method. 

2. Logic-based constraint modeling in RCSP 

Partially based upon the scheduling problems we 
encountered in the industry, we define a generic (and 
necessarily incomplete) typology of resource-constrained 
scheduling as follows: 
Given are a set of n tasks T={T1, …, Tn} and a set of m 
resources R={R1, …, Rm}. Each task Ti has its certain 
time-window [ri, di] (ri denotes the release-date, di 
denotes the due-date) and needs some amount of resource 
Rj throughout their execution. Each resource Ri has its 
certain capacity C. Several tasks can be processed 
simultaneously, provided that the total resource 
consumption does not exceed capacity C at any time. The 
objective is to minimize makespan (the finish time of the 
last finished task). A solution schedule is a set of integer 
execution times for each task so that all the temporal and 
resource constraints are satisfied. 
A RCSP can be encoded efficiently as a CSP: two 
variables, sti and fti, are associated with each task Ti; they 
represent the start time and the finish time of Ti. The 
smallest values in the domains (D) of sti and fti are called 
the release-date and the earliest finish time of Ti (ri and 
efti). Similarly, the greatest values in the domains of sti 
and fti are called the latest start time and the due-date of Ti 
(lsti and di). The processing time of the task is an 
additional variable pti, that is constrained to be lower than 
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or equal to the difference between the end and the start 
times of the task (most often, processing time is known 
and bound to a value duri). 
A basic logic-based model of RCSP may be defined in 
which models have the following general form: 

minimize: Cmax =max{fti ⎪ i=1,…,n} 
subject to 

ri ≤ sti≤ di-pti  (checkable constraint) 
ri+pti ≤ fti ≤ di  (soluble constraint) 
cumulative((st1,..stn),(pt1,…,ptn),(c1,…,cn),C)

    (defined constraint) 
fti ∈ Di   (solution variable) 
sti ∈ Di   (search variable) 

The key idea for constraint modeling in RCSP is the 
distinction of soluble constraints from checkable 
constraints. Soluble constraints are those structure makes 
them suitable for fast solution by optimization methods. 
Checkable constraints are less amenable to efficient 
optimization, bur one can easily check whether a given 
solution satisfies them, including logical propositions and 
the global constraints. 
Because a checkable constraint can be evaluated only after 
a solution is specified, values for its variables must be 
enumerated. One might refer to them as search variables. 
The overall structure of the solution algorithm is therefore 
to branch on the search variables. Branching is 
accomplished by fixing values of variables or partitioning 
their domains into smaller sets. The soluble constraints 
might be inequalities that are suitable for linear or convex 
nonlinear programming. It is not necessary to branch to 
obtain feasible or optimal values for their variables. Their 
variables can therefore be called solution variables. 
Defined constraint cumulative((st1,..stn), (pt1,…,ptn), 
(c1,…,cn), C), where the c1,…,cn represent the amount of 
resource consumed by task. The constraint enforces the 
condition 

Cc
duristitsti

j
j ≤∑

+≤≤

, all t                 

 (1) 

3. Multivalent variable and multivalent 
resolution 

Based on the CSP model of RCSP, the general method of 
modeling constraints in it is to list all the assignment 
combinations of variables directly. We propose describe 
the constraint by using the formula of discrete-variable 
logic. In the framework of discrete-variable logic, the 
scheduling problem can be solved in the logic way. 

3.1 Formulas of Discrete-Variable Logic 

We name the time variables (sti and fti) in RCSP 
multivalent variables, which have the finite and discrete 
domains. An elementary extension of propositional logic 
can be developed for multivalent variables. In 
propositional logic, the primitive unanalyzed terms are 
atomic formulas yj. The analysis can be carried slightly 
deeper by supposing that atomic propositions are 
themselves predicates that say something about discrete 
variables x1,…,xn, which can be regarded as the time 
variable in RCSP. For instance, a predicate may have the 
values xj can assume. Special cases would be xj=v and 
xj≠v, where v is a constant. A number of useful predicates 
can be defined in terms of more primitive notation, just as 
equivalence ≡ and implication ⊃ are defined in terms of ∨ 
and ¬ in propositional logic. 
The resulting logic is still bivalent in that propositions 
have one of two truth values. The variables, however, are 
multivalent. 
Whereas a limited repertory of connectives appear to be 
useful in propositional logic, multivalued variables 
multiply the possibilities. The all-different, element, 
distribute, and cumulative predicates have proved 
especially useful. The idea of a logical clause is also 
readily generalized. 
• Formulas and Semantics 
The atomic propositions yj of propositional logic are 
replaced with predicates P(x) = P(x1,…, xn) in discrete 
variable logic. Predicates can be combined with logical 
connectives in the same way as logical propositions. one 
primitive predicate will be sufficient to define all others, 
namely P(x)=(xj∈Xj) for X ⊂ Dj. 
The semantics are slightly different than in propositional 
logic. In the latter, the meaning of a molecular formula is 
given by the Boolean function it represents. In discrete 
logic, a formula’s meaning is given by a truth function f(x) 
of the discrete variables x = (x1,…xn), where each xj∈Dj. 
In particular, each predicate is defined by the function f(x) 
it represents. For example, the function f(x) for xj∈Yj 
takes the value 1 if the value assigned xj belongs to X. 
Once the truth values of the predicates are determined, the 
truth values of the formulas containing them are computed 
in the normal propositional way. 
• Multivalent Clauses 
Multivalent clauses are a straightforward generalization of 
propositional clauses and are completely expressive in an 
analogous sense. 
A multivalent clause has the form 

)(
1 jj

m

j
Xx ∈∨

=
 

(1)
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where each Xj ⊂ Dj. If Xj is empty, the term (xj∈Xj) can 
be omitted from (2), but it is convenient to suppose here 
that (2) contains a term for each j. If Xj = Dj for some j, 
then (2) is a tautology. Note that the literals of a 
multivalent clause contain no negations. This brings no 
loss of generality, since ¬(xj∈Xj) can be written xj∈Dj\Xj. 
Any truth function f(x) = f(x1,…,xn) can be expressed as a 
conjunction of multivalent clauses. This is done simply by 
ruling out the values of y for which f(x) = 0. Thus, if f(x) 
= 0 for x = v1,…, vk, then f(x) is represented by the 
formula 

)(
11

vi
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k

i
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==

 
(2)

 
which can be formally written as a multivalent clause: 
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Because any constraint over finite domains represents 
such a function f(y), it is equivalent to a finite set of 
multivalent clauses. 
One multivalent clause )( 1 jjj Xx ∈∨ implies another 

)( 2 jjj Xx ∈∨ if and only if the one absorbs the other; 

that is, jj XX 21 ⊂ for each j. Equivalent multivalent 
clauses are identical. Prime implications are defined 
precisely as for classical clauses. 
Any formula of discrete logic can be converted to a 
conjunction of multivalent clauses by using De Morgan’s 
laws, distribution, double negation, and the fact that 
¬(xj∈Xj) means (xj∈Dj\Xj). 

3.2 Multivalent Resolution 

Resolution is easily extended to the logic of discrete 
variables. Unit resolution also has an analog. Resolution 
plays the same role in computing projections as it does in 
propositional logic. In [7], we designed a unit resolution 
algorithm for multivalent clauses. It is very similar to 
classical unit resolution. When a clause Ck becomes a unit 
clause xj∈Xkj, the domain of xj can contain only elements 
that occur in Xkj. The clause Ci is deleted and the clauses 
containing xj adjusted accordingly. 
To speed processing, the algorithm keeps track of which 
literals remain in each clause. Thus χi contains the 
nonempty sets Xij. It also maintains a list Sj of the clauses 
that still contain xj; that is, the clauses Ci for which Xij is 
nonempty. Whenever Xkj in some clause Ck becomes 
empty, Xkj is removed from χk. If this makes Ck a unit 
clause, then every Xij in the constraint set must be updated 

so that it lies in Xkj. The list Sj makes it possible to locate 
quickly the Xij’s that might be affected. The clause Ck is 
deleted from the problem and removed from Sj. 

4. A logic-based branch-and-bound algorithm 

A generic logic-based branch-and-bound algorithm 
appears in Table 1. It characterizes each node of the search 
tree with a triple (CC, SC, DC, D). CC and SC are sets of 
checkable and soluble constraints, respectively. G is a set 
of defined constraints. D constrains of the current domains 
D1,…,Dn of the search variables st1,…,stn. If the 
branching process has fixed a variable stj to some value v, 
this is reflected by the fact that its domain Dj is the 
singleton {v}. Multivalent resolution[7] can also reduce the 
domains. 
The search is controlled by the node selection procedure, 
which selects a node to explore from the set A of active 
nodes. Active nodes are those that have been created but 
are yet unsolved. They are created when the algorithm 
branches on a variable. 
When an active node is selected, multivalent resolution is 
applied to CC and the checkable constraints in DC. This 
may add checkable and/or soluble constraints, including 
no-goods, and it may reduce domains. If some domain is 
reduced to the empty set or infeasibility is otherwise 
detected then problem is unsatisfiable, and the search 
backtracks. 
If no unsatisfiablility is detected, a relaxation consisting of 
a set R of soluble constraints is formulated. The objective 
is to minimize the Cmax. The relaxation receives constraints 
from consequents of conditionals whose antecedents are 
true, and from relaxations of defined constraints. Solution 
of the relaxation can generate no-goods as well as 
information that aids branching decisions. 
If the optimal value Cmax of the problem is greater than or 
equal to than the value maxC  of the incumbent solution, 
then there is no point in further consideration of the 
current node, and the search backtracks. Otherwise an 
attempt is made to select values st1,…stn to obtain a 
feasible solution( maxC ,st). If this fails, a variable is 
selected for branching, using guidelines that were 
generated in the course of processing the current node. 
The algorithm continues until the set A of active nodes is 
exhausted. 

Table. 1  A logic-based branch-and-bound algorithm in RCSP 

Let CC= {ri ≤ sti≤ di-pti ⎪ i∈1,..n}, SC= {ri+pti ≤ fti ≤ di 
⎪ i∈1,…,n}, DC= {cumulative((sti, pti, ci,,C)⎪ i∈1,…n} 
Add to DC the defined constraint in CC and SC. 
Let D= {D1,…,Dn} be the domains of st1,…,stn. 
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Let maxC  be the upper bound on the optimal value, 
initially ∞. 
Let A be the set of active nodes, initially with A= 
{(CC,SC,DC,D)}. 
While A is nonempty: 

Node selection: Remove a tuple (CC,SC,DC,D) from A.
Perform Multivalent Resolution. 
If no infeasibility is detected then 

Perform Relaxation. 
If z< maxC  then 

If some ⎪Dj⎪≠ 1 then perform Completion. 
If each ⎪Dj⎪= 1 then let (ft*, D*)= ( ft , D) and 

maxC = c ft ; 
Else perform Branching. 

If Cmax*<∞ then (ft*, D*) is an optimal solution; 
Else the problem is infeasible. 
 
Procedure Multivalent Resolution. 

Apply inference algorithms as desired to CC and DC, 
possibly changing CC, SC, DC and D. 

Let B the set of branching guidelines generated. 
 

Procedure Relaxation. 
Generate soluble relaxations as desired for formulas in 

CC and DC add their constraints to SC. 
Let R contain the constraints in SC. 
Repeat as desired or until R becomes infeasible: 

Optimization: Let ft  minimize Cmax subject to R.
If R is infeasible set Cmax= ∞. 
Else add separating cuts to R. 

Add branching guidelines to B. 
Add generated constraints and no-goods to CC as 

appropriate. 
 

Procedure Completion. 
Let D  be temporary domains, initially D. 
Let TC be the set of constraints in CC. 
For all i add to TC constraints that exclude values of y 

that violate DC when ft= ft . 
Apply an exact or heuristic algorithm to solve the 

constraints in TC using domains D . 
If each ⎪ jD ⎪= 1 then let D= D . 
 

Procedure Branching. 
Variable selection: Use guidelines in B to choose a 

branching variable stj and to define subsets DD k
jj ,...,

1  of 

Dj. 
For l= 1,…,k: 

Let DD l
jj =  and add (CC,SC,DC,D) to A. 

5. Conclusions 

Our work focuses on solving the constraints in the logic 
way. In the discrete-variable logic, any constraint over 
finite domains in RCSP can be represented as a finite set 
of multivalent clauses. Using the discrete-variable formula 
to describe constraints can heighten the modeling 
capabilities of CP. Based on this model, we designed a 
branch and bound algorithm in the form of constraint-
based search in the logic framework. In sum, logic-based 
modeling not only heightens the problem modeling 
capability but also exploits the problem solving method. 
Scheduling is really a process of getting the constraints 
right. However, designing a constraint model that can be 
used to solve real-life large-scale problems is also the 
biggest challenge of current Constraint Programming. 
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