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Summary 
Middlewares are software infrastructures able to harness the 

enormous, but often poorly utilized, computing resources 

existing on the Internet in order to solve large-scale problems. 

However, most of such resources, particularly those existing 

within “departmental” organizations, cannot often be considered 

actually available to run large-scale applications, in that they 

cannot be easily exploited by most of the currently used 

middlewares for grid computing. In fact, such resources are 

usually represented by computing nodes belonging to non-

routable, private networks and connected to the Internet through 

publicly addressable IP front-end nodes. This paper presents a 

flexible Java middleware able to support the execution of large-

scale, object-based applications over heterogeneous multi-

domain, non-routable networks. In addition, the middleware has 

been also designed as a customizable collection of abstract 

components whose implementations can be dynamically 

installed in order to satisfy application requirements. 
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Introduction 

Middlewares are the special software infrastructures that 

enable the enormous, but often poorly utilized, computing 

resources existing on the Internet to be harnessed in order 

to solve large-scale problems. They extend the concept, 

originally introduced by PVM [1], of a “parallel virtual 

machine” restricted and controlled by a single user, 

making it possible to build computing systems, called 

metacomputers, composed of heterogeneous computing 

resources of widely varying capabilities, connected by 

potentially unreliable, heterogeneous networks and 

located in different administrative domains [2, 3]. 

However, this forces middlewares to deal with highly 

variable communication delays, security threats, machine 

and network failures, and the distributed ownership of 

computing resources, if they want to give a support to 

programmers in solving problems of configuration and 

optimization of large-scale applications in this new 

computational context. Therefore, middlewares can build 

on most of the current distributed and parallel software 

technologies, but they require further and significant 

advances in mechanisms, techniques, and tools to bring 

together computational resources distributed over the 

Internet to efficiently solve a single large-scale problem 

according to the new scenario introduced by grid 

computing [2, 3, 4]. In fact, in such a scenario, cluster 

computing still remains a valid and actual support to high 

performance parallel computing, since clusters of 

workstations represent high performance/cost ratio 

computing platforms and are widely available within 

“departmental” organizations, such as research centres, 

universities, and business enterprises [5]. However, 

workstation clusters are usually exploited within trusted 

and localized network environments, where problems 

concerning security, ownership, and configuration of the 

used networked resources are commonly and easily solved 

within the same administrative domain. Furthermore, it is 

also worth noting that most of the computing power 

existing within departmental organizations cannot often 

be considered actually available to run large-scale 

applications, in that it cannot be easily exploited by most 

of the currently used middlewares for grid computing [2, 

3]. In fact, such computing power is often represented by 

computing nodes belonging to non-routable private 

networks and connected to the Internet through publicly 

addressable IP front-end nodes [5]. 

The considerations reported above suggest that a 

middleware should be able to exploit computing resources 

across multi-domain, non-routable networks and to 

abstractly arrange them according to a hierarchical 

topology atop the physical interconnection network. 

Furthermore, the need for adaptability requires that a 

middleware is also characterized by a flexible 

implementation as well as developed according to a 

component-based, reflective architecture [6] in order to 

facilitate dynamic changes in the configuration of the 

built metacomputers. 

Java can be considered an interesting language 

widely used to develop middlewares for metacomputing. It 

has been designed for programming in heterogeneous 

computing environments, and provides a direct support to 
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multithreading, code mobility and security, thus 

facilitating the development of concurrent and distributed 

applications. However, most of the middlewares 

exploiting Java do not often adequately support the 

programming and execution of dynamic parallel 

applications on wide-area complex network architectures, 

such as multi-domain, non-routable networks. 

Furthermore, many solutions proposed in literature often 

exploit tightly-coupled interaction and communication 

paradigms based on message-passing or the Java RMI 

package, and lack specific coordination mechanisms able 

to manage the resource variability in the configuration of 

metacomputers. 

This paper presents a flexible middleware able to 

support the execution of large-scale, object-based 

applications over heterogeneous multi-domain, non-

routable networks. In particular, the middleware, called 

Java Multi-domain Middleware (JMdM), can exploit 

computing resources hidden from the Internet, but 

connected to it through publicly addressable IP front-end 

machines, as computing nodes of a unique metacomputer. 

This way, all the computing power available within 

departmental organizations and non-publicly IP 

addressable can be harnessed to run applications without 

having to exploit low-level, “ad hoc” software libraries or 

specific systems or resource managers for grid computing, 

which could turn the development of parallel applications 

into a burdensome activity as well as penalize application 

performance. Finally, JMdM has been also developed 

according to the Grid reference model originally 

introduced in [7], and has been designed as a 

customizable collection of abstract components whose 

implementations can be dynamically installed to satisfy 

application requirements. 

The outline of the paper is as follows. Section 2 

presents JMdM and describes the architecture of the 

metacomputers that can be built by using the middleware. 

Section 3 describes the main implementation details of 

JMdM. Section 4 reports on some experimental results. 

Finally, in section 5 a brief conclusion is available. 

2. The Architecture of the Middleware 

JMdM is a Java-based middleware for metacomputing 

designed according to the reference model described in 

[7] and by which it is possible to build and dynamically 

reconfigure a metacomputer as well as program and run 

large-scale, object-based applications on it. In particular, 

the metacomputer can harness computing resources 

available on the Internet as well as those belonging to 

multi-domain, non-routable private networks, i.e. 

computing nodes not provided with public IP addresses, 

but connected to the Internet through one publicly 

addressable IP front-end node. 

2.1 Services 

The core services supplied by JMdM are: remote process 

creation and management, dynamic allocation of tasks, 

information service, directory service, authentication of 

remote commands, performance monitoring, 

communication model programmability, transport 

protocol selection and dynamic loading of components. 

All services are accessible by user applications at 

run-time, whereas only some of them are accessible also 

through a specific graphical tool, called the Console. In 

fact, the services accessible through the Console mainly 

belong to three of the different layers defined in the Grid 

reference model [7]: connectivity, resource and collective 

layer. 

The services belonging to the connectivity layer 

enable a programmer to discover the resources available 

on the network and to get information about their 

computing power. Such information can be then exploited 

to select a subset of the available resources and build a 

metacomputer. In particular, the run-time architecture of 

the metacomputer can be customized by selecting both the 

software components to be installed on each computing 

node and the transport protocol to be used for the 

communication among nodes. 

The services belonging to the resource layer enables 

a programmer to automatically discover and reserve the 

required resources as well as configure the transport 

protocols to be used. This can be accomplished by issuing 

a specific resource reservation query through an XML file. 

Finally, the services belonging to the collective layer 

make it possible to start an application and negotiate its 

computing needs with the available resources in order to 

correctly allocate application tasks on them. 

2.2 Architecture of the Metacomputer 

JMdM makes it possible to exploit collections of 

computing resources, called hosts, to build a 

metacomputer. Hosts can be PCs, workstations or 

computing units of parallel systems interconnected by 

heterogeneous networks. However, JMdM supplies all the 

basic services that enable a programmer to exploit the 

features of the underlying physical computing and 

network resources in a transparent way. To this end, the 

metacomputer appears to be abstractly composed of 

computational nodes interconnected by a virtual network 

based on a multi-protocol transport layer. In particular, 

the networked nodes can be arranged according to a 

hierarchical virtual topology in order to better exploit the 
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performances of dedicated interconnects or to harness the 

computing resources belonging to multi-domain, non-

routable networks (see Figure 1). In fact, in such an 

organization, the nodes allocated onto hosts hidden from 

the Internet or connected by dedicated, fast networks can 

be grouped in macro-nodes, which thus abstractly appear 

as single, more powerful, virtual computing units. To this 

end, it is worth noting that a metacomputer is assumed to 

be made up by at least one macro-node, called the main 

macro-node, which groups all the nodes allocated on the 

publicly addressable IP hosts taking part in the 

metacomputer. 
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Fig. 1  The architecture of a metacomputer. 

The internal nodes of a macro-node are fully 

interconnected. This means that they can directly 

communicate with the nodes belonging to the other 

macro-nodes making up the metacomputer. 

Each node maintains status information about the 

dynamic architecture of the metacomputer, such as 

information about the identity and liveness of the other 

nodes. To this end, it is worth noting that the hierarchical 

organization of the metacomputer allows each node to 

keep and update only information about the configuration 

of the macro-node which it belongs to, thus promoting 

scalability, since the updating information has not to be 

exchanged among all the nodes of the metacomputer. 

Each macro-node is managed by a special node, 

called Coordinator (C), which: 

• is allocated onto the publicly addressable IP host of 

each non-routable, private network interconnecting 

other non-directly addressable IP hosts; 

• creates the macro-node by activating nodes onto the 

available hosts within the private network; 

• takes charge of updating the status information of 

each node grouped by the macro-node; 

• monitors the liveness of nodes to dynamically change 

the configuration of the macro-node; 

• carries out the automatic “garbage collection” of the 

crashed nodes in the macro-node; 

• acts as an application gateway enabling nodes 

belonging to different macro-nodes of the 

metacomputer to directly communicate. 

The metacomputer is controlled by the Coordinator of the 

main macro-node, called Root, which is directly 

interfaced with the user through the Console, by which 

the configuration of the metacomputer can be dynamically 

managed (see Figure 1). To this end, each host wanting to 

make its computing power available to JMdM runs a 

special server, called Host Manager (HM), which receives 

creation commands by the Console, authenticates them 

and creates the required nodes as processes running the 

Java Virtual Machine (see Figure 2). 
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Fig. 2  The execution of a node creation command. 

It is worth noting that the Console can create nodes only 

on publicly addressable IP hosts, i.e. the nodes that will 

belong to the main macro-node. However, when a 

Coordinator receives a creation command, it can create 

nodes inside the macro-node that it manages according to 

the configuration information stored in a specific XML 
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file provided by the administrator of the computing 

resources grouped by the macro-node and hidden from the 

Internet (see Figure 2). 

All the nodes of the metacomputer can exchange 

messages through a communication interface independent 

of the transport protocol used by the hosts. In particular, 

this interface adopts a communication semantics based on 

the “one-sided” model [8] and has been designed so that 

each node can directly send objects. According to this 

model, objects can be either simple messages or tasks, and 

can be sent also to the nodes that do not store the object 

code. To this end, each node is provided with a code 

loader, which can retrieve the object code from a 

distributed code repository, called Distributed Class 

Storage System (DCSS), purposely developed to ensure 

scalability to the proposed middleware (see Figure 3). 
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Fig. 3  The Distributed Class Storage System. 

The architecture of the DCSS follows the global 

architecture of the metacomputer. Therefore, each macro-

node is provided with a dedicated code base managed by 

the Coordinator. When a node needs a code, it requires 

the Coordinator of its macro-node to retrieve it. If the 

Coordinator lacks the required code, it asks the Root for it, 

which stores all the code of the running application. 

However, whenever a Coordinator obtains the required 

code, it stores it in a local cache, in order to reduce the 

loading time of successive code requests coming from 

other nodes of the macro-node. 

JMdM also provides a “publish/subscribe” 

information service implemented by two distributed 

components: the Resource Manager (RM) and the HM 

(see Figure 4). To this end, each macro-node has an RM, 

which can be allocated on one of the hosts belonging to 

the macro-node. A RM is periodically contacted by the 

HMs of the hosts belonging to the macro-node and 

wanting to publish information about the CPU power and 

its utilization or the available memory or the 

communication performance. Information is collected by 

the RM and made then available to “subscribers”, which 

are the Coordinators belonging to the metacomputer. 
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Fig. 4  The “publish/subscribe” information service. 

Thus, each Coordinator can know the maximum 

computing/communication power made available by its 

macro-node. Furthermore, this information is also made 

available to the Root, which can thus know the power of 

all the macro-nodes making up the metacomputer. This 

allows the user to know the globally available computing 

power and reserve a part of it by issuing a subscription 

request to the Console. Then, the Console can ask the RM 

of the main macro-node for selecting and reserving only 

the computing resources required. The result of this 

process is an XML file containing all the current system 

information to create a metacomputer without having to 

consult anew the RM. 

3. The Implementation of JMdM 

In order to follow the rapid progress of technology and to 

better manage the heterogeneity of both computing and 

network resources in the context of metacomputing, 

JMdM has been designed according to a component-based, 

reflective architecture that enables the middleware to 

dynamically adapt to changes in the configuration of 

physical components [6]. 
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3.1 Design Principles 

All the services supplied by JMdM are implemented by 

several software components whose interfaces have been 

designed according to a component framework approach 

[9] in order to support adaptability and to make it possible 

to easily add further extended services. 

A component is an encapsulated software module 

defined by its public interfaces, which follows a strict set 

of behavior rules defined by the environment in which it 

runs. 

A component framework is a software environment 

able to simplify the development of complex applications 

by defining a set of rules and contracts governing the 

interaction of a targeted set of components in a 

constrained domain [10]. 

The framework proposed to develop JMdM is a set of 

co-operating interfaces that define an abstract design able 

to provide solutions for metacomputing problems. In 

particular, such design is concretized by the definition of 

classes, which implement the interfaces of the abstract 

design and interact with the basic classes representing the 

skeleton of the framework. In fact, this approach makes 

the metacomputer management easier, in that it gives the 

possibility of modifying or substituting a component 

implementation without affecting other parts of the 

middleware. In addition, it allows a component to have 

different implementations, each of which can be selected 

and dynamically loaded and integrated in the system. 

Therefore, JMdM has been designed as a collection of 

loosely-tied components, whose customization enables 

programmers to extend the basic services. To this end, the 

JMdM’s architecture supplies a set of integrated and 

interacting components, some of which represent the 

skeleton of the framework, whereas the others can be 

customized by the programmer in order to adapt the 

system to the specific needs of an application. 

Furthermore, to facilitate component integration, two 

design patterns [11] have been exploited: inversion of 

control and separation of concerns. 

The former suggests that the execution of application 

components has to be controlled by the framework, and 

everything a component needs to carry out its tasks has to 

be provided by the hosting environment. Thus, the flow of 

control is determined by the framework, which 

coordinates and serializes all the events produced by the 

running application. 

The latter allows a problem to be analyzed from 

several points of view, each of which can be addressed 

independently of the others. Therefore, an application can 

be implemented as a collection of well-defined, reusable, 

easily understandable modules. The clear separation of 

interest areas, in fact, reduces the coupling among 

modules, thus helping their cohesion. 

3.2 Implementation 

Coordinators and nodes are all implemented as processes 

able to load a set of software components either at start-up 

or at run-time. In particular, the main loaded components 

are (see Figure 5): the Node Manager (NM) and the Node 

Engine (NE). 

The NM has the main task to store system 

information and to interact with the Coordinator in order 

to guarantee macro-node consistency. The NE takes 

charge of receiving application messages from the 

network and processing them. 

More precisely, the NM implements some system 

tasks, and so it: 

• monitors the liveness within the metacomputer by 

periodically sending control messages to the 

Coordinator of its macro-node; 

• kills the node when the macro-node coordinator is 

considered crashed; 

• creates the NE by using the configuration information 

supplied the Coordinator of its macro-node. 

In addition, the NM loaded by a Coordinator takes also 

charge of setting-up the macro-node sub-network 

according to information retrieved either from the RM of 

the macro-node or from an XML file locally stored. 
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Fig. 5  The components of a node and their interactions. 

The NE implements the node behavior by installing a set 

of components, which are dynamically loaded by a 

specific component of the NM, called the Loader (LD). In 

fact, the components loaded by NE are all configurable, 

and make it possible to customize the node behavior in 

order to provide applications with the necessary 

programming or run-time support. However, applications 

are not allowed to directly access the NE, but they can 

exploit its features or change its behavior through the NM. 

As a consequence, the NM also represents the interface 

between the application and the services provided by the 

middleware, such as the metacomputer reconfiguration 

and management. 
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The configurable components of the NE are: the 

Execution Environment (EE), the Sender (SD) and the 

Message Consumer (MC) (see Figure 5). They implement 

the abstractions that define the execution behavior of a 

node: a message, coming from the network, is passed to 

the MC, which is the interface between an incoming 

communication channel and the EE. Then, the message is 

synchronously or asynchronously delivered to the EE, 

which processes it according to the strategy coded in the 

EE implementation. As a result of message processing, 

new messages can be created and sent to other nodes by 

using the SD. 

The EE defines the node behavior. It can contain 

either application components or data structures necessary 

to run parallel and distributed applications according to a 

specific programming model. As a consequence, since 

each node can handle a different EE implementation, 

MIMD applications can be run by simply distributing 

their components wrapped in the implementations of the 

EE of each node. Furthermore, EE can also dynamically 

control the configuration of the metacomputer as well as 

exploit the services implemented by the other node 

components, since it has access to the NM. Thus, the 

running application can both evolve on the basis of the 

configuration information characterizing the 

metacomputer and dynamically configure it, by adding, 

for example, a node, if more computing power is 

necessary. 

The SD implements services for routing the 

messages generated on a node towards all the other nodes 

of the metacomputer. In particular, JMdM provides a 

default implementation for this component, called Default 

Sender (DS), which is loaded if any other SD is not 

installed by the user application. 

The DS implements basic communication 

mechanisms able to exploit the multi-domain network 

organization of a metacomputer and to support the 

development of more sophisticated communication 

primitives, such as the ones based on synchronous or 

collective messaging. It exploits some components of the 

NE not accessible to the user, called End Points (EPs). 

An EP is the local image of a remote node belonging 

to the macro-node. It manages a link to the transport 

module selected during the configuration phase of the 

metacomputer to enable communications, through a 

specific protocol, towards the remote node represented by 

the EP. To this end, it is worth noting that transport 

modules are characterized by a communication interface 

independent of the underlying transport protocol used to 

manage communications. Thus, a transport module 

implementing a new communication protocol or 

exploiting a native communication library can be easily 

integrated in JMdM by only developing a specific module, 

called adapter, able to abstract from the implementation 

details characterizing the low-level communications. In 

fact, every adapter has to carry out the serialization of the 

objects sent by the application according to the specific 

features implemented by the corresponding transport 

module. In particular, JMdM implements, by default, 

three adapters. The first is based on TCP, the second 

extends UDP by adding reliability, and the third is based 

on “Fast Messages” for Myrinet networks. 

An MC is a component whose reference is passed to 

all the transport modules installed on the node. It 

implements the actions that have to be performed on the 

node, according to the strategy of message consuming 

defined by the programmer, whenever a message is 

received from the network. 

4. Experimental results 

This Section reports on some preliminary performance 

experiments conducted by exploiting two different clusters 

of PCs connected by a Fast Ethernet network. 

The first cluster is composed of 8 PCs interconnected 

by a Fast Ethernet hub and equipped with Intel Pentium 

IV 3 GHz, hard disk EIDE 60 GB, and 1 GB of RAM. 

The second cluster is composed of 16 PCs connected by a 

Fast Ethernet switch and equipped with Intel Xeon 2.8 

GHz, hard disk EIDE 80 GB, and 1 GB of RAM. All the 

PCs use the release 5.0 of the SUN JDK. 
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Fig. 6  Speedup values obtained by using all 

publicly addressable IP nodes. 

Two classes of experiments have been conducted. In the 

former, all the PCs belonging to the clusters have been 

provided with public IP addresses, and this has made it 

possible to build a metacomputer characterized solely by 

the main macro-node. In the latter, the PCs belonging to 

the clusters have been configured so as to form two 

private, non-routable networks. Therefore, two macro-
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nodes have been configured within the built 

metacomputer. 

In both the experiments, the parallel product of two 

square matrices, whose size is N, has been executed. In 

particular, the product has been implemented by using the 

“striped partitioning”: the right matrix is transferred and 

allocated on each node of the metacomputer, whereas the 

left matrix is split in groups of rows each one transferred 

to a different node. 

The product has been programmed according to two 

different programming models: the “Send/Receive” (S/R) 

model and the “Active Objects” (AO) model. The former 

is the well-known message-passing model used to 

program parallel and distributed applications, whereas the 

latter is the model proposed in [11, 12] to overcome some 

limitations of the message-passing and RPC models. 
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Fig. 7  Speedup values obtained by exploiting two PC clusters 

configured as non-routable private networks. 

Both models have been implemented by customizing the 

NE components, according to what reported in the 

previous Section. Furthermore, each test program has 

been structured according to the SPMD computational 

model, in order to differentiate the instructions to be run 

by nodes from those to be run by Coordinators. Finally, 

the TCP transport protocol has been used among all the 

nodes of the metacomputer. 

Both in the first and in the second experiment we 

have measured the speedup factor when the number of 

nodes building the metacomputer changes. 

The results of the first test are reported in Figure 6. 

The curves show that the speedup values tend to reach a 

maximum at a number of nodes depending on the size of 

the matrices. 

The second test has been conducted to exploit the 

peculiar characteristics of JMdM. In particular, the two 

clusters have been interconnected by a Fast Ethernet 

network and have been interfaced to a multi-homed PC 

used to only run the Console. 

Figure 7 shows that the speedup values achieved with 

the configuration characterizing the second test are 

essentially similar to the ones obtained in the first test. In 

fact, Figure 8 shows that the penalization of the 

performance determined by the overhead caused by the 

management of the macro-nodes at run-time is rather 

limited and within 10%. 
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Fig. 8  Comparison of the speedup values shown 

in Figure 6 and in Figure 7. 

Finally, it is worth noting that all the Figures shown 

above report on the performance achieved by JMdM in 

executing the product of two matrices programmed 

according to the S/R model. However, the same product 

programmed according to the AO model obtains a similar 

performance in the conducted tests, with differences 

within 7%. This demonstrates that the proposed 

middleware is characterized by a good flexibility that is 

achieved without reducing performance. 

5. Conclusions 

This paper has presented JMdM, a flexible, customizable 

and reflective middleware able to run distributed 

applications based on objects across heterogeneous, multi-

domain non-routable networks. In particular, the 

middleware enables all the computing power available 

within departmental organizations and non-directly IP 

addressable to be harnessed to run applications without 

having to exploit low-level, “ad hoc” software libraries or 

specific systems or resource managers for grid computing, 

which could turn the development of parallel applications 

into a burdensome activity as well as penalize application 

performance. 

The middleware also enables the building of 

metacomputers made up by abstract computing nodes, 

each of which is able to dynamically install interacting 

components that can be purposely customized in order to 
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adapt the programming model of the built metacomputer 

to the application needs. 

Finally, JMdM has been tested by conducting some 

preliminary experimental tests programmed by 

implementing two different programming models. In fact, 

the obtained results demonstrate that flexibility can be 

achieved without reducing performance. 
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