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Summary 
Scenarios present system behaviors by specifying collaboration 

and interaction between objects or components from users’ 

perspectives. Statecharts are precise descriptions of system 

behaviors. Automatic transformation from scenarios to statechart 

is the process in which system behavior models are generated 

automatically from UML requirement models. In this paper we 

propose an approach to eliciting implied scenarios based on 

generated statechart from scenarios. This approach presents some 

rules of constructing state vectors that assist analysts to add 

semantic information to scenarios expressed by sequence 

diagrams，identify implied state transition paths by adding the 

scenarios information based on existing algorithm which 

supports the design process by generating statechart design 

automatically from scenarios, and synthesize implied scenarios 

by implied state transition paths with which analysts or users can 

further refine their requirements. 

Key words: 
UML, Scenarios, Sequence diagrams, Statechart, Implied state 

transition path, Implied Scenario 

1. Introduction 

Scenario models play central roles as tools for requirement 

elicitation and specification in current object oriented 

system modeling processes. A scenario may represent a 

concrete sequence of interactions steps or a set of possible 

interactions steps between system components, the 

environment and users. Scenarios may be expressed as 

UML[2] sequence diagrams. 

When it comes to the dynamic aspects of a system, state 

machines (particularly statecharts, originally introduced by 

D. Harel [3]) represent a compact way of describing these 

aspects. Statecharts are finite state machines extended with 

hierarchy and orthogonal (parallelism), allowing the 

representation of a system in a compact and elegant 

manner.  

While scenarios represent a single trace of behaviour of 

a complete set of objects, state machines (which we are 

going to refer to as statecharts from now on) represent the 

complete behavior of a single object.  

Works have been done to explain how to automatically 

generate state machines from scenarios. These works lead 

automatically to maintain consistency between sequence 

diagrams and state machines. In this paper we present an 

approach to how to get implied scenarios from the implied 

state transition paths which are generated from scenarios. 

This backwards direction work can help users further 

refine their requirements. 

Section 2 introduces the existing algorithm. Section 3 

presents some derived rules of state vectors that assist 

analysts to add semantic information to scenarios 

expressed by sequence diagrams, and introduces the 

synthesis scenarios algorithm from implying state 

transition path. In Section 4 Related work is discussed. 

The conclusions and future directions of our work are 

given in Section 5. 

 

2. The Existing Algorithm of Generated 

Statechart 
 

Scenarios are instances of use cases. The lack of semantic 

information in the description of scenarios, such as 

sequence diagram and collaborate diagrams, results in 

different interpretations when analysts try to comprehend 

the system, so the analyst can’t get the states of objects. J 

Whittle and J Schumann suggested using OCL to identify 

the object states in the sequence diagram in 2000[1].  

J. Whittle’s algorithm generates object statechart using 

scenarios labeled state vector based on OCL(Object 

Constraint Language). OCL specification provides the 

pre-conditions before the message is sent and the 

post-conditions after the message is received.  The 

variables involved in the conditions are used as the state 

variables of the object states. The set of the state variables, 

called the state vector, determine state value. OCL can be 

represented as follows: 

Message description: 

preCon: varible1=value1, variable2=value2, … 

postCon: varible1=value1’, variable2=value2’, … 

This information is expressed as the state vectors like this : 

< variable1 ^ , variable2 ^ ,…, variablen ^ >. The value of 

variable is Boolean. 

The whittle’s algorithm can describe : 

1. specify the preconditions and postcondition of each 

message of sequence diagrams with OCL.  

2. capture state variables of the state vector which 

describe state from OCL specification. 
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3. each message extend the state vextors by propagating 

variable values throughout the sequence diagrams The 

objects are assigned state vectors based on OCL 

information and the algorithm of [5] before or after 

transferring messages. 

4. generate each object’s statechart of single sequence 

diagram based on state vector. Repeat this step with 

deferent sequence diagram. 

5. merge the similar state generated from 4 for each 

object. 

This approach can generate statechart of each object in 

the sequence diagram. The algorithm is simple and clear. 

In this paper we propose some rules of constructing state 

vector. These rules will capture the reasonable and 

sufficient state variable to construct state vector. And we 

modify merge rule to keep some state transition paths 

which are not explicit in sequence diagrams. We named 

implied state transitions. In whittle’s algorithm the implied 

state transition paths are neglected to a great extent.. 

 

3. Implied Scenarios  
 

3.1 Choose State Variables to Construct State Vector 
 

In this paper we analyze use case to construct the primary 

state vectors. The state vectors would be modified and 

complemented based on the primary ones.  

Usually the use case descriptions consist of the simple 

descriptions, use case diagram, preconditions, basic flow, 

alternative flows, subflows and postconditions. 

We analyze the useful information mainly from the 

preconditions, basic flows and alternative flows. 

Rule 1: system internal objects can be prepared as state 

variables in the preconditions. 

Rule 2: interactions of actor and system would be state 

variables. They will describe whether or not the 

information that system needs has input into the system, 

the system output has delivered to actor, and actor has 

responded. These state variables be usually expressed by 

the synthesized word, such as inputPasswd, takecard. 

Rule 3: the objects in assumed sentence of the alternative 

flows usually can change the use case control flow. These 

ones can be state variables.      

Considering the above rules, we can identify two classes 

of primary state variables. One is the Verb Phrase that 

describes the interactions between actor and system. The 

other is the noun that describes the object possibly 

changing the use case control flow. In order to verify 

whether the primary state variables can satisfy the need of 

describing the objects states, we design the following 

questions about the messages of the sequence diagrams 

that describe scenarios. We define some rules to query 

analysts as Patrick Heymans does[7]. There are five 

questions to be asked to decide the state variables of 

source object which sends this message, that is, it performs 

a certain action: 

1. Which conditions, in the circumstance given in the 

scenarios, allow the action to take place? 

2. What, in the circumstance given in the scenarios, 

forces the action to take place? 

3. Which conditions, in the circumstance given in the 

scenarios, allow the action occurrence to have an 

effect on the object that performs it? 

4. What is the effect of the action occurrence on the 

object which performs it? 

5. Whether or not the objects outside the system interact 

with the system and what information exchange? 

For the target object which receives the message, that is, 

receives the event sent by the other object, there are two 

questions which can decide its state variables: 

1. Which conditions in the circumstance given in the 

scenarios, allow the event have the effect on the object 

received it? 

2. What is the effect of the event received on the target 

object? 

By answering these questions, the analysts would get 

complete state variables to confirm the state of source 

object. 

 

3.2 Extract Implied State Transition Path 
 

The state vector get by our proposed approach can satisfy 

the need of generating the statecharts. We think the state 

information is so sufficient that generated state transition 

paths are reasonable. The last step of whittle’s algorithm is 

integrating object’s statecharts generated from different 

sequence diagrams. Some state transition paths which are 

not explicit in sequence diagrams exist as the byproduct of 

merging similar state. We named implied state transitions. 

In Whittle’s algorithm the implied state transition paths are 

neglected to a great extent. But implied state transition 

paths can help user refine the requirements. So we modify 

merge rule like following: 

  sc(n): scenario which state node n is generated from. 

  u(n): the state vector value of state node n. 

  t(n, l, m): the transition between state node n and m, l is 

the label of message which trigger transition. 

1. 
( 1) ( 2)u n u n

 

2. 
( 1) ( 2)sc n sc n

 

3. 
f li 

, there exists transitions 
1 ( 3, , 1)t n l n

 and 

2 ( 4, , 2)t n l n
, then 1n  and 2n  are similar, 

4. After the nodes that satisfy 3 have merged, the nodes 

that only satisfy 1 and 2 will be merged. 

For example, three object A’s statecharts generated from 

different scenarios are going to merge. 
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Fig. 1  The statecharts of object A. 
 

Applying whittle’s algorithm, the statechart is generated 

like Fig. 2. Applying our algorithm, the statechart is 

generated like Fig. 3. The implied state transition paths are 

generated like Fig. 4. 

 

 
 

Fig. 2  Merged statechart with Whittle’s algrithom 

 

 
 

Fig. 3  Merged statechart with our algrithom 

 

 
 

Fig. 4  The implied state transition paths 
 

In order to implement our merging rule, the data 

structure of state transition consists of four elements: 

Message lable l, state vector of source end preStateV, state 

vector of target end postStateV, the set of scenario sc(t) 

which transition t belongs to. Because the transition t 

possibly belongs to multi scenarios after merging, sc(t) is 

a set of scenarios. When transversing generalized 

statechart and getting state transition paths, we can judge 

implied state transition paths with an algorithm as follows. 

1. compute the set scs=sc(t0) of the first transition 

t0 in the path. 

2. input the next transition t in the path by order,    

scs=scs∩sc(t) 

     if scs=Ø   

then this is implied state transition path  

      else goto 2for example, like Fig. 5. 

 

 

 
 

Fig. 5  An example of judging implied state transition paths 

 
3.3 implied scenarios 
The statechart generated from different scenarios of the 

same use case. The implied scenarios can be constructed 

from the implied state transitions. The implied scenarios 

can help to complete the requirements specification with 

unforeseen situations or indicate that the specification 

must be refined to prevent unwanted executions. 

The sequence diagrams describe the interaction of multi 

objects. The set of objects O is given. 

Definition 1. The sequence diagram of the scenario is the 

structure S={O,V,M,L}. 

- O is a set of objects participating in the interaction of 

the sequence diagram, o∈O. 

- V is the set of vertexes mapped the interactions on 

the objects lifelines of the sequence diagram. 

- M is the set of messages, 

   , ,M V L V V L Vo O o p O o po o o p              

- L: M→L, the label of message. 

Definition 2. The trace ( )Trace M M  is a total order 

of the set of messages in the sequence diagram.  

Definition 3. The snippet is a partial trace which records 

the total order of the set of messages between two 

consecutive states of an object. The structure Snippet={Si, 

Sn,t} 

- Si is a state of the studying object. 

- Sn is the next state of Si  

- t is the trace between Si and Sn. 

We can link the snippets of one finite state transition path 

into a trace of the set of messages. We may neglect some 

objects whose states change simply, but only focus on the 

complicated ones. For the concerned object:  

1. The snippet is attached to the corresponding transition 

when generating state.  

2. When merging the similar state, the transition only 

keeps one snippet.  

When finding out the implied state transition path, we 

synthesize the implied scenarios by linking the snippets. 

We consider a use case of the elevator system. Use case 

CallProcess describes how the elevator responses the call 

of passenger and reach the floor desired. There are several  

objects anticipant this use case, including buttons, control, 

drive, dispatch, and safety devices. Thinking about two 

scenarios of CallProcess: 

1. Passenger presses the call button in the hall. an 

immobile elevator responses this call and reached the 

floor of passenger staying. 

StateV1 
a g c b 

Scenario1

: 

a d b 

Scenario2

: 

a f e 

Scenario3

: 

StateV1 StateV2 StateV5 

StateV1 StateV1 StateV3 

StateV1 StateV2 StateV4 

a 
b c 

f 

d 
g 

e 

StateV3 

StateV1 StateV1 StateV2 StateV5 

StateV2 StateV4 

a b c f 
d g 

e 
StateV1 StateV1 

StateV3 StateV5 

StateV2 StateV4 

a f c b 

a g e 

StateV1 StateV1 StateV2 StateV4 

StateV1 StateV2 StateV5 

a f c b 

sc(ta)={sc1,sc2,sc3}  sc(tb)={sc1,sc2,}  sc(tc)={sc1}   
sc(tf)={sc3} 

scs={sc1,sc2,sc3}   scs={sc1,sc2,}    scs={sc1}       scs= Ø  

 

StateV1 StateV1 StateV2 StateV4 
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2. Passenger entered an immobile elevator, and pressed 

the car button for the desired floor. The elevator 

moved to the floor desired, but can not stop. Safety 

device wakens the brake to make car stopping. 

The Control is the most important object. it sends control 

information to other objects. According the method given 

above, we can develop the state vector of Control as 

fellow: 

<move, validCall, callLocation, desiredFloorGiven, 

safety, doorState> 

and set the values of state variables of Control in 

every phrase.  

We can get the statechart of Control as Fig. 8. To 

describe the state path implied, we mark every 

transition with corresponding scenarios. There are 

two implied path in this statechart. One of the 

implied path is gray in Fig.8. That is, there are two 

new scenarios 

1. Passenger pressed the call button in the hall, 

an immobile elevator responses this call, but 

can not stop at desired floor. Safety device 

wakens the brake to make car stop. 

2. Passenger entered an immobile elevator, and 

pressed the car button for the desired floor. The 

elevator moved to the floor desired. 

For example, the implied scenario 1 is described 

like Fig. 9. It indicates that whether the call 

happens in the hall or in the car, there is 

probability that the elevator can’t stop.

 

 
 

Fig. 6  Scenario 1 

 

 
 

Fig. 7  Scenario 2 

 

 
 

Fig. 8  Generated statechart 
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Fig. 9  implied Scenario 1 

 

 

4. Related Work and Conclusion 
 

Kai Koskimies and Erikki Makinen first proposed the 

method of generating objects’ statecharts from scenarios by 

using syntax inference theory that is getting the behavior 

model of an object from the traces [4]. Koskimies 

accomplished SCED tool based on the SMS algorithm. 

Because it identifies the same state only on the basis of 

action, there will be overgeneralized problem, which can 

possibly produce some wrong or implied paths in the 

generated statechart. So Erikki Makinen and Tarja Systa 

propose MAS algorithm on the basis of SMS algorithm in 

2000[5,6]. This technique is semi-automatic. Makinen and 

Systa regard that it is difficult to identify the 

overgeneralized paths automatically during creating the 

statechart. 

Sebastian Uchitel, etc. Presented a framework for 

synthesizing implementation models for scenario-based 

specification[8,9]. The framework has been implemented 

and integrated in the LTSA tool, also provides a method for 

assessing if a scenario specification has implied behaviours. 

Implied scenarios are the result of specifying the global 

behaviours of a system that will be implemented 

component-wise. 

Our work extends the algorithm presented by J. 

Whittle in [1]. We have used their notions of state 

vectors and algorithm generated statecharts. We present 

some rules of constructing state vectors that assist 

analysts to add semantic information to scenarios 

expressed by sequence diagrams. In [1] the state nodes 

which have same state vector and different transition 

label can not be merged. However, we accept it as 

possible transition path. We identify implied state 

transition paths by adding the scenarios information 

based on existing algorithm which supports the design 

process by generating statechart design automatically 

from scenarios, and synthesize implied scenarios 

by implied state transition paths with which 
analysts or users can further refine their requirements. 

In the future, we will consider the relation between 

multi-usecase and statecharts. 
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