
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006 
 
 

 

29

Manuscript revised January 30, 2005. 
 

 

 
Parameter Identification Approach to Vibration Loads Based on 

Regularizing Neural Networks  
 

Shouju Li and Yingxi Liu 
   

State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, 
China  

Summary 
An identification algorithm for vibrating dynamic 
characterization by using artificial neural network is developed 
for multi-degree-of freedom systems. The over-fitting problem of 
classical back-propagation algorithm during neural network 
training is solved by using regularization procedure with 
regularized objective function. The practical application shows 
that the proposed training method is capable of enhancing the 
regularization procedure without getting stuck at these 
sub-optimal solutions, can be used to noisy data in order to omit 
an over-fitted neural approximation and has higher identification 
accuracy compared to the back-propagation algorithm  
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1. Introduction 

Accurate identification of vibration load parameters in the 
hydro generating system is an important issue from the 
aspects of repair, diagnosis and maintenance of hydro 
power station. The indirect force calculation is of special 
interest when the vibrating forces cannot be measured 
directly while the generator unit responses caused by the 
vibrating loads can be measured easily [1]. In the last few 
years, several methods have been presented on force 
identification [2, 3]. Neural networks are a burgeoning 
area of artificial intelligence and are applied in many 
engineering applications. Leung (1999) proposed adaptive 
regularization parameter selection method for enhancing 
generalization capability of neural networks by means of 
changing the value of regularization parameter [4]. Kumar 
(2004) presented an improving method using Bayesian 
regularization for neural network training and shown the 
superior performance of proposed method compared to the 
back-propagation algorithm [5]. System identification and 
neural network techniques are more directly geared 
towards respecting these constraints than traditional 
modeling for two reasons: they involve simpler 
representation than the finite element method and directly 
account for errors when the model is created [6]. System 
identification and neural networks offer a probabilistic 
framework to the representation [7]. For example, when 

the input/output relationship is learned by minimizing a 
least-square distance between the neural network response 
and the experiments, the neural network learns the average 
response of the system conditioned on the input. The ANN 
is trained using the displacement responses of vibration as 
the input and the load parameters as the output.  
 The main objective of the study is to develop an 
intelligent pattern reorganization approach to parameter 
identification of hydro generator vibration. This paper is 
organized as follows: Section 2 describes the basic 
features of neural networks and the improvement of neural 
networks by using regularized objective function. Section 
3 describes the field measurement of vibration responses 
of hydro generator, the finite element simulation of 
vibration responses of hydro generator and application of 
regularizing neural network. The comparisons of measured 
vibration responses with forecasted vales are depicted in 
the figures.  
 
2. Improving performance in Parameter 
Identification using Regularization procedure 
for Neural network Training 
 
 
An artificial neural network model is a system with inputs 
and outputs based on biological nerves. The system can be 
composed of many computational elements that operate in 
parallel and are arranged in patterns similar to biological 
neural nets. A neural network is typically characterized by 
its computational elements, its network topology and the 
learning algorithm used. Among the several different types 
of ANN, the feed-forward, multilayered, supervised neural 
network with the error back-propagation algorithm, the 
BPN, is by far the most frequently applied neural network 
learning model, due to its simplicity. 

The architecture of BP networks, depicted in Figure 1, 
includes an input layer, one or more hidden layers, and an 
output layer. The nodes in each layer are connected to each 
node in the adjacent layer. Notably, Hecht-Nielsen proved 
that one hidden layer of neurons suffices to model any 
solution surface of practical interest.  
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Fig. 1 Topography structure of artificial neural network 
 
Hence, a network with only one hidden layer is 

considered in this study. Before an ANN can be used, it 
must be trained from an existing training set of pairs of 
input-output elements. The training of a supervised neural 
network using a BP learning algorithm normally involves 
three stages. The first stage is the data feed forward. The 
computed output of the i-th node in output layer is defined 
as follows[9] 
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Where μjj is the connective weight between nodes in the 
hidden layer and those in the output layer; vjk is the 
connective weight between nodes in the input layer and 
those in the hidden layer; θj or λi is bias term that 
represents the threshold of the transfer function f, and xk is 
the input of the kth node in the input layer. Term Ni, Nh, 
and No are the number of nodes in input, hidden and output 
layers, respectively. The transfer function f is selected as 
Sigmoid function [10] 
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The second stage is error back-propagation through the 
network. During training, a system error function is used 
to monitor the performance of the network. This objective 
function, also called the error function, is often defined as 
follows 
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Where p

iy  and p
io  denote the practical and desired 

value of output node i for training pattern p, P is the 
number of sample, w is the weight vector of neural 

network, Jd is the objective function. Training methods 
based on back-propagation offer a means of solving this 
nonlinear optimization problem based on adjusting the 
network parameters by a constant amount in the direction 
of steepest descent, with some variations depending on the 
flavor of BP being used.  

The optimization algorithm used to train network 
makes use of the Levenberg-Marquardt approximation. 
This algorithm is more powerful than the common used 
gradient descent methods, because the 
Levenberg-Marquardt approximation makes training more 
accurate and faster near minima on the error surface. 

 
1( 1) ( ) ( ) ( )w k w k H k g k−+ = −        (4) 

 
Where w(k) is the vector of network parameters(net 
weights and element biases) for iteration k, matrix H-1(k) 
represents the inverse of the Hessian matrix. The vector 
g(k) represents the gradient of objective function. The 
Hessian matrix can be closely approximated by 
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Where J is the Jacobian matrix, which is defined as 
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Where N is the number of all weights. And the gradient of 
the objective function can be computed as 
 

Input layer Hidden layer Output layer

μ ij 
ν jk 
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Where e is an error vector, and it can be calculated as 
follows 
 

e y o= −               (8) 
 
The iterative formulas of adjusting weights can be 
rewritten as follows 
 

1( 1) ( ) [ ( ) ( )] ( ) ( )T Tw k w k J k J k J k e k−+ = −   (9) 
 
One problem with the iterative update of weights is 

that it requires the inversion of Hessian matrix H which 
may be ill conditioned or even singular. 
Despite the popularity of the error function, there are two 
main shortcomings in applying those error based algorithm 
for general applications. On the one hand, there are many 
sub-optimal solutions on the error surface. The network 
training may easily stall because of being stuck in one of 
the sub-optimal solutions. On the other hand, the error 
function, in general, is a universal objective function to 
cater all harsh criteria of different applications.  To have 
an optimal performance such as a low training error and 
high generalization capability, additional assumptions and 
heuristic information on a particular application have to 
been included. One of the techniques to absorb the a priori 
knowledge is regularization procedure, which is a 
systematic approach to make the network training less 
ill-posed.  A typical form of the regularized objective 
function is expressed in the following equation 
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Where μ is the regularization factor, Enew is the regularized 
objective function. The problem, which Hessian matrix H 
is ill conditioned or even singular, can be resolved by the 
regularization procedure as follows 
 

TH J J Iμ≈ +                (12) 
Where I is a unity matrix. The weight adjustment using 
Levenberg-Marquardt algorithm is expressed as follows 
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Fig. 2  Main steps of parameter identification of hydro generator with 
neural networks 
 

The Levenberg-Marquardt algorithm approximates 
the normal gradient descent method, while if it is small, 
the expression transforms into the Gauss-Newton method.           
After each successful step the constant μ is decreased, 
forcing the adjusted weight matrix to transform as quickly 
as possible to the Gauss-Newton solution. When after a 
step the errors increase the constant μ is increased 
subsequently. The main steps of parameter identification of 
hydro generator are shown in Fig. 2. 

Step 1. Select the learning and testing patterns 
according to prior information and measurement 
data and set up the training sample pairs by using 
finite element method. 

Step 2. Design the network architecture.  
Step 3. Initialize the network weights to small 
random values. 
Step 4. Present an input pattern, and calculate the 
output of the network 
Step 5. Calculate the Jacobian matrix associated 
with input-output pairs 
Step 6. When the last input-output pair is 
presented, perform the update of the weights 
Step 7. Stop training if the network has converged, 
and go to step 8; else, go back to step 4. 
Step 8. Estimate load parameter of hydro 
generator based on measured vibrating response 
and output parameter identification results. 
Step  9.  Forecast vibration response of hydro 
generator according to identified load parameters, 
and compare them with observed ones.  
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3. Application of Improved Neural Network to 
Load Identification of Hydro Generator  
 
There are 11 generating units in the main generating 
workshop of Fengman hydro power station. Some of them 
often vibrate and sometimes may affect the ordinary 
operations. In order to deal with these problems, some 
researches have been developed, and one of the studies is 
to analyze the vibration characteristics and estimate the 
vibrating loads of hydro power. The objective of the field 
measurement is to record the vibration responses of hydro 
generator at a few discrete locations in the different 
loading cases. The measurement data can be taken as the 
basis for parameter identification. These data are recorded 
initially as time-histories of acceleration, velocity, or 
displacement 
 

 
Fig.3. Frame structure of hydro generator 

 
The experimental tests were performed for hydro 

generator under the different generating power cases. The 
vertical and horizontal displacements, velocity and 
acceleration versus times were recorded on the tapes for 
the detailed analysis. Main parameters of the hydro 
generator are shown as Table1. The Figure 3 is the frame 
structure of hydro generator. The four accelerometers were 
mounted on the top of frame structure of hydro power, and 
the vibration responses in the x, y, and z directions at 
different generating cases were measured. Fig. 4 shows the 
measured curve of vibration response of hydro generator 
with respect to time in the case of 20MW generating 
power. Fig.5 is one of the curves of power spectrum of 
hydro generator in the 20MW generating power. 
 

Table 1: Main parameters of the hydro generator 

Type Power 
/MW 

Rotating 
speed/r.min-1

Mass of 
rotating 
part /kg 

Vertical load 
acting on 
bearing /kN 

SF85-40/8540 85 150 320000 6610 
 

 

 
Fig. 4. Measured curve of vibration response of hydro generator with 

respect to time 
 
 

Fig. 5. Curve of power spectrum of hydro generator 
 
In order to supply the training samples and to determine 
load parameters of hydro generator, the finite element 
simulation is modeled. The dynamic behavior of the 
discretized structure can be describes under the usual 
assumption of structural linearity, time invariant physical 
properties, and viscous damping by [8] 
 

}{}]{[}]{[}]{[ FuKuCuM =++ &&&        (14) 
 
Where [M],[C] and [K] are the symmetric physical mass, 
damping, and stiffness matrices, respectively. {u} is the 
vector of displacement responses and {F} is the vector of 
acting forces. According to the Newmark 
constant-averaged-acceleration method, Equation(14) can 
be discretized into the following scheme 
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Where Δt is time step, the parameter β is 0.25. When the 
boundary conditions, initial conditions and loading vector 

-100

-50

0

50

100

0 500 1000 1500 2000 2500

time/ ms

di
sp

la
ce

m
en

t/1
0-6

m



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006 
 
 

 

33

are determined, the finite element equation is adopted to 
compute the distribution of displacement responses, which 
provides model data to the identification approaches with 
neural networks. The numerical methods are based on 
spatial and temporal discretization which divides the 
continuous space and time domains into a network of 
discrete nodal points and a series of finite time intervals. 
The number of neurons in the input layer depends on the 
number of input features in each input pattern set. The 
measured displacement responses at a discrete location 
have 49 discrete values. Therefore, the number of neurons 
in the input layer is equal to 49. The output layer has 6 
neurons, which must be equal to the number of identified 
parameters. The number of neurons in the hidden layer is 
determined by the test, Nh=99. So, the topology structure 
of neural network is 49-99-6. 

Taking the generation power 85 MW as an example, 
the main frequencies of vibrating loads can be determined 
from the curve of power spectrum of hydro generator 
shown as in Fig.5. Three main frequencies are estimated as 
0.625Hz, 2.5Hz and 7.5Hz. The other identified 
parameters are shown as follows: amplitude of load F0.625 
and phase angle θ0.625 with 0.625Hz; amplitude of load F2.5 
and phase angle θ2.5 with 2.5Hz; amplitude of load F7.5 and 
phase angle θ7.5 with 7.5Hz. The identified parameter 
vector m is expressed as follows 
 

0.625 2.5 7.5 0.625 2.5 7.5{ , , , , , }Tm F F F θ θ θ=     (18) 
 

-120
-90
-60
-30

0
30
60
90

120
150

0 500 1000 1500 2000 2500

time/ms

di
sp

la
ce

m
en

ts
 /1

0-6
m

Observed data
Proposed NN
BPNN

 
Fig. 6. Comparison of measured horizontal displacements in direction y 
with forecasted ones (85MW) 

 
Fig.7 Comparison of measured horizontal displacements in x-direction 

with forecasted ones (85MW) 
 

 
Fig. 8 Comparison of measured horizontal displacements in x-direction 

with forecasted ones (60MW) 
 

Figure 6, 7 and 8 show the comparison of measured 
vibration displacements with forecasted ones by using 
different training algorithm. Compared to the classical 
back-propagation algorithm, the neural network trained by 
regularization procedure has a higher forecast precision. 
 
4. Conclusion 
 
The neural network has to be trained a priori to learn the 
complex input/output association for parameter 
recognition of vibration load. Field measurements of 
vibration responses were carried out on a hydro generator 
at Fengman Hydro Station. The vibration responses in the 
time domain and the frequency characteristics were 
recorded for estimating the vibration load parameters. 
Given the system’s vibration time history measured at a 
few discrete locations, there are a few of algorithms to 
reconstruct the system’s frequency response function. 
Neural networks are used to identify the load parameters 
from the displacement measurements on a hydro generator. 
The smaller the weights, better is the generalization 
capability of the neural network. The results of these 
studies show the potential suitability of the approach for 
use in industry. 
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