
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

247

Manuscript received February 25, 2006.
Manuscript revised February 28 , 2006.

Aspect Mining Using Clustering and Association Rule Method

Lili He,† and Hongtao Bai††,

 College of computer science and technology, Jilin University, Changchun, China
 New Technology Center, Shenzhen Tele. Com, China

Summary
Aspect oriented programming offers a unique module, an
aspect, to encapsulate scattered and tangled code, which
makes it hopeful to solve the problem of crosscutting
concerns. Identification and encapsulation of crosscutting
concerns is the key problem in the migration from OO
system to AO system. A novel aspect mining method
which combines clustering and association rule technology
is provided in this article. Clustering analysis based on the
execution traces is provided to find out candidate aspects;
while association rule mining based on the execution
traces with ordered call is used to find out the crosscuts.
Both the aspect code (advice body) and the crosscuts
(pointcuts) are gotten after the above two processes, which
constitute the aspect mining process. An actual application
on real system provides the validity of our methods.
Key words:
AOP, Aspect mining, Clustering method, Association Rule
Method, reverse engineering

Introduction

Separation of concerns is an important principle of the
software design. Concern is a canonical solution
abstraction that is relevant for a given problem. [1]. Most
of the concerns in large applications are well modularized,
but there are other concerns, whose implementation codes
are scattered across several modules and even mixed with
the functionalities that implement the responsibilities of
the modules. These concerns are hard to be modularized
with traditional programming method, and they are known
as crosscutting concerns.
Aspect Oriented Programming[2]: AOP sets up on the
basis of existing technology and provides a special
modular unit――Aspect. Aspect has ability to encapsulate
scattered codes corresponding to some crosscutting
concern and appoint where to carry out them in the source
code. Translating OO system to AO system will raise
system intelligibility, thus lengthen the life cycle of the
software system.
The transformation from OO to AO system including the
following two steps (1) Aspect Mining: Identifying the
candidate crosscutting concerns from the source code; (2)
Aspect Refactoring: Constructing Aspects according to

confirmed concerns, the scattered code would be replaced
by aspects in an AOP language such as AspectJ.
Aspect Ming is mainly discussed in this paper, which
usually includes two steps: (1) Identification of
crosscutting concerns codes: finding out those codes
which are the implementation of some functionality and
but they are scattered across the whole OO program; (2)
Location of crosscuts: finding out the relationship between
the base code and aspect code.
A novel aspect mining method is proposed in this paper.
Clustering analysis on program execution traces is used to
identify crosscutting concerns from legacy system.
Execution traces are obtained by running an instrumented
version of the legacy system under a set of scenarios.
Scenarios, which have similar behavior, will be in the
same cluster that implicates the candidate aspect set. Then
association rule mining on static methods invocation
relations is used to locate crosscuts.

2. Aspect Mining Process

Firstly, some definitions on aspect mining are provided.
Definition 1: Crosscutting concerns: the requirements that
fail to be modularized in OO system; correspondingly,
those are well encapsulated are regarded as the base
concerns.
Definition 2: Crosscutting concern codes: the codes that
implement the crosscutting concern; correspondingly, the
codes that implement the base concern are base concern
codes. In programs with good programming style, base
concerns codes are well modularized. Crosscutting
concerns codes are scattered across the modules of base
concerns. But they are well modularized in each local
module, too.
Definition 3: Aspect Mining: a reverse engineering
process that aim to find out the potential crosscutting
concerns from the existing OO program.
Definition 4: Crosscuts: the cut-in relationship between
crosscutting concern codes and base concern codes. This
relationship will be either invocation or execution, because
the aspect mining method is based on execution traces in
this paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

248

2.1 Identification of Crosscutting Concerns

There are some well-known functions such as
authentication, log and the exception/mistake in large
software systems whose codes are always scattered across
a lot of classes and tangled with functions of these classes.
These crosscutting concern codes are often well
encapsulated as methods or procedures in each local
module and are used here and there.
In OO system, the behavior of a program is realized by the
invocation relationship between methods. Similar
execution sequences may imply the existence of
crosscutting concerns. Clustering on execution traces may
get some interesting unfound concerns.
Execution traces are obtained as follows: OO system is
instrumented, and then executed at specified Scenarios and
inputs. Every Scenario corresponds to a called-method
sequence. If there were a group of codes that has similar
action, i.e. similar called-method sequence, and appears
frequently in execution traces, then a crosscutting concern
may exist. Similar called-method sequences are possible
crosscutting concerns code.
Using clustering analysis technology[3,4,5] on Scenarios,
we regard Scenarios in OO system as data items (objects1),
methods executed by Scenario as objects’ attributes, and
the number of times each method are called as values of
attributes. Let n, m respectively be the quantity of all
Scenarios and methods, then the object set O=(o1,o2,…,om),
and every object is an m-dimensional vector (ai1,ai2,…,aim)
(i =1,2,… n). The objects’ data matrix is formed as
follows: for any object oi and method aj, if method aj (j
=1,2, … m) is invoked by object oi, for k times, then the
value of the jth dimension of object oi is k, otherwise zero.
The objects’ dissimilarity matrix storing the dissimilar
measure of each couple of objects is an n*n matrix. If the
values of the w-th dimension of object oi and oj both are
non-zero, it means oi and oj both are invoked by ow. That
is to say, oi and oj have the similar behaviors in terms of
ow(the only nuance is the value k). If both values are zero,
it proves neither is invoked by ow. If one is zero and
another is non-zero, it proves the dissimilar behaviors in
terms of ow.
Clustering on objects’ matrix and object dissimilar matrix
will produce a group of object sets. Common attributes
elements in every set, namely the similar codes of
Scenarios, are the candidate crosscutting concerns codes.

2.2 Location of Crosscuts

The next problem needs to be solved after the
identification of candidate crosscutting concerns code is

1 The “object” here is the notation from clustering analysis

without special explanation instead of the notation from
Object-oriented technology.

the location of crosscuts, the relationship between
crosscutting concerns code and base concerns code.
Two mechanisms are provided by Aspect to interact with
base concerns code: introduction and pointcuts.
Introduction modifies the source code by adding fields or
methods to class, interface or aspect directly; while
Pointcuts intercept the normal execution flows at given
join points, and aspect codes are carried out after or before
this point, even replace this point.
The relationship between crosscutting concern codes and
base concern codes is obtained by dynamic analysis to the
execution traces of the legacy system. And the pointcuts
can be identified are call() and execution().
Let M=(m1,m2,m3) is a typical called-method sequence and
m3 is recognized as crosscutting concern code, crosscuts
may be showed that m2 is followed by m3, which is
expressed as m2 ->m3.
We use association rule mining [6,7,8] to get the crosscuts
as follows: Each method m is regarded as one transaction
of association rule and called methods sequence by
method m constitute its item set. Especially, in order to
locate the beginning and the ending positions more easily,
we defined two common functions: first () and end (). First
() represents a virtual call at the start of m, while end ()
represents a virtual call at the end of m. This location
relationship can be provided automatically as rule mode
by association rule mining. The elements of association
rule are defined as follows:
Itemset I=(i1, i2,…, im) is constructed by m methods in
source code; every method is regarded as one item. There
are two functions, first () and end (), are introduced for
locating. Every method calls first () before the execution
itself and calls end () after that. Let i0 and im+1 denote first
() and end (), then the extended itemset is
I*=(i0,i1,i2,…,im,im+1).
Let each Scenario’s name be a TID, the primary sign of
one transaction, due to one transaction is determined by
one scenario of source code. The transaction set T={T1,T2,
……,Tm} include all transactions, and for each Tj, j=1,2,
……m，Tj⊆ I*.
Confidence degree and support degree are important
concepts of an association rule. In this paper, support
degree can assure that candidate Aspects are “frequent”,
while confidence degree specifies the stability of location
of crosscuts.
Association rules are obtained after the execution of
association rule miming algorithms. The transaction set,
itemset, the values of confidence degree and support
degree are the inputs. Frequent 2-itemsets are calculated
during the process of association rule mining, because the
aim is to find out the relationship such that “method B is
executed right after method A is executed”, that is to say
IF A THEN B. The association rule can be merged. Let IF
A THEN B and IF B THEN C be the two rules produced

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

249

by mining algorithm, they can be merged into IF A THEN
BC, which shows method B and C are called after A.
Pointcut would choose execution join point, if pre-
condition or post-condition of association rule is “first” or
“end”, otherwise “call” join point would be chosen.
A series of rules similar with IF A THEN B are produced
after the above steps, but only proves that A and B appear
at the same time under confidence degree and support
degree. It can’t confirm whether method B is called closet
to A or not, which is key point in “advice” of Aspect.
Adjoining attributes between items of transactions are
used to filter out the invalid rule. The rule IF A and B is
valid only when method B appears right after method A.
Candidate Aspect set is mined through two steps above.
Advice body is obtained at 2.1 and Advice at 2.2.

3. Case study

A banking application developed by OO technology is
used as case study in this paper. Two main modules are
mainly discussed: counter business and day balance at
control center. Counter business includes creating new
accounts (KH), depositing (CK), and withdrawing the
money (QK). Day balance includes independence balance
(DLRJ) and central balance (ZJRJ). We are trying to find
out crosscutting concerns at the two modules using
approaches discussed above.
A new account created can be a current account (KH1) or
a fixed account (KH2). Every choice corresponds to one
Scenario with own execution traces. For example, the
execution traces of KH1 includes receiving message,
encryption, analyzing message, opening accounts, locking
and message returning etc. Each Scenario (KH1, KH2 …)
is an object of clustering and its execution traces (called
methods) are this objects’ attributes. Objects and their
attributes are shown as table 1 and the number in
parentheses after every attribute denotes the invocation
times of that method. Execution traces may contain deep
nested calls. We specified the nested level constraint to be
3, which is enough for effectiveness.
Two clustering result classes: {KH1, KH2,…, QK1,
QK2, …} and {DLRJ1, DLRJ2, …, JZRJ1,JZRJ2,…} are
gotten through special clustering software[2].The common
attributes set of {KH1,KH2,…,QK1,QK2,…} is
{Trans.Accept, Encry.TsMac, Ans.Process, Trans.Send},
which implies the existence of crosscutting concerns such
as communication, encryption or decryption and message.
Similarly, {DLRJ1, DLRJ2…，JZRJ1, JZRJ2…} indicates
the existence of two crosscutting concerns: access of
database and table locking or unlocking.

Table 1: Scenario objects set

Excution
s

Executed Methods

KH1 Trans.Accept(1), Encry.TsMac(1),
Ans.Process(2), KH.hz_kh(1),
..,Error.Lock(1), Trans.Send(1)

KH2 Trans.Accept(1), Encry.TsMac(1),
 Ans.Process(2), KH.zl_kh(1),
..,Trans.Send(1)

CK1 Trans.Accept(1), Encry.TsMac(1),
 Ans.Process(3), KH.hz_ck(2),
.., Trans.Send(1)

CK2 Trans.Accept(1), Encry.TsMac(1),
 Ans.Process(3), KH.zl_ck (2),
.., Trans.Send(1)

QK1 Trans.Accept(1), Encry.TsMac(1),
Ans.Process(3), KH.hz_qk(2),
.., Trans.Send(1)

QK2 Trans.Accept(1), Encry.TsMac(1),
 Ans.Process(3), KH.zl_qk(2),
.., Trans.Send(1)

DLRJ1 DB.Open(1), Lock.Table(5),
 RJ.rjemnllidr(1), Lock.UnlockTable(5),
.., DB.Close(1)

DLRJ2 DB.Open(1), Lock.Table(5),
 RJ.rjmemlcmsj(1),
Lock.UnlockTable(5),
.., DB.Close(1)

JZRJ1 DB.Open(1), Lock.Table(8),
 RJ.rj1zzjzzc(1), Lock.UnlockTable(8),
.., DB.Close(1)

JZRJ2 DB.Open(1), Lock.Table(8),
RJ.rj1hzlsz(1), Lock.UnlockTable(8),
.., DB.Close(1)

 ．．．

Once crosscutting concerns are obtained by clustering on
Scenarios, next step is finding out the location of crosscuts.
We construct transaction set and item set according to the
description of 2.2. The transactions are Scenarios without
nested call, which are KH1，KH2，…， JZRJ2，….,
represented by T0, T1, T2…T9…. The items are first(),
Trans.Accept(), Encry.TsMac()，…，DB.Close() , end(),
represented by 0 1 2 19, 20, , ,...,i i i i i . Especially if the same
method is called several times in one Scenario, alias is
used for accurately locating. For example, two
appearances of Ans.Process() in T0, is represented by two
items: '

3i and ''
3i .Then, transaction set is showed by Table

2:

Table 2: transaction sets

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

250

T Items set

0T 0 1 2 3 4 3 10 11 20, , , , , , , ,i i i i i i i i i′ ′′

1T 0 1 2 3 5 3 10 11 20, , , , , , , ,i i i i i i i i i′ ′′

2T 0 1 2 3 6 3 6 3 10 11 20, , , , , , , , , ,i i i i i i i i i i i′ ′ ′′ ′′ ′′′

3T 0 1 2 3 7 3 7 3 10 11 20, , , , , , , , , ,i i i i i i i i i i i′ ′ ′′ ′′ ′′′

4T 0 1 2 3 8 3 8 3 10 11 20, , , , , , , , , ,i i i i i i i i i i i′ ′ ′′ ′′ ′′′

5T 0 1 2 3 9 3 9 3 10 11 20, , , , , , , , , ,i i i i i i i i i i i′ ′ ′′ ′′ ′′′

6T 0 12 13 14 18 19 20, , , , , ,i i i i i i i

7T 0 12 13 15 18 19 20, , , , , ,i i i i i i i

8T 0 12 13 16 18 19 20, , , , , ,i i i i i i i

9T 0 12 13 17 18 19 20, , , , , ,i i i i i i i

 ．．．

Association rule mining algorithm get four rules as follows
through filtration and combination under the min support
degree and confidence degree (all are 40％).

(1) if 0i then '
1 2 3i i i∧ ∧

(2) if 10 11i i∧ then 20i

(3) if 0i then 12 13i i∧

(4) if 18 19i i∧ then 20i
The rule (1) proves that crosscutting concerns codes
(Trans.Accept(), Encry.TsMac() and Ans.Process()) are
called in turn at the entrance of business main functions
(KH()，CK()，QK(), …). In the same way, the rule (3)
proves that crosscutting concerns codes
(Lock.UnlockTable() , DB.Close()) are called in turn at the
exit of business main functions (DLRJ ()，JZRJ()…). That
is mining position of crosscutting concerns codes in source
code.
Above all, this case study proves the effectiveness of
clustering and association rule mining on execution traces.

4. Case study

Mining and refactoring Aspect from OO system is
becoming hot research area, along with the maturation of
AOP technology. In the existing literature, there are some
works on aspect mining based on source code exploration
and static code analysis [9, 10, 11, 12, 13, 14]. The Aspect
Mining Tool AMT, described in [10], supports aspect
identification by matching textual patterns against the
names used in the code and by looking for repeated uses of
the same types. The Aspect Browser tool also uses textual
patterns to match the aspects [9]. Their location is

improved by adopting a map-based display where aspects
are shown in colors. The code-browsing tool JQuery is
presented in [11], which provides hierarchical navigation
and query facilities, which are useful while executing
aspect extraction tasks.
Similarly to our paper, in [15] dynamic information and
concept lattice are used for aspect mining. However, their
approach is different at two following points compared
with ours.

 One Scenario may call the same method several
times. This times degree can be distributed by
clustering analysis but be regarded the same by
concept lattice.

 For large OO program, forming concept lattice
structure needs longer time and choosing candidate
Aspects manually. While, clustering gives result
directly under scheduled constraints.

In addition, the automatic degree is a very important
standard for Aspect Mining. At present, most methods on
mining are based on static or dynamic analysis, and only
crosscutting concerns codes can be found. While our
technique, which is based on the dynamic analysis and
association rule, may automatically locate crosscuts after
identifying crosscutting concerns codes. This is
advancement as compared to the earlier works.
Refactoring of OO system to AO system will be easily
processes based on our works.

Acknowledgments

This research benefits from the support of Key Laboratory
of Symbolic Computation and Knowledge Engineering of
Ministry of Education, Jilin University.

References
[1] Tzilla Elrad, Mehmet Aksit, Gregor Kiczales, Karl

Lieberherr and Harold Ossher. “Disscutting Aspects of
AOP”, Communications of the ACM, ACM Press, October
2001, 44(10), pp. 33-38.

[2] Tzilla Elrad, Robert E. Filman, Atef Bader. “Aspect
Oriented Programming”, Communications of the ACM,
ACM Press, October 2001, 44(10), pp. 29-32.

[3] L. Kaufman, and P. J. Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis. John Wiley, 1990.

[4] T.A.Wiggerts. Using clustering algorithms in legacy
systems modularization. In Proc of the 4th Working
Conference on Reverse Engineering, pages. 33-43,1997.

[5] R.Srikant, Q.Vu, and R.agrawal, Mining association rules
with items constraints, In Proc. 1997 Int. Conf. Knowledge
Discovery and Data Mining, pages 67-73, Newport Beach,
CA,Aug.1997

[6] R.Agrawal and R.Srikant. Fast algorithms for mining
association rules. In Proc. 1994Int. Conf. Very Large Data
Bases, pages 487-499, Santiago, Chile, Sept, 1994.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2A, February 2006

251

[7] J.Pei, J.Han, and R.Mao. CLOSET: An efficient algorithm
for mining frequent closed items. In Proc. 2000 ACM-
SIGMOD Int. Workshop Data Mining and Knowledge
Discovery, pages 11-20, Dallas, TX, May 2000.

[8] K.Sartipi, and K.kontogiannis, Component clustering based
on maximal association. In Proc of the 8th Working
Conference on Reverse Engineering, pages 103-114,2001.

[9] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. In Proc. of
the 2001 International Conference on Software Engineering
(ICSE), pages 265–274, Toronto, Canada, March 2001.
IEEE Computer Society.

[10] J. Hannemann and G. Kiczales. Overcoming the prevalent
decomposition of legacy code. In Proc. of Workshop on
Advanced Separation of Concerns at the International
Conference on Software Engineering (ICSE), Toronto,
Canada, 2001.

[11] D. Janzen and K. D. Volder. Navigating and querying code
without getting lost. In Proc. of the 2nd International
Conference on Aspect-Oriented Software Development
(AOSD), pages 178–187, Boston, Massachusetts, USA,
March 2003. ACM press.

[12] N. Loughran and A. Rashid. Mining aspects. In Proc. of the
Workshop on Early Aspects: Aspect-Oriented Requirements
Engineering and Architecture Design (with AOSD),
Enschede, The Netherlands, April 2002.

[13] M. P. Robillard and G. C. Murphy. Concern graphs: Finding
and describing concerns using structural program
dependencies. In Proc. of the 24th International Conference
on Software Engineering (ICSE), pages 406–416, Orlando,
FL, USA, May 2002. ACM press.

[14] A. van Deursen, M. Marin, and L. Moonen. Aspect mining
and refactoring. In Proceedings of the 1st International
Workshop on Refactoring: Achievements, Challenges,
Effects (REFACE), with WCRE, Waterloo, Canada,
November 2003.

[15] P. Tonella, M. Ceccato, Aspect Mining through the Formal
Concept Analysis of Execution Traces, in: Proceedings of
the Working Conference on Reverse-Engineering (WCRE),
2004.

Lili He received the B.S. and M.S. degrees in Computer
Science and Technology from Jilin University in 1998 and 2001,
respectively. She is now an instructor of college of computer
science and technology, Jilin university, majors in software
reverse engineering.

