
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006 92

 Manuscript received February 25, 2006.

Manuscript revised February 28, 2006.

A flexible middleware for metacomputingA flexible middleware for metacomputingA flexible middleware for metacomputingA flexible middleware for metacomputing

in multiin multiin multiin multi----domain networksdomain networksdomain networksdomain networks

Franco Frattolillo

Research Centre on Software Technology

Department of Engineering, University of Sannio

Benevento, Italy

Summary
Middlewares are software infrastructures able to harness the

enormous, but often poorly utilized, computing resources

existing on the Internet in order to solve large-scale problems.

However, most of such resources, particularly those existing

within “departmental” organizations, cannot often be considered

actually available to run large-scale applications, in that they

cannot be easily exploited by most of the currently used

middlewares for grid computing. In fact, such resources are

usually represented by computing nodes belonging to non-

routable, private networks and connected to the Internet through

publicly addressable IP front-end nodes. This paper presents a

flexible Java middleware able to support the execution of large-

scale, object-based applications over heterogeneous multi-

domain, non-routable networks. In addition, the middleware has

been also designed as a customizable collection of abstract

components whose implementations can be dynamically

installed in order to satisfy application requirements.

Key words:

Middleware, Metacomputing, Grid computing.

Introduction

Middlewares are the special software infrastructures that

enable the enormous, but often poorly utilized, computing

resources existing on the Internet to be harnessed in order

to solve large-scale problems. They extend the concept,

originally introduced by PVM [1], of a “parallel virtual

machine” restricted and controlled by a single user,

making it possible to build computing systems, called

metacomputers, composed of heterogeneous computing

resources of widely varying capabilities, connected by

potentially unreliable, heterogeneous networks and

located in different administrative domains [2, 3].

However, this forces middlewares to deal with highly

variable communication delays, security threats, machine

and network failures, and the distributed ownership of

computing resources, if they want to give a support to

programmers in solving problems of configuration and

optimization of large-scale applications in this new

computational context. Therefore, middlewares can build

on most of the current distributed and parallel software

technologies, but they require further and significant

advances in mechanisms, techniques, and tools to bring

together computational resources distributed over the

Internet to efficiently solve a single large-scale problem

according to the new scenario introduced by grid

computing [2, 3, 4]. In fact, in such a scenario, cluster

computing still remains a valid and actual support to high

performance parallel computing, since clusters of

workstations represent high performance/cost ratio

computing platforms and are widely available within

“departmental” organizations, such as research centres,

universities, and business enterprises [5]. However,

workstation clusters are usually exploited within trusted

and localized network environments, where problems

concerning security, ownership, and configuration of the

used networked resources are commonly and easily solved

within the same administrative domain. Furthermore, it is

also worth noting that most of the computing power

existing within departmental organizations cannot often

be considered actually available to run large-scale

applications, in that it cannot be easily exploited by most

of the currently used middlewares for grid computing [2,

3]. In fact, such computing power is often represented by

computing nodes belonging to non-routable private

networks and connected to the Internet through publicly

addressable IP front-end nodes [5].

The considerations reported above suggest that a

middleware should be able to exploit computing resources

across multi-domain, non-routable networks and to

abstractly arrange them according to a hierarchical

topology atop the physical interconnection network.

Furthermore, the need for adaptability requires that a

middleware is also characterized by a flexible

implementation as well as developed according to a

component-based, reflective architecture [6] in order to

facilitate dynamic changes in the configuration of the

built metacomputers.

Java can be considered an interesting language

widely used to develop middlewares for metacomputing. It

has been designed for programming in heterogeneous

computing environments, and provides a direct support to

93 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

multithreading, code mobility and security, thus

facilitating the development of concurrent and distributed

applications. However, most of the middlewares

exploiting Java do not often adequately support the

programming and execution of dynamic parallel

applications on wide-area complex network architectures,

such as multi-domain, non-routable networks.

Furthermore, many solutions proposed in literature often

exploit tightly-coupled interaction and communication

paradigms based on message-passing or the Java RMI

package, and lack specific coordination mechanisms able

to manage the resource variability in the configuration of

metacomputers.

This paper presents a flexible middleware able to

support the execution of large-scale, object-based

applications over heterogeneous multi-domain, non-

routable networks. In particular, the middleware, called

Java Multi-domain Middleware (JMdM), can exploit

computing resources hidden from the Internet, but

connected to it through publicly addressable IP front-end

machines, as computing nodes of a unique metacomputer.

This way, all the computing power available within

departmental organizations and non-publicly IP

addressable can be harnessed to run applications without

having to exploit low-level, “ad hoc” software libraries or

specific systems or resource managers for grid computing,

which could turn the development of parallel applications

into a burdensome activity as well as penalize application

performance. Finally, JMdM has been also developed

according to the Grid reference model originally

introduced in [7], and has been designed as a

customizable collection of abstract components whose

implementations can be dynamically installed to satisfy

application requirements.

The outline of the paper is as follows. Section 2

presents JMdM and describes the architecture of the

metacomputers that can be built by using the middleware.

Section 3 describes the main implementation details of

JMdM. Section 4 reports on some experimental results.

Finally, in section 5 a brief conclusion is available.

2. The Architecture of the Middleware

JMdM is a Java-based middleware for metacomputing

designed according to the reference model described in

[7] and by which it is possible to build and dynamically

reconfigure a metacomputer as well as program and run

large-scale, object-based applications on it. In particular,

the metacomputer can harness computing resources

available on the Internet as well as those belonging to

multi-domain, non-routable private networks, i.e.

computing nodes not provided with public IP addresses,

but connected to the Internet through one publicly

addressable IP front-end node.

2.1 Services

The core services supplied by JMdM are: remote process

creation and management, dynamic allocation of tasks,

information service, directory service, authentication of

remote commands, performance monitoring,

communication model programmability, transport

protocol selection and dynamic loading of components.

All services are accessible by user applications at

run-time, whereas only some of them are accessible also

through a specific graphical tool, called the Console. In

fact, the services accessible through the Console mainly

belong to three of the different layers defined in the Grid

reference model [7]: connectivity, resource and collective

layer.

The services belonging to the connectivity layer

enable a programmer to discover the resources available

on the network and to get information about their

computing power. Such information can be then exploited

to select a subset of the available resources and build a

metacomputer. In particular, the run-time architecture of

the metacomputer can be customized by selecting both the

software components to be installed on each computing

node and the transport protocol to be used for the

communication among nodes.

The services belonging to the resource layer enables

a programmer to automatically discover and reserve the

required resources as well as configure the transport

protocols to be used. This can be accomplished by issuing

a specific resource reservation query through an XML file.

Finally, the services belonging to the collective layer

make it possible to start an application and negotiate its

computing needs with the available resources in order to

correctly allocate application tasks on them.

2.2 Architecture of the Metacomputer

JMdM makes it possible to exploit collections of

computing resources, called hosts, to build a

metacomputer. Hosts can be PCs, workstations or

computing units of parallel systems interconnected by

heterogeneous networks. However, JMdM supplies all the

basic services that enable a programmer to exploit the

features of the underlying physical computing and

network resources in a transparent way. To this end, the

metacomputer appears to be abstractly composed of

computational nodes interconnected by a virtual network

based on a multi-protocol transport layer. In particular,

the networked nodes can be arranged according to a

hierarchical virtual topology in order to better exploit the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006 94

performances of dedicated interconnects or to harness the

computing resources belonging to multi-domain, non-

routable networks (see Figure 1). In fact, in such an

organization, the nodes allocated onto hosts hidden from

the Internet or connected by dedicated, fast networks can

be grouped in macro-nodes, which thus abstractly appear

as single, more powerful, virtual computing units. To this

end, it is worth noting that a metacomputer is assumed to

be made up by at least one macro-node, called the main

macro-node, which groups all the nodes allocated on the

publicly addressable IP hosts taking part in the

metacomputer.

Console

C Root

C C

IP Network

macro-nodes

non-routable
IP Network

non-routable
IP Network

main macro-node

host

publicly addressable IP nodes

non-publicly addressable IP nodes

C Coordinator

Fig. 1 The architecture of a metacomputer.

The internal nodes of a macro-node are fully

interconnected. This means that they can directly

communicate with the nodes belonging to the other

macro-nodes making up the metacomputer.

Each node maintains status information about the

dynamic architecture of the metacomputer, such as

information about the identity and liveness of the other

nodes. To this end, it is worth noting that the hierarchical

organization of the metacomputer allows each node to

keep and update only information about the configuration

of the macro-node which it belongs to, thus promoting

scalability, since the updating information has not to be

exchanged among all the nodes of the metacomputer.

Each macro-node is managed by a special node,

called Coordinator (C), which:

• is allocated onto the publicly addressable IP host of

each non-routable, private network interconnecting

other non-directly addressable IP hosts;

• creates the macro-node by activating nodes onto the

available hosts within the private network;

• takes charge of updating the status information of

each node grouped by the macro-node;

• monitors the liveness of nodes to dynamically change

the configuration of the macro-node;

• carries out the automatic “garbage collection” of the

crashed nodes in the macro-node;

• acts as an application gateway enabling nodes

belonging to different macro-nodes of the

metacomputer to directly communicate.

The metacomputer is controlled by the Coordinator of the

main macro-node, called Root, which is directly

interfaced with the user through the Console, by which

the configuration of the metacomputer can be dynamically

managed (see Figure 1). To this end, each host wanting to

make its computing power available to JMdM runs a

special server, called Host Manager (HM), which receives

creation commands by the Console, authenticates them

and creates the required nodes as processes running the

Java Virtual Machine (see Figure 2).

Console

C Root

C C

IP Network

non-routable
IP Network

non-routable
IP Network

node creation
command

host without node

host with an already
created node

Host ManagerHM creating
a node

XML
cfg file

XML
cfg fileXML

cfg file

Fig. 2 The execution of a node creation command.

It is worth noting that the Console can create nodes only

on publicly addressable IP hosts, i.e. the nodes that will

belong to the main macro-node. However, when a

Coordinator receives a creation command, it can create

nodes inside the macro-node that it manages according to

the configuration information stored in a specific XML

95 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

file provided by the administrator of the computing

resources grouped by the macro-node and hidden from the

Internet (see Figure 2).

All the nodes of the metacomputer can exchange

messages through a communication interface independent

of the transport protocol used by the hosts. In particular,

this interface adopts a communication semantics based on

the “one-sided” model [8] and has been designed so that

each node can directly send objects. According to this

model, objects can be either simple messages or tasks, and

can be sent also to the nodes that do not store the object

code. To this end, each node is provided with a code

loader, which can retrieve the object code from a

distributed code repository, called Distributed Class

Storage System (DCSS), purposely developed to ensure

scalability to the proposed middleware (see Figure 3).

Console

C Root

C

C

IP Network

code
request

non-routable
IP Network

non-routable
IP Network

code base

code base

code base

retrieves
and caches

retrieves

Fig. 3 The Distributed Class Storage System.

The architecture of the DCSS follows the global

architecture of the metacomputer. Therefore, each macro-

node is provided with a dedicated code base managed by

the Coordinator. When a node needs a code, it requires

the Coordinator of its macro-node to retrieve it. If the

Coordinator lacks the required code, it asks the Root for it,

which stores all the code of the running application.

However, whenever a Coordinator obtains the required

code, it stores it in a local cache, in order to reduce the

loading time of successive code requests coming from

other nodes of the macro-node.

JMdM also provides a “publish/subscribe”

information service implemented by two distributed

components: the Resource Manager (RM) and the HM

(see Figure 4). To this end, each macro-node has an RM,

which can be allocated on one of the hosts belonging to

the macro-node. A RM is periodically contacted by the

HMs of the hosts belonging to the macro-node and

wanting to publish information about the CPU power and

its utilization or the available memory or the

communication performance. Information is collected by

the RM and made then available to “subscribers”, which

are the Coordinators belonging to the metacomputer.

Console

CRoot

C C

IP Network

non-routable
IP Network

Resource Manager

non-routable
IP Network

publish

subscribe

Fig. 4 The “publish/subscribe” information service.

Thus, each Coordinator can know the maximum

computing/communication power made available by its

macro-node. Furthermore, this information is also made

available to the Root, which can thus know the power of

all the macro-nodes making up the metacomputer. This

allows the user to know the globally available computing

power and reserve a part of it by issuing a subscription

request to the Console. Then, the Console can ask the RM

of the main macro-node for selecting and reserving only

the computing resources required. The result of this

process is an XML file containing all the current system

information to create a metacomputer without having to

consult anew the RM.

3. The Implementation of JMdM

In order to follow the rapid progress of technology and to

better manage the heterogeneity of both computing and

network resources in the context of metacomputing,

JMdM has been designed according to a component-based,

reflective architecture that enables the middleware to

dynamically adapt to changes in the configuration of

physical components [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006 96

3.1 Design Principles

All the services supplied by JMdM are implemented by

several software components whose interfaces have been

designed according to a component framework approach

[9] in order to support adaptability and to make it possible

to easily add further extended services.

A component is an encapsulated software module

defined by its public interfaces, which follows a strict set

of behavior rules defined by the environment in which it

runs.

A component framework is a software environment

able to simplify the development of complex applications

by defining a set of rules and contracts governing the

interaction of a targeted set of components in a

constrained domain [10].

The framework proposed to develop JMdM is a set of

co-operating interfaces that define an abstract design able

to provide solutions for metacomputing problems. In

particular, such design is concretized by the definition of

classes, which implement the interfaces of the abstract

design and interact with the basic classes representing the

skeleton of the framework. In fact, this approach makes

the metacomputer management easier, in that it gives the

possibility of modifying or substituting a component

implementation without affecting other parts of the

middleware. In addition, it allows a component to have

different implementations, each of which can be selected

and dynamically loaded and integrated in the system.

Therefore, JMdM has been designed as a collection of

loosely-tied components, whose customization enables

programmers to extend the basic services. To this end, the

JMdM’s architecture supplies a set of integrated and

interacting components, some of which represent the

skeleton of the framework, whereas the others can be

customized by the programmer in order to adapt the

system to the specific needs of an application.

Furthermore, to facilitate component integration, two

design patterns [11] have been exploited: inversion of

control and separation of concerns.

The former suggests that the execution of application

components has to be controlled by the framework, and

everything a component needs to carry out its tasks has to

be provided by the hosting environment. Thus, the flow of

control is determined by the framework, which

coordinates and serializes all the events produced by the

running application.

The latter allows a problem to be analyzed from

several points of view, each of which can be addressed

independently of the others. Therefore, an application can

be implemented as a collection of well-defined, reusable,

easily understandable modules. The clear separation of

interest areas, in fact, reduces the coupling among

modules, thus helping their cohesion.

3.2 Implementation

Coordinators and nodes are all implemented as processes

able to load a set of software components either at start-up

or at run-time. In particular, the main loaded components

are (see Figure 5): the Node Manager (NM) and the Node

Engine (NE).

The NM has the main task to store system

information and to interact with the Coordinator in order

to guarantee macro-node consistency. The NE takes

charge of receiving application messages from the

network and processing them.

More precisely, the NM implements some system

tasks, and so it:

• monitors the liveness within the metacomputer by

periodically sending control messages to the

Coordinator of its macro-node;

• kills the node when the macro-node coordinator is

considered crashed;

• creates the NE by using the configuration information

supplied the Coordinator of its macro-node.

In addition, the NM loaded by a Coordinator takes also

charge of setting-up the macro-node sub-network

according to information retrieved either from the RM of

the macro-node or from an XML file locally stored.

Node ManagerNode Engine

Execution
Environment

Message
Consumer

End
Point

End
Point

Sender

component

Loads a component

Installs
a component

Fig. 5 The components of a node and their interactions.

The NE implements the node behavior by installing a set

of components, which are dynamically loaded by a

specific component of the NM, called the Loader (LD). In

fact, the components loaded by NE are all configurable,

and make it possible to customize the node behavior in

order to provide applications with the necessary

programming or run-time support. However, applications

are not allowed to directly access the NE, but they can

exploit its features or change its behavior through the NM.

As a consequence, the NM also represents the interface

between the application and the services provided by the

middleware, such as the metacomputer reconfiguration

and management.

97 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

The configurable components of the NE are: the

Execution Environment (EE), the Sender (SD) and the

Message Consumer (MC) (see Figure 5). They implement

the abstractions that define the execution behavior of a

node: a message, coming from the network, is passed to

the MC, which is the interface between an incoming

communication channel and the EE. Then, the message is

synchronously or asynchronously delivered to the EE,

which processes it according to the strategy coded in the

EE implementation. As a result of message processing,

new messages can be created and sent to other nodes by

using the SD.

The EE defines the node behavior. It can contain

either application components or data structures necessary

to run parallel and distributed applications according to a

specific programming model. As a consequence, since

each node can handle a different EE implementation,

MIMD applications can be run by simply distributing

their components wrapped in the implementations of the

EE of each node. Furthermore, EE can also dynamically

control the configuration of the metacomputer as well as

exploit the services implemented by the other node

components, since it has access to the NM. Thus, the

running application can both evolve on the basis of the

configuration information characterizing the

metacomputer and dynamically configure it, by adding,

for example, a node, if more computing power is

necessary.

The SD implements services for routing the

messages generated on a node towards all the other nodes

of the metacomputer. In particular, JMdM provides a

default implementation for this component, called Default

Sender (DS), which is loaded if any other SD is not

installed by the user application.

The DS implements basic communication

mechanisms able to exploit the multi-domain network

organization of a metacomputer and to support the

development of more sophisticated communication

primitives, such as the ones based on synchronous or

collective messaging. It exploits some components of the

NE not accessible to the user, called End Points (EPs).

An EP is the local image of a remote node belonging

to the macro-node. It manages a link to the transport

module selected during the configuration phase of the

metacomputer to enable communications, through a

specific protocol, towards the remote node represented by

the EP. To this end, it is worth noting that transport

modules are characterized by a communication interface

independent of the underlying transport protocol used to

manage communications. Thus, a transport module

implementing a new communication protocol or

exploiting a native communication library can be easily

integrated in JMdM by only developing a specific module,

called adapter, able to abstract from the implementation

details characterizing the low-level communications. In

fact, every adapter has to carry out the serialization of the

objects sent by the application according to the specific

features implemented by the corresponding transport

module. In particular, JMdM implements, by default,

three adapters. The first is based on TCP, the second

extends UDP by adding reliability, and the third is based

on “Fast Messages” for Myrinet networks.

An MC is a component whose reference is passed to

all the transport modules installed on the node. It

implements the actions that have to be performed on the

node, according to the strategy of message consuming

defined by the programmer, whenever a message is

received from the network.

4. Experimental results

This Section reports on some preliminary performance

experiments conducted by exploiting two different clusters

of PCs connected by a Fast Ethernet network.

The first cluster is composed of 8 PCs interconnected

by a Fast Ethernet hub and equipped with Intel Pentium

IV 3 GHz, hard disk EIDE 60 GB, and 1 GB of RAM.

The second cluster is composed of 16 PCs connected by a

Fast Ethernet switch and equipped with Intel Xeon 2.8

GHz, hard disk EIDE 80 GB, and 1 GB of RAM. All the

PCs use the release 5.0 of the SUN JDK.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 4 8 12 16 20 24

S
p
e
e
d
u
p

 v
a
lu

e
s

Number of nodes

Speedup test

N=1000
N=1500
N=2000

Fig. 6 Speedup values obtained by using all

publicly addressable IP nodes.

Two classes of experiments have been conducted. In the

former, all the PCs belonging to the clusters have been

provided with public IP addresses, and this has made it

possible to build a metacomputer characterized solely by

the main macro-node. In the latter, the PCs belonging to

the clusters have been configured so as to form two

private, non-routable networks. Therefore, two macro-

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006 98

nodes have been configured within the built

metacomputer.

In both the experiments, the parallel product of two

square matrices, whose size is N, has been executed. In

particular, the product has been implemented by using the

“striped partitioning”: the right matrix is transferred and

allocated on each node of the metacomputer, whereas the

left matrix is split in groups of rows each one transferred

to a different node.

The product has been programmed according to two

different programming models: the “Send/Receive” (S/R)

model and the “Active Objects” (AO) model. The former

is the well-known message-passing model used to

program parallel and distributed applications, whereas the

latter is the model proposed in [11, 12] to overcome some

limitations of the message-passing and RPC models.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 4 8 12 16 20 24

S
p
e
e
d
u
p

 v
a
lu

e
s

Number of nodes

Speedup test

N=1000
N=1500
N=2000

Fig. 7 Speedup values obtained by exploiting two PC clusters

configured as non-routable private networks.

Both models have been implemented by customizing the

NE components, according to what reported in the

previous Section. Furthermore, each test program has

been structured according to the SPMD computational

model, in order to differentiate the instructions to be run

by nodes from those to be run by Coordinators. Finally,

the TCP transport protocol has been used among all the

nodes of the metacomputer.

Both in the first and in the second experiment we

have measured the speedup factor when the number of

nodes building the metacomputer changes.

The results of the first test are reported in Figure 6.

The curves show that the speedup values tend to reach a

maximum at a number of nodes depending on the size of

the matrices.

The second test has been conducted to exploit the

peculiar characteristics of JMdM. In particular, the two

clusters have been interconnected by a Fast Ethernet

network and have been interfaced to a multi-homed PC

used to only run the Console.

Figure 7 shows that the speedup values achieved with

the configuration characterizing the second test are

essentially similar to the ones obtained in the first test. In

fact, Figure 8 shows that the penalization of the

performance determined by the overhead caused by the

management of the macro-nodes at run-time is rather

limited and within 10%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 4 8 12 16 20 24

S
p
e
e
d
u
p

 v
a
lu

e
s

Number of nodes

Comparison of speedup tests

N=1000, all publicly addressable IP nodes
N=1000, two configured macro-nodes

N=2000, all publicly addressable IP nodes
N=2000, two configured macro-nodes

Fig. 8 Comparison of the speedup values shown

in Figure 6 and in Figure 7.

Finally, it is worth noting that all the Figures shown

above report on the performance achieved by JMdM in

executing the product of two matrices programmed

according to the S/R model. However, the same product

programmed according to the AO model obtains a similar

performance in the conducted tests, with differences

within 7%. This demonstrates that the proposed

middleware is characterized by a good flexibility that is

achieved without reducing performance.

5. Conclusions

This paper has presented JMdM, a flexible, customizable

and reflective middleware able to run distributed

applications based on objects across heterogeneous, multi-

domain non-routable networks. In particular, the

middleware enables all the computing power available

within departmental organizations and non-directly IP

addressable to be harnessed to run applications without

having to exploit low-level, “ad hoc” software libraries or

specific systems or resource managers for grid computing,

which could turn the development of parallel applications

into a burdensome activity as well as penalize application

performance.

The middleware also enables the building of

metacomputers made up by abstract computing nodes,

each of which is able to dynamically install interacting

components that can be purposely customized in order to

99 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

adapt the programming model of the built metacomputer

to the application needs.

Finally, JMdM has been tested by conducting some

preliminary experimental tests programmed by

implementing two different programming models. In fact,

the obtained results demonstrate that flexibility can be

achieved without reducing performance.

References
[1] V. Sunderam, J. Dongarra, A. Geist, and R. Manchek, The

PVM concurrent computing system: Evolution experiences

and trends, Parallel Computing, 20(4), pp. 531–547, 1994.

[2] F. Berman, G. Fox, and T. Hey, (editors), Grid Computing:

Making the Global Infrastructure a Reality, Wiley, New

York, 2003.

[3] I. Foster, and C. Kesselman, (editors), The Grid: Blueprint

for a New Computing Infrastructure, 2nd edition, Morgan

Kaufmann, San Mateo, CA, 2004.

[4] J. Joseph, and C. Fellenstein, Grid Computing, Prentice-

Hall, Englewood Cliffs, NJ, 2003.

[5] F. Frattolillo, Running Large-Scale Applications on

Cluster Grids, Int’l Journal of High Performance

Computing Applications, 19(2), pp. 157–172, 2005.

[6] N. Parlavantzas, G. Coulson, M. Clarke, and G. Blair,

Towards a reflective component based middleware

architecture, Proceedings of the Workshop on Reflection

and Metalevel Architectures, Sophia Antipolis and Cannes,

France, June 2000.

[7] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of

the Grid: Enabling scalable virtual organizations, Int’l

Journal of Supercomputer Applications, 15(3), pp. 200–

222, 2001.

[8] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.

Schauser, Active messages: A mechanism for integrated

communication and computation, Proceedings of the 19th

ACM Int’l Symposium on Computer Architecture, Gold

Coast, Queensland, Australia, pp. 256–266, May 1992.

[9] C. Szyperski, Component Software. Beyond Object-

Oriented Programming, Addison Wesley, 1997.

[10] R. Johnson, and B. Foote, Designing reusable classes,

Journal of Object-Oriented Programming, 1(2), pp. 22–

35, 1988.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns, Addison Wesley, 1995.

[12] M. Di Santo, F. Frattolillo, et al., An Approach to

Asynchronous Object-Oriented Parallel and Distributed

Computing on Wide-Area Systems, Proceedings of the

Int’l Workshop on Java for Parallel and Distributed

Computing, LNCS, vol. 1800, pp. 536–543, Cancun,

Mexico, May 2000.

[13] M. Di Santo, F. Frattolillo, et al., A portable middleware

for building high performance metacomputers,

Proceedings of the PARCO Int’l Conference, North-

Holland, Naples, Italy, September 2001.

Franco Frattolillo received the Laurea

degree “cum laude” in Electronic

Engineering from the University of

Napoli “Federico II”, Italy, in a. y.

1989/90, and a Ph.D. in Computer

Engineering, Applied Electromagnetics

and Telecommunications from

University of Salerno, Italy. He was a

researcher at the Department of

Electrical and Information Engineering

of the University of Salerno from 1991

to 1998. In 1999 he joined the Faculty

of Engineering of the University of Sannio, Italy, where he

currently teaches “High performance computing systems”,

“Advanced topics in computer networks”, “Network security”,

and “System Programming”. He is also a research leader at the

Research Centre on Software Technology of the University of

Sannio and at the Competence Centre on Information

Technologies of the Campania Region, Italy. He has written

several papers in the areas of parallel programming systems and

of cluster and grid computing. His research interests also

include network security, digital watermarking, and DRM

systems.

