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Summary 
Recently high-speed networks have been utilized by attackers as 
Distributed Denial of Service (DDoS) attack infrastructure. 
Services on high-speed networks also have been attacked by 
successive waves of the DDoS attacks. How to sensitively and 
accurately detect the attack traffic, and quickly filter out the 
attack packets are still the major challenges in DDoS defense. 
Unfortunately most current defense approaches can not 
efficiently fulfill these tasks. Our approach is to find the network 
anomalies by using neural network and classify DDoS packets 
by a Bloom filter-based classifier (BFC). BFC is a set of space-
efficient data structures and algorithms for packet classification. 
The evaluation results show that the simple complexity, high 
classification speed and accuracy and low storage requirements 
of this classifier make it not only suitable for DDoS filtering in 
high-speed networks, but also suitable for other applications such 
as string matching for intrusion detection systems and IP lookup 
for programmable routers. 
Key words: 
DDoS attacks, packet classification, high-speed network, 
intrusion detection. 

1. Introduction 

Computer networks and the Internet have now evolved 
into a ubiquitous information infrastructure. High-speed 
backbones and local area networks (wired or wireless) 
provide the end-user with bandwidths that increase rapidly, 
linking millions of end-users to many critical services. In 
the past a few years, companies, organizations and 
government agencies have been attacked by successive 
waves of Distributed Denial of Service (DDoS) attacks [8]. 
A DDoS attack is characterized by an explicit attempt 
from an attacker to prevent legitimate users from using the 
desired resource [21]. The attacker usually recruits 
thousands of hosts as zombies to launch the attack by 
sending malicious packets from multiple sites towards a 
single target at the same time. The target then will be 
flooded and out of service to legitimate users, such as 
downtime of web servers. 

The rapid development of high-speed networks has 
spurred new applications and has in turn been driven by 
the popularity of those applications. However, it also 
provides DDoS attackers advantages to start an attack. 
Although many defense approaches have been proposed to 
fight against DDoS attacks, such as filtering [6, 14], 

traceback [1], congestion control [7, 9] and replication [13, 
23], it is still difficult to separate unambiguously the attack 
traffic from legitimate traffic, and then quickly remove the 
attack traffic, especially when the ongoing traffic volume 
is high. There are two major challenges of DDoS defense 
in high-speed networks. One is to sensitively and 
accurately detect attack traffic, and the other is to quickly 
filter out the attack traffic, which mainly depends on high-
speed packet classification [10]. Here packet classification 
means the process of classifying packets into normal or 
attack flows in a router. Since packet classification has 
been one of the major bottlenecks in routers that enable 
security services, a fast packet classification algorithm is 
critical to a router-based DDoS defense system. 

To address the first challenge mentioned above, we use 
neural networks to differentiate normal and abnormal 
traffic [20] by Mark-Aided Distributed Filtering (MADF) 
system. By the aid of the marks of a packet marking 
traceback scheme, Flexible Deterministic Packet Marking 
(FDPM), in the IP header [22], this system can accurately 
separate the attack packets from the legitimate packets.  

This paper mainly addresses the second challenge, which 
is to quickly classify DDoS attack packets in high-speed 
networks. Our major contribution is that we propose a 
Bloom filter-based packet classification scheme for 
classifying DDoS packets. Specifically, we solved 
problems in high-speed packet classification by improving 
many performance metrics. First, the classification speed 
is high. For example, it can quickly filter out the packets 
in a speed at 7.6 Gb/s, accordingly greatly improves the 
legitimate traffic throughput and reduces the DDoS attack 
traffic throughput. Second, the memory that this scheme 
consumes is very limited, compared to other schemes such 
as H-Trie [10]; thus it makes possible for hardware 
implementation. Third, this scheme greatly reduces false 
positive rate that is brought by a traditional Bloom filter 
[2]. If the assumption of perfect hash function is true, this 
scheme is virtually near zero false positive. In this paper 
we propose this scheme for DDoS packet classification. 
However, it can be widely applied to solve other 
classification problems such as string matching for 
intrusion detection systems and IP lookup for 
programmable routers [18]. 
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The rest of paper is organized as follows. Section 2 briefly 
introduces the background of the traditional Bloom filter. 
Section 3 presents the system design of the DDoS defense 
system and the Bloom filter-based classifier in it. Section 
4 shows the experiments and performance of this scheme. 
Related work and some discussion are presented in section 
5. Section 6 summarizes this paper. 

2. Background of Bloom Filter 

A Bloom filter is a simple space-efficient randomized data 
structure for representing a set in order to support 
membership queries [2, 3]. The space efficiency is 
achieved at the cost of a small probability of false 
positives. Here we briefly introduce the Bloom filter 
theory. 

A Bloom filter for representing a set S={x1, x2, …, xn} of n 
elements is described by an array of m bits, initially all set 
to 0. It uses k independent hash function h1, …, hk with 
range {1, …, m}. Here we have an assumption that hash 
functions are perfectly random, which means the hash 
functions map each item in the universe to a random 
number uniform over the range {1, …, m}. For each 
element x∈S, the bits hi(x) are set to 1 for 1≤i≤k. A 
location can be set to 1 multiple times, but only the first 
change has an effect. For the membership query if y∈S, 
we check if ∀i, hi(y)=1. If ∃hi(i)≠1, then y∉ S. If ∀i, 
hi(y)=1 is true, we can assume y∈S with a false positive 
rate as 
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Because minimizing the f is equivalent to minimizing g 
with respect to k, we have when the above equation equals 
0, k=ln2⋅(m/n). Then the optimized false positive is 
(0.6185)m/n. 

3. System Design  

3.1 Overview 

Before presenting the details about the Bloom filter-based 
classifier (BFC), we need briefly introduce some 
background about Flexible Deterministic Packet Marking 
(FDPM) [22] and Mark-Aided Distributed Filtering 
(MADF) [20]. We do not discuss how to gather 
intelligence and set signatures in order to drop attack 
packets here, which is mainly MADF’s work. Instead, in 
this paper, we discuss packet classification based on 
known signatures.  

As shown in figure 1, the MADF system has an Offline 
Training System (OTS) and an Online Filtering System 
(OFS) and is deployed between the source end (one hop 
behind FDPM encoding module) and the victim end. The 
FDPM encoding modules are deployed at the edge routers 
that are close to the attack source end. When packets enter 
the network, they are dynamically marked by the encoding 
modules. The real source IP addresses of the entry points 
are stored in the marking fields. When the packets reach 
the victim end, the source IP addresses of entry points can 
be reconstructed. 

Packets are tapped into both OTS and OFS. OTS is a 
lightweight neural network with back-propagation 
algorithm [11], which consists of three parts, data 
collecting part, training part and rules generating part. It is 
usually deployed close to the victim end, in order to obtain 
better training result. The trained neural networks are 
transferred back to OFS for testing. Once the packets are 
identified as the attack packets, they will be filtered out by 
the Bloom filter-based classifier (BFC). 

 

Fig. 1  System architecture. 

In DDoS packet filtering problems, packet classification 
becomes a two-category classification process. While 
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Bloom filter provides good space and speed efficiencies 
with low false positives, it offers a fast decision making 
function to filter the attack packets. The OFS can be 
deployed at any point in the protected network. If it is 
deployed close to the attack source end, it can protect even 
better the rest of network from it to victim, because the 
attack traffic has been removed before it travels to the 
victim, without causing overall network congestion. 

3.2 Online Filtering System 

The Online Filtering System (OFS) is the key sub-system 
that enables the filtering function. We test the incoming 
packets by the trained neural network that transferred from 
the Offline Training System. If the output indicates 
anomalies, we further investigate the composition of the 
packets. If the number of packets that have the same 
address digest bits that marked by FDPM exceeds a 
threshold Ndrop, this flow of packets will be filtered. After 
the attack packets are identified, it turns into the packet 
classification phase. 

For each incoming packet, BFC examines the bits in IP 
header for DDoS signatures. In our experiments, the bits 
are 8 bits of TOS, 16 bits of Fragment ID, 1 bit of 
Reserved Flag and 32 bits of Destination IP Address. 
Justification of using these bits can be found in [22]. Once 
a match of signature is found, the packet is dropped. BFC 
has no false negative (missing a real DDoS packet) and 
only an extremely low false positive rate (in order of 10e-
15). 

3.3 Data Structures and Algorithms 

The data structures of the Bloom filter-based classifier 
(BFC) are shown in figure 2. The filter is an array of data 
structure BFC, which length is decided by the number of 
element (the same as the number m discussed in section 2). 
An element BFC consists of two field. One bit hit is of the 
same purpose as in the traditional Bloom filter, which is 
used to test if the member exists. The second field in the 
BFC element is a pointer lead to a link list of structure 
l_hit_array, which is introduced below. The node of link list 
l_hit_array has two fields, one is a 16-bit word 
hit_index_sum, and the other is the pointer that leads to the 
next node, if the next one exists. 

There are two steps of the classification by BFC. One is 
construction of BFC, and the other is membership testing. 
Here we have the assumption that the hash functions used 
are perfectly random. That is, for the same signature S and 
different hash functions Hi and Hj (i≠j), the hashed values 
are always different. 

BFC filter[int NUMBER_ELEMENT];

struct BFC {
  bit hit;
  struct l_hit_array* list;
};

struct l_hit_array {
  bit hit_index_sum[16];
  struct l_hit_array* next;
};  

Fig. 2  Data structures of BFC. 

The construction of BFC is shown in figure 3. Initially, 
each hit bit in the element BFC is set to 0 and the pointer list 
is set to null. Then each attack signature Si, i∈[1, n] is 
hashed by function Hj, j∈[1, k] with corresponding hit bit 
in BFC being set to 1. A new node of link list l_hit_array is 
created with the hit_index_sum field being filled by the sum 
of previous value and the last 16 bits of the index value of 
the filter that are being set to 1. The field hit_index_sum 
provides the ability to reduce false positives. In another 
word, it is used to determine which exact signature causes 
the value 1 set by hash functions. In traditional Bloom 
filter, there is no such detection mechanism thus different 
signatures will possibly result in the same bit being set to 
value 1. The attack signature Si, i∈[1, n] are hashed k 
times. If the bit has already been set to 1, a new node of 
link list l_hit_array is appended to the list. Note the index of 
the filter array usually can be an integer with 32 bits (it 
can also just be a short integer with 16 bits), while we only 
utilize 16 bits for hit_index_sum. This design does not 
affect much accuracy because in all the experiments the 
false positive rates are the same. However, this design 
saves nearly half of memory space for the link list 
structure. If the addition procedure has overflow, the 
overflow bit will be discarded to maintain this 16-bit 
structure. The algorithm of construction of BFC is shown 
in figure 4. 

H2

H1

 

Fig. 3  Construction of BFC. 
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Fig. 4  Algorithm of construction of BFC. 

In the membership testing step, for each query T, we 
compute hashed value by Hj, j∈[1, k]. The sum of last 16 
bits of all hashed values (compare_sum) is kept in the 
memory.  Once any hashed bit is not equal to the 
corresponding bit in the preset BFC array, then it means 
the query does not belong to signature base. After all the 
hash procedures are finished, we search the current list for 
the same value of compare_sum. If no matching value is 
found, it means the query does not belong to signature 
base. If any match is found, then the result of query is true. 
Figure 5 shows some examples of membership testing. For 
instance, T1 and T3 are not the members of signature base, 
and T2 is a true match. Our scheme is free of false positive 
that occurs in the traditional Bloom filter. For example, the 
query T3 has all hashed value of 1. In traditional Bloom 
filter, it will be falsely classified as a match. In this 
scheme, this case will not happen. More precisely, the 
exact matching signature can be found. This is especially 
beneficial if multiple signatures lead the same bit to be set 
to 1. The algorithm of membership testing of BFC is 
shown in figure 6. 

match
1
0
0

1
0

0
1
0 null

null

null
null

null

T2

T3

H1
H2

H2

H1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 null

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 null

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 null
0 null

0 null

T1 H1

no match

 

Fig. 5  Membership testing of BFC. 

for each query T do
  for each hash function Hj do
    index=Hj(T);
    if(BFC[index].hit==0)
      no match, return false;
    else
      set compare_sum=previous value+last 16 bits of index;
    endif
  end do
  if(compare_sum in BFC[index].list’s hit_index_sum)
    match, return true;
  else
    no match, return false;
  endif
end do

 

Fig. 6  Algorithm of membership testing of BFC. 

Updating BFC is straightforward and easy. Adding an 
entry of signature is the same as the steps of construction 
of BFC. To delete an entry of signature, for all the hashed 
indexed entries, the corresponding node in l_hit_array is 
deleted. Then if the link list is empty, reset the hit bit in the 
BFC elements to 0. 

3.4 Optimization 

From the above section we can see that in the construction 
steps of BFC when signature Si is hashed by each hash 
function Hj, all the corresponding nodes in the l_hit_array 
must be updated. This not only consumes computing 
resource, but also wastes memory. We optimize the first 
design by modifying the data structure into figure 7. In the 
optimized design, we move the bit array of hit_index_sum 
into a separate list called sum_list. In l_hit_array only a 
pointer that leads to the hit_index_sum is kept. In sum_list, 
there is a pointer that leads to the signature array. This is 
for the case when we need find out which signature does 
the query T match (It is used in intrusion detection system). 
Figure 8 illustrated the construction steps of optimized 
BFC. 

 

Fig. 7  Optimized data structure of BFC. 
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Fig. 8  Construction of optimized BFC. 

3.5 False Positive 

This scheme reduces the false positive that is a serious 
problem in traditional Bloom filter, as it is discussed in 
section 3.3. However, it still generates false positive 
caused by the calculation of hit_index_sum, because 
different combination of index sets still will result in the 
same value of sum. Therefore, the false positive rate of 
this scheme f can be loosely written as 
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Where m is the number of element of BFC, n is the number 
of signatures, k is the number of hash functions used. From 
the equation we can theoretically compute the false 
positive rate for this scheme. For example, when n=1000, 
m=10000, the optimized k for traditional Bloom filter is 
k≈7 and false positive f=8.19e-3. On the other side, for 
BFC, f=5e-15, which is much smaller than the one of 
traditional Bloom filter. Therefore, we can safely see that 
if the assumption of perfect hash function is true, this 
scheme is virtually near zero false positive. The 
experiments below will again verify this. 

4. Experiments and Evaluation 

4.1 Introduction 

In the project of Distributed Denial of Service Simulators 
at Deakin University [5], two DDoS tools, TFN2K and 
Trinoo, are adopted and integrated into SSFNet simulator 
[17] to create virtual DDoS networks to simulate the 
attacks. The TFN2K and Trinoo are originally written in C 
language and are ported to Java to be embedded into 
SSFNet. By using the DDoS simulators, we can launch 
any DDoS attack with different features such as duration, 
protocol, attack rate, etc. In order to simulate the DDoS 
attack as real as possible, we also use the real Internet 

topology from Cooperative Association for Internet Data 
Analysis (CAIDA)’s Skitter project [4]. The data set used 
is generated from server aroot ipv4.20040120 on 
09/Jan/2004. To simplify the problem, we connect all 
routers by 100M network interfaces. We randomly choose 
the 1000 attack hosts and let the rest be legitimate clients, 
and let the Skitter server be the victim. Constant rate 
attack of 300Kbps is applied to all attack hosts. According 
to the hop distribution (number of routers between the 
victim and its clients), most of the clients locate in the 
distance between 10 hops and 25 hops. Therefore, we 
deploy the FDPM encoding module at routers 10 hops 
from the victim, and the MADF at routers from 1 to 9 
hops from the victim. Then the MADF generate the 
signatures for packet classification. The signatures in this 
simulation consist of two parts, one is the desination IP 
address (32 bits) and the other is the mark from FDPM (25 
bits). Therefore, the total length of the signature is 57 bits. 

4.2 Metrics of Evaluation 

There are many metrics for packet classification 
algorithms such as search speed, low storage requirements, 
low false positives, fast updates, and flexibility. We 
summarize these metrics in table 1. Different classification 
applications have different requirements. For this DDoS 
packet classification application, search speed, low storage 
requirements and low false positives are the major goals. 
For fast updates, a relative low update rate is sufficient for 
this application because there is no need to change the 
signatures all the time, which require very frequent 
updates. We only need to classify packets into two 
categories, attack packets and normal packets. We also 
consider flexibility is not an obligatory requirement 
because the classification problem here is not a general 
purpose application. In section 5.2 we will discuss the fast 
update metric for an intrusion detection application. 

Table 1 Metrics of classification 

Metric Description 
Search speed The speed to find the matched rules. Faster 

links require faster classification. 
Low storage 
requirements 

Small storage requirements enable the use of 
fast memory technologies like static random 
access memory (SRAM). 

Low false 
positives 

False positives is tolerable if the value is very 
small. Ideally it is zero. 

Fast updates The classifier changes from time to time, 
therefore fast and incrementally update of the 
data structure is essential to a good 
classification algorithm. 

Flexibility The capability to support general rules, 
including prefixes, operators and wild cards. 
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4.3 Performance 

First, we test the search speed of BFC. The scheme is 
tested on a PC with Intel Celeron CPU 2.0GHz, 512M 
RAM. For comparison, the Hierarchical Tries algorithm is 
also implemented. This algorithm is an extension of the 
one dimensional radix trie data structure. Table 2 shows 
the search time for different number of signatures. When 
the number of signatures is 800, for example, BFC is on 
average 354% faster than a traditional H-Trie classifier. 
Under the same condition, the BFC can achieve the 
average search time at about 33.8ns and the maximum 
search time at about 42.6ns. This means the classifier can 
process at least 23.8 million packets per second. If we 
assume the minimum length of an IP packet is 40 bytes, 
this classifier is power enough to process packets at 7.6 
Gbps speed, which meets the requirement of most current 
high-speed networks. 

Table 2 Search time (ns) 

H-Trie BFC number of 
signatures Averag

e 
Maximum Averag

e 
Maximum

50 143.3 157.2 27.1 37.1 
100 146.2 159.7 30.4 37.3 
200 148.4 161.4 30.3 38.4 
300 149.3 162.6 30.7 38.7 
400 149.2 163.2 31.4 39.4 
500 150.1 163.7 31.5 39.4 
600 152.4 164.6 32.9 41.5 
700 151.9 168.1 33.5 42.7 
800 150.4 167.4 33.8 43.6 
900 152.4 169.2 33.9 44.1 

1000 153.4 169.6 34.1 44.1 
 

On different platforms the search time will be different 
depending on the power of the hardware and operating 
system. Therefore, another metric that can reflect search 
speed is the average number of memory access per search. 
This value is algorithm-dependent. From figure 9 we can 
see this scheme requires a very small number of memory 
access per search, which is below 10 times for 1000 
signatures. Moreover, when the number of signatures 
increases, the number of memory access per search does 
not increase in a direct ratio. Instead, it increases slowly. 
When it is tested in the condition of 10000 signatures, the 
average number of memory access per search is 40. This 
proves the scheme’s search speed is high when scalability 
is concerned.  
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 Fig. 9  Average number of memory access. 

Second, we test the memory consumption of BFC. 
Although in our experiments the memory consumption is 
not a remarkable issue, because there are usually less than 
500 rules to be used in the classification for DDoS 
filtering, the BFC still shows good storage efficiency 
compared with the H-Trie classifier. For example, for the 
500-rule test in figure 10, our classifier consumes only 
2.259% of what an H-Trie classifier needs. On scalability, 
even if tested by up to 10000 artificial generated rules (not 
by DDoS tests) the Bloom filter-based classifier only 
needs less than 3M memory. This proves it has potential to 
be applied for other more memory-consuming applications. 
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Fig. 10  Comparison of memory consumption. 

Third, we test the false positive rate of BFC. Unlike some 
kinds of classification schemes that are free of false 
positives, BFC do theoretically have false positives, as we 
analyzed in section 3.5. However, practically, in our 
experiments all the tests show zero false positive. This 
confirms the conclusion that BFC is virtually near zero 
false positive. 
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5. Related Work and Discussion 

5.1 Related Work 

Fast packet classification is an important issue to deal with 
the DDoS attacks, which is inherently difficult. Currently 
there have been many different approaches for packet 
classification. Trie structure is the most popular approach 
used so far. Hierarchical trie [16] is constructed by 
building one-dimensional binary trie on each field 
recursively. The problem of this approach is the difficulty 
in finding all possible matches. Set-pruning trie proposed 
to copy signatures for all possible paths, and grid of trie 
proposed to use switch pointers directing next signature. 
These approaches still have an issue that they require a lot 
of pre-processing and are not easily applied to multiple 
dimensions [10]. 

Linear time search or parallelisms are used to search 
through all signatures sequentially, such as multi-
dimensional range matching [16] and Ternary-CAMs [19]. 
However, these solutions will be expensive when the 
DDoS filtering signature sets are large. Heuristic methods 
such as Recursive Flow Classification (RFC) [9], 
Hierarchical Intelligent Cuttings (HiCuts) [10], and Tuple 
Space Search [28] have lower complexity in worst-case 
time requirements than linear search schemes. HiCuts 
partitions the multidimensional search space guided by 
heuristics of classifier. The partitioning is continued until 
leaves of the tree include a pre-defined small number of 
signatures, and linear search is performed for those 
signatures. Required pre-processing to construct the tree is 
reasonable. However, other limitations such as storage 
requirements and scalabilities make them unsatisfactory 
for fast packet filtering in DDoS problems. 

5.2 Discussion 

In this section we discuss some practical issues such as 
using BFC for intrusion detection systems (IDSs) [12] and 
hardware implementation. 

Instead of looking up signatures from IP headers, as it is 
shown in classifying DDoS packets application, IDSs 
require signature matching for strings. An IDS collects 
intrusion signatures and scans the payload of the packets 
passed by (sometimes the information from different 
packets needs to be correlated), and then searches for 
match and sends alarm. For example, Boyer-Moore 
algorithm is used for string matching in an open source 
IDS Snort [15]. To test BFC in this application, we define 
different sets of signature as from 2 to 160 bytes of string. 
The search time curves of different number of signatures 
(NoS) and different lengths of signature are shown in 

figure 11. From the figure we can see the search time is 
between 19ns to 50ns for all the tests. Therefore, in the 
worst case, the system still can provide 2.62Gbps 
throughput. Based on current intrusion detection 
technology, most of IDSs are only capable of real-time 
analysis on Fast Ethernet links (100Mbps). 
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 Fig. 11  Search time for IDS application. 

When updating of signatures is considered, BFC also 
offers good performance, since updating signatures in IDS 
application is an important issue. Table 3 shows the 
updating time per signature with different signature 
numbers. To update total 1000 signatures in one of the 
experiments, it approximately costs 1.5ms, which is a very 
fast updating speed. 

Table 3 Updating time per signature (ns) 

Number of 
signatures 

Average Maximum

50 0.044 0.14 
100 0.094 0.14 
200 0.11 0.17 
300 0.32 0.42 
400 0.54 0.73 
500 0.65 0.85 
600 0.77 0.97 
700 0.88 1.27 
800 0.92 1.31 
900 1.04 1.35 

1000 1.24 1.56 
 

BFC can be further implemented into a hardware device. 
By using a Field Programmable Gate Array (FPGA) [19], 
BFC can be realized as a fast hardware-based DDoS filter 
or a hardware-based IDS. Figure 12 depicts the FPGA 
implementation of BFC. Because an FPGA chip can 
usually have 10Mb SRAMs, we can conveniently put all 
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the data structures of BFC on chip. For the IDS 
application, we need to move the signature base off-chip 
because it can be very large. However, this design does 
not affect the searching because in the data structure 
sum_list there is a pointer leads to the actual signature in 
the off-chip base. 

Incoming 
packets

Header Payload

Correlated

String 
matching 

(IDS)

Packet 
header 

classification 
(DDoS 

filtering)

DDoS packets 
dropped Alarm generated

Layered IP Wrappers

FPGA hardware

 

Fig. 12  FPGA implementation of BFC. 

6. Conclusion  

In this paper we present a Bloom filter-based packet 
classifier for DDoS packet classification. The proposed 
scheme shows good performance in terms of search speed, 
updating time, storage and false positive rate. We also 
demonstrate a design of FPGA hardware implementation, 
which can be used in high-speed networks that require 
gigabit processing speed for DDoS defense systems and 
intrusion detection systems. It is also possible to apply this 
scheme into other packet classification problems such as 
IP lookup for programmable routers. 
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