
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

57

Manuscript revised January 2006.

A Statechart-Based Approach of Eliciting Implied Scenarios

Hongyuan Wang , Jiachen Zhang and Tie Feng

Key Laboratory Symbolic Computation and Knowledge Engineering of Ministry of Education

College of Computer Science and Technology, Jilin University, Changchun, 130012, China

Summary
Scenarios present system behaviors by specifying collaboration

and interaction between objects or components from users’

perspectives. Statecharts are precise descriptions of system

behaviors. Automatic transformation from scenarios to statechart

is the process in which system behavior models are generated

automatically from UML requirement models. In this paper we

propose an approach to eliciting implied scenarios based on

generated statechart from scenarios. This approach presents some

rules of constructing state vectors that assist analysts to add

semantic information to scenarios expressed by sequence

diagrams，identify implied state transition paths by adding the

scenarios information based on existing algorithm which

supports the design process by generating statechart design

automatically from scenarios, and synthesize implied scenarios

by implied state transition paths with which analysts or users can

further refine their requirements.

Key words:
UML, Scenarios, Sequence diagrams, Statechart, Implied state

transition path, Implied Scenario

1. Introduction

Scenario models play central roles as tools for requirement

elicitation and specification in current object oriented

system modeling processes. A scenario may represent a

concrete sequence of interactions steps or a set of possible

interactions steps between system components, the

environment and users. Scenarios may be expressed as

UML[2] sequence diagrams.

When it comes to the dynamic aspects of a system, state

machines (particularly statecharts, originally introduced by

D. Harel [3]) represent a compact way of describing these

aspects. Statecharts are finite state machines extended with

hierarchy and orthogonal (parallelism), allowing the

representation of a system in a compact and elegant

manner.

While scenarios represent a single trace of behaviour of

a complete set of objects, state machines (which we are

going to refer to as statecharts from now on) represent the

complete behavior of a single object.

Works have been done to explain how to automatically

generate state machines from scenarios. These works lead

automatically to maintain consistency between sequence

diagrams and state machines. In this paper we present an

approach to how to get implied scenarios from the implied

state transition paths which are generated from scenarios.

This backwards direction work can help users further

refine their requirements.

Section 2 introduces the existing algorithm. Section 3

presents some derived rules of state vectors that assist

analysts to add semantic information to scenarios

expressed by sequence diagrams, and introduces the

synthesis scenarios algorithm from implying state

transition path. In Section 4 Related work is discussed.

The conclusions and future directions of our work are

given in Section 5.

2. The Existing Algorithm of Generated

Statechart

Scenarios are instances of use cases. The lack of semantic

information in the description of scenarios, such as

sequence diagram and collaborate diagrams, results in

different interpretations when analysts try to comprehend

the system, so the analyst can’t get the states of objects. J

Whittle and J Schumann suggested using OCL to identify

the object states in the sequence diagram in 2000[1].

J. Whittle’s algorithm generates object statechart using

scenarios labeled state vector based on OCL(Object

Constraint Language). OCL specification provides the

pre-conditions before the message is sent and the

post-conditions after the message is received. The

variables involved in the conditions are used as the state

variables of the object states. The set of the state variables,

called the state vector, determine state value. OCL can be

represented as follows:

Message description:

preCon: varible1=value1, variable2=value2, …

postCon: varible1=value1’, variable2=value2’, …

This information is expressed as the state vectors like this :

< variable1 ^ , variable2 ^ ,…, variablen ^ >. The value of

variable is Boolean.

The whittle’s algorithm can describe :

1. specify the preconditions and postcondition of each

message of sequence diagrams with OCL.

2. capture state variables of the state vector which

describe state from OCL specification.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

58

3. each message extend the state vextors by propagating

variable values throughout the sequence diagrams The

objects are assigned state vectors based on OCL

information and the algorithm of [5] before or after

transferring messages.

4. generate each object’s statechart of single sequence

diagram based on state vector. Repeat this step with

deferent sequence diagram.

5. merge the similar state generated from 4 for each

object.

This approach can generate statechart of each object in

the sequence diagram. The algorithm is simple and clear.

In this paper we propose some rules of constructing state

vector. These rules will capture the reasonable and

sufficient state variable to construct state vector. And we

modify merge rule to keep some state transition paths

which are not explicit in sequence diagrams. We named

implied state transitions. In whittle’s algorithm the implied

state transition paths are neglected to a great extent..

3. Implied Scenarios

3.1 Choose State Variables to Construct State Vector

In this paper we analyze use case to construct the primary

state vectors. The state vectors would be modified and

complemented based on the primary ones.

Usually the use case descriptions consist of the simple

descriptions, use case diagram, preconditions, basic flow,

alternative flows, subflows and postconditions.

We analyze the useful information mainly from the

preconditions, basic flows and alternative flows.

Rule 1: system internal objects can be prepared as state

variables in the preconditions.

Rule 2: interactions of actor and system would be state

variables. They will describe whether or not the

information that system needs has input into the system,

the system output has delivered to actor, and actor has

responded. These state variables be usually expressed by

the synthesized word, such as inputPasswd, takecard.

Rule 3: the objects in assumed sentence of the alternative

flows usually can change the use case control flow. These

ones can be state variables.

Considering the above rules, we can identify two classes

of primary state variables. One is the Verb Phrase that

describes the interactions between actor and system. The

other is the noun that describes the object possibly

changing the use case control flow. In order to verify

whether the primary state variables can satisfy the need of

describing the objects states, we design the following

questions about the messages of the sequence diagrams

that describe scenarios. We define some rules to query

analysts as Patrick Heymans does[7]. There are five

questions to be asked to decide the state variables of

source object which sends this message, that is, it performs

a certain action:

1. Which conditions, in the circumstance given in the

scenarios, allow the action to take place?

2. What, in the circumstance given in the scenarios,

forces the action to take place?

3. Which conditions, in the circumstance given in the

scenarios, allow the action occurrence to have an

effect on the object that performs it?

4. What is the effect of the action occurrence on the

object which performs it?

5. Whether or not the objects outside the system interact

with the system and what information exchange?

For the target object which receives the message, that is,

receives the event sent by the other object, there are two

questions which can decide its state variables:

1. Which conditions in the circumstance given in the

scenarios, allow the event have the effect on the object

received it?

2. What is the effect of the event received on the target

object?

By answering these questions, the analysts would get

complete state variables to confirm the state of source

object.

3.2 Extract Implied State Transition Path

The state vector get by our proposed approach can satisfy

the need of generating the statecharts. We think the state

information is so sufficient that generated state transition

paths are reasonable. The last step of whittle’s algorithm is

integrating object’s statecharts generated from different

sequence diagrams. Some state transition paths which are

not explicit in sequence diagrams exist as the byproduct of

merging similar state. We named implied state transitions.

In Whittle’s algorithm the implied state transition paths are

neglected to a great extent. But implied state transition

paths can help user refine the requirements. So we modify

merge rule like following:

 sc(n): scenario which state node n is generated from.

 u(n): the state vector value of state node n.

 t(n, l, m): the transition between state node n and m, l is

the label of message which trigger transition.

1.
(1) (2)u n u n

2.
(1) (2)sc n sc n

3.
f li 

, there exists transitions
1 (3, , 1)t n l n

 and

2 (4, , 2)t n l n
, then 1n and 2n are similar,

4. After the nodes that satisfy 3 have merged, the nodes

that only satisfy 1 and 2 will be merged.

For example, three object A’s statecharts generated from

different scenarios are going to merge.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

59

Fig. 1 The statecharts of object A.

Applying whittle’s algorithm, the statechart is generated

like Fig. 2. Applying our algorithm, the statechart is

generated like Fig. 3. The implied state transition paths are

generated like Fig. 4.

Fig. 2 Merged statechart with Whittle’s algrithom

Fig. 3 Merged statechart with our algrithom

Fig. 4 The implied state transition paths

In order to implement our merging rule, the data

structure of state transition consists of four elements:

Message lable l, state vector of source end preStateV, state

vector of target end postStateV, the set of scenario sc(t)

which transition t belongs to. Because the transition t

possibly belongs to multi scenarios after merging, sc(t) is

a set of scenarios. When transversing generalized

statechart and getting state transition paths, we can judge

implied state transition paths with an algorithm as follows.

1. compute the set scs=sc(t0) of the first transition

t0 in the path.

2. input the next transition t in the path by order,

scs=scs∩sc(t)

 if scs=Ø

then this is implied state transition path

 else goto 2for example, like Fig. 5.

Fig. 5 An example of judging implied state transition paths

3.3 implied scenarios
The statechart generated from different scenarios of the

same use case. The implied scenarios can be constructed

from the implied state transitions. The implied scenarios

can help to complete the requirements specification with

unforeseen situations or indicate that the specification

must be refined to prevent unwanted executions.

The sequence diagrams describe the interaction of multi

objects. The set of objects O is given.

Definition 1. The sequence diagram of the scenario is the

structure S={O,V,M,L}.

- O is a set of objects participating in the interaction of

the sequence diagram, o∈O.

- V is the set of vertexes mapped the interactions on

the objects lifelines of the sequence diagram.

- M is the set of messages,

   , ,M V L V V L Vo O o p O o po o o p            

- L: M→L, the label of message.

Definition 2. The trace ()Trace M M  is a total order

of the set of messages in the sequence diagram.

Definition 3. The snippet is a partial trace which records

the total order of the set of messages between two

consecutive states of an object. The structure Snippet={Si,

Sn,t}

- Si is a state of the studying object.

- Sn is the next state of Si

- t is the trace between Si and Sn.

We can link the snippets of one finite state transition path

into a trace of the set of messages. We may neglect some

objects whose states change simply, but only focus on the

complicated ones. For the concerned object:

1. The snippet is attached to the corresponding transition

when generating state.

2. When merging the similar state, the transition only

keeps one snippet.

When finding out the implied state transition path, we

synthesize the implied scenarios by linking the snippets.

We consider a use case of the elevator system. Use case

CallProcess describes how the elevator responses the call

of passenger and reach the floor desired. There are several

objects anticipant this use case, including buttons, control,

drive, dispatch, and safety devices. Thinking about two

scenarios of CallProcess:

1. Passenger presses the call button in the hall. an

immobile elevator responses this call and reached the

floor of passenger staying.

StateV1
a g c b

Scenario1

:

a d b

Scenario2

:

a f e

Scenario3

:

StateV1 StateV2 StateV5

StateV1 StateV1 StateV3

StateV1 StateV2 StateV4

a
b c

f

d
g

e

StateV3

StateV1 StateV1 StateV2 StateV5

StateV2 StateV4

a b c f
d g

e
StateV1 StateV1

StateV3 StateV5

StateV2 StateV4

a f c b

a g e

StateV1 StateV1 StateV2 StateV4

StateV1 StateV2 StateV5

a f c b

sc(ta)={sc1,sc2,sc3} sc(tb)={sc1,sc2,} sc(tc)={sc1}
sc(tf)={sc3}

scs={sc1,sc2,sc3} scs={sc1,sc2,} scs={sc1} scs= Ø

StateV1 StateV1 StateV2 StateV4

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

60

2. Passenger entered an immobile elevator, and pressed

the car button for the desired floor. The elevator

moved to the floor desired, but can not stop. Safety

device wakens the brake to make car stopping.

The Control is the most important object. it sends control

information to other objects. According the method given

above, we can develop the state vector of Control as

fellow:

<move, validCall, callLocation, desiredFloorGiven,

safety, doorState>

and set the values of state variables of Control in

every phrase.

We can get the statechart of Control as Fig. 8. To

describe the state path implied, we mark every

transition with corresponding scenarios. There are

two implied path in this statechart. One of the

implied path is gray in Fig.8. That is, there are two

new scenarios

1. Passenger pressed the call button in the hall,

an immobile elevator responses this call, but

can not stop at desired floor. Safety device

wakens the brake to make car stop.

2. Passenger entered an immobile elevator, and

pressed the car button for the desired floor. The

elevator moved to the floor desired.

For example, the implied scenario 1 is described

like Fig. 9. It indicates that whether the call

happens in the hall or in the car, there is

probability that the elevator can’t stop.

Fig. 6 Scenario 1

Fig. 7 Scenario 2

Fig. 8 Generated statechart

Passenger HallButton Dispatch Control Drive Door
press hall call

desiredFloor

turn on HallButton

move

update

door closed

atFloor

stop
stopped

open door
turn off HallButton

<f,null,null,f,t,t>

<f,t,out,f,t,t>

<f,t,out,f,t,f>
<f,t,out,f,t,t>

<f,null,null,t,t,f>

<t,null,null,t,t,f>

<t,null,null,f,t,f>

<f,null,null,f,t,f>

<f,null,null,f,t,t>

Emergency

brake
Passenger CarButton Dispatch Control Drive Doo

r pres

s
car call

desiredFloor

turn on CarButton

mov

e

update

closed

atFloor
stop

not

stop
turn on Alarm

<f,null,null,f,t,t>
<f,t,in,f,t,t>

<f,t,in,f,t,f>

<f,t,in,f,t,t>

<f,null,null,t,t,f>
<t,null,null,t,t,f>

<t,null,null,f,t,f>

<t,null,null,f,f,f>

<f,null,null,f,f,f>

Alarm

Safet

y

not stop
brake

stopped

<f,null,null,f,t

,t>

<f,t,in,f,t,t

>

<f,t,in,f,t,f

>

<f,null,null,t,t,f

>

<t,null,null,t,t

,f>

<t,null,null,f,t

,f>

<t,null,null,f,f,f

>

<f,t,out,f,t,

t>

<f,t,out,f,t,f

>

/turn on

hallButton,

 update {sc2}

3

hall call /turn on hallButton, update

{sc1} door closed

{sc1}
desiredFlo

or

{sc1}

desiredFloor {sc2}

atFloor/stop

{sc1,sc2}

Move

{sc1,sc2}

stopped

{sc1}
<f,null,null,f,t

,t>

not stopped

/turn on alarm {sc2}

car call door

closed

{sc2}

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

61

Fig. 9 implied Scenario 1

4. Related Work and Conclusion

Kai Koskimies and Erikki Makinen first proposed the

method of generating objects’ statecharts from scenarios by

using syntax inference theory that is getting the behavior

model of an object from the traces [4]. Koskimies

accomplished SCED tool based on the SMS algorithm.

Because it identifies the same state only on the basis of

action, there will be overgeneralized problem, which can

possibly produce some wrong or implied paths in the

generated statechart. So Erikki Makinen and Tarja Systa

propose MAS algorithm on the basis of SMS algorithm in

2000[5,6]. This technique is semi-automatic. Makinen and

Systa regard that it is difficult to identify the

overgeneralized paths automatically during creating the

statechart.

Sebastian Uchitel, etc. Presented a framework for

synthesizing implementation models for scenario-based

specification[8,9]. The framework has been implemented

and integrated in the LTSA tool, also provides a method for

assessing if a scenario specification has implied behaviours.

Implied scenarios are the result of specifying the global

behaviours of a system that will be implemented

component-wise.

Our work extends the algorithm presented by J.

Whittle in [1]. We have used their notions of state

vectors and algorithm generated statecharts. We present

some rules of constructing state vectors that assist

analysts to add semantic information to scenarios

expressed by sequence diagrams. In [1] the state nodes

which have same state vector and different transition

label can not be merged. However, we accept it as

possible transition path. We identify implied state

transition paths by adding the scenarios information

based on existing algorithm which supports the design

process by generating statechart design automatically

from scenarios, and synthesize implied scenarios

by implied state transition paths with which
analysts or users can further refine their requirements.

In the future, we will consider the relation between

multi-usecase and statecharts.

References
[1] Whittle, J. and Schumann, J. Generating statechart designs

from scenarios. In Proceedings of International Conference

on Software Engineering (ICSE2000), Limerick,Ireland

(2000), 314~323.

[2] Object Management Group (OMG): Unified Modelling

Language Specification version 1.5. OMG, Needham, MA,

USA (Mar. 2003).

[3] D. Harel. Statecharts: A visual formalism for complex systems.

Science of Computer Programming, 8:231-274,1987.

[4] K. Koskimies, E. M•akinen: Automatic synthesis of state

machines from trace diagrams. Softw. Pract. Exper. 24,

643~658 (1994).

[5] Mäkinen E., Systä T.: Minimally adequate teacher designs

software, Dept. of Computer and Information Sciences,

University of Tampere, Report A-2000-7, April 2000.

Submitted. (ftp://ftp.cs.uta.fi/pub/reports/pdf/A-2000-7.pdf)

[6] Mäkinen E., Systä, T.: Implementing minimally adequate

synthesizer, Dept. of Computer and Information

Sciences,University of Tampere, Report A-2000-9, June

2000. (ftp://ftp.cs.uta.fi/pub/reports/pdf/A-2000-9.pdf).

[7] H. Behrens Requirements Analysis and Prototyping

using Scenarios and Statecharts In Proceedings of

ICSE 2002 Workshop: Scenarios and State Machines:

Models, Algorithms, and Tools. 2002.

[8] S. Uchitel, J. Kramer and J. Magee. Detecting Implied

Scenarios in Message Sequence Chart Specifications. In

Proceedings of. European Software Engineering Conference

(ESEC/FSE’01), pp.74-82, Vienna 2001.

[9] S. Uchitel. Synthesis of Behavioral Models from Scenarios.

IEEE Transactions on Software Engineering, VOL. 29, NO.

2, pp. 99-115, February 2003.

Hongyuan Wang received the B.E.

and M.E. degrees, from Jilin Univ. in 1998

and 2001, respectively. After working as a

research assistant (from 2001), she has been

an instructor (from 2004) in the College of

Computer Science and Tech., Jilin Univ.

Her research interest is software

engineering.

Passenger HallButton Dispatch Control Drive Door
press

hall

call

desiredFloo

r

turn on HallButton

mov

e

update

closed

atFloo

r stop

not

stop turn on Alarm

<f,null,null,f,t,t>

<f,t,in,f,t,t>

<f,t,in,f,t,f

>

<f,t,in,f,t,t

>

<f,null,null,t,t,f

> <t,null,null,t,t,f

> <t,null,null,f,t,f>

<t,null,null,f,f,f>

<f,null,null,f,f,f>

Alarm

Safety

not stop
brake

stopped

Emergency

brake

A snippet

ftp://ftp.cs.uta.fi/pub/reports/pdf/A-2000-7.pdf
ftp://ftp.cs.uta.fi/pub/reports/pdf/A-2000-9.pdf

