
IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2B, February 2006

107

Manuscript received January 2006.
Manuscript accepted Feburuary 2006.

Classifying DDoS packets in high-speed networks

Yang Xiang and Wanlei Zhou

School of Engineering and Information Technology, Deakin University, Victoria, Australia

Summary
Recently high-speed networks have been utilized by attackers as
Distributed Denial of Service (DDoS) attack infrastructure.
Services on high-speed networks also have been attacked by
successive waves of the DDoS attacks. How to sensitively and
accurately detect the attack traffic, and quickly filter out the
attack packets are still the major challenges in DDoS defense.
Unfortunately most current defense approaches can not
efficiently fulfill these tasks. Our approach is to find the network
anomalies by using neural network and classify DDoS packets
by a Bloom filter-based classifier (BFC). BFC is a set of space-
efficient data structures and algorithms for packet classification.
The evaluation results show that the simple complexity, high
classification speed and accuracy and low storage requirements
of this classifier make it not only suitable for DDoS filtering in
high-speed networks, but also suitable for other applications such
as string matching for intrusion detection systems and IP lookup
for programmable routers.
Key words:
DDoS attacks, packet classification, high-speed network,
intrusion detection.

1. Introduction

Computer networks and the Internet have now evolved
into a ubiquitous information infrastructure. High-speed
backbones and local area networks (wired or wireless)
provide the end-user with bandwidths that increase rapidly,
linking millions of end-users to many critical services. In
the past a few years, companies, organizations and
government agencies have been attacked by successive
waves of Distributed Denial of Service (DDoS) attacks [8].
A DDoS attack is characterized by an explicit attempt
from an attacker to prevent legitimate users from using the
desired resource [21]. The attacker usually recruits
thousands of hosts as zombies to launch the attack by
sending malicious packets from multiple sites towards a
single target at the same time. The target then will be
flooded and out of service to legitimate users, such as
downtime of web servers.

The rapid development of high-speed networks has
spurred new applications and has in turn been driven by
the popularity of those applications. However, it also
provides DDoS attackers advantages to start an attack.
Although many defense approaches have been proposed to
fight against DDoS attacks, such as filtering [6, 14],

traceback [1], congestion control [7, 9] and replication [13,
23], it is still difficult to separate unambiguously the attack
traffic from legitimate traffic, and then quickly remove the
attack traffic, especially when the ongoing traffic volume
is high. There are two major challenges of DDoS defense
in high-speed networks. One is to sensitively and
accurately detect attack traffic, and the other is to quickly
filter out the attack traffic, which mainly depends on high-
speed packet classification [10]. Here packet classification
means the process of classifying packets into normal or
attack flows in a router. Since packet classification has
been one of the major bottlenecks in routers that enable
security services, a fast packet classification algorithm is
critical to a router-based DDoS defense system.

To address the first challenge mentioned above, we use
neural networks to differentiate normal and abnormal
traffic [20] by Mark-Aided Distributed Filtering (MADF)
system. By the aid of the marks of a packet marking
traceback scheme, Flexible Deterministic Packet Marking
(FDPM), in the IP header [22], this system can accurately
separate the attack packets from the legitimate packets.

This paper mainly addresses the second challenge, which
is to quickly classify DDoS attack packets in high-speed
networks. Our major contribution is that we propose a
Bloom filter-based packet classification scheme for
classifying DDoS packets. Specifically, we solved
problems in high-speed packet classification by improving
many performance metrics. First, the classification speed
is high. For example, it can quickly filter out the packets
in a speed at 7.6 Gb/s, accordingly greatly improves the
legitimate traffic throughput and reduces the DDoS attack
traffic throughput. Second, the memory that this scheme
consumes is very limited, compared to other schemes such
as H-Trie [10]; thus it makes possible for hardware
implementation. Third, this scheme greatly reduces false
positive rate that is brought by a traditional Bloom filter
[2]. If the assumption of perfect hash function is true, this
scheme is virtually near zero false positive. In this paper
we propose this scheme for DDoS packet classification.
However, it can be widely applied to solve other
classification problems such as string matching for
intrusion detection systems and IP lookup for
programmable routers [18].

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

108

The rest of paper is organized as follows. Section 2 briefly
introduces the background of the traditional Bloom filter.
Section 3 presents the system design of the DDoS defense
system and the Bloom filter-based classifier in it. Section
4 shows the experiments and performance of this scheme.
Related work and some discussion are presented in section
5. Section 6 summarizes this paper.

2. Background of Bloom Filter

A Bloom filter is a simple space-efficient randomized data
structure for representing a set in order to support
membership queries [2, 3]. The space efficiency is
achieved at the cost of a small probability of false
positives. Here we briefly introduce the Bloom filter
theory.

A Bloom filter for representing a set S={x1, x2, …, xn} of n
elements is described by an array of m bits, initially all set
to 0. It uses k independent hash function h1, …, hk with
range {1, …, m}. Here we have an assumption that hash
functions are perfectly random, which means the hash
functions map each item in the universe to a random
number uniform over the range {1, …, m}. For each
element x∈S, the bits hi(x) are set to 1 for 1≤i≤k. A
location can be set to 1 multiple times, but only the first
change has an effect. For the membership query if y∈S,
we check if ∀i, hi(y)=1. If ∃hi(i)≠1, then y∉ S. If ∀i,
hi(y)=1 is true, we can assume y∈S with a false positive
rate as

())1ln(exp1

111

/ mkn

k

m
kn

kkn

eke

m
f

−−

−=⎟
⎠
⎞⎜

⎝
⎛ −≈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

 (1)

Let

)1ln(/ mknekg −−= (2)

And we have

mkn

mkn
mkn

e
e

m
kne

dk
dg

/

/
/

1
)1ln(

−

−

−

−
+−= (3)

Because minimizing the f is equivalent to minimizing g
with respect to k, we have when the above equation equals
0, k=ln2⋅(m/n). Then the optimized false positive is
(0.6185)m/n.

3. System Design

3.1 Overview

Before presenting the details about the Bloom filter-based
classifier (BFC), we need briefly introduce some
background about Flexible Deterministic Packet Marking
(FDPM) [22] and Mark-Aided Distributed Filtering
(MADF) [20]. We do not discuss how to gather
intelligence and set signatures in order to drop attack
packets here, which is mainly MADF’s work. Instead, in
this paper, we discuss packet classification based on
known signatures.

As shown in figure 1, the MADF system has an Offline
Training System (OTS) and an Online Filtering System
(OFS) and is deployed between the source end (one hop
behind FDPM encoding module) and the victim end. The
FDPM encoding modules are deployed at the edge routers
that are close to the attack source end. When packets enter
the network, they are dynamically marked by the encoding
modules. The real source IP addresses of the entry points
are stored in the marking fields. When the packets reach
the victim end, the source IP addresses of entry points can
be reconstructed.

Packets are tapped into both OTS and OFS. OTS is a
lightweight neural network with back-propagation
algorithm [11], which consists of three parts, data
collecting part, training part and rules generating part. It is
usually deployed close to the victim end, in order to obtain
better training result. The trained neural networks are
transferred back to OFS for testing. Once the packets are
identified as the attack packets, they will be filtered out by
the Bloom filter-based classifier (BFC).

Fig. 1 System architecture.

In DDoS packet filtering problems, packet classification
becomes a two-category classification process. While

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

109

Bloom filter provides good space and speed efficiencies
with low false positives, it offers a fast decision making
function to filter the attack packets. The OFS can be
deployed at any point in the protected network. If it is
deployed close to the attack source end, it can protect even
better the rest of network from it to victim, because the
attack traffic has been removed before it travels to the
victim, without causing overall network congestion.

3.2 Online Filtering System

The Online Filtering System (OFS) is the key sub-system
that enables the filtering function. We test the incoming
packets by the trained neural network that transferred from
the Offline Training System. If the output indicates
anomalies, we further investigate the composition of the
packets. If the number of packets that have the same
address digest bits that marked by FDPM exceeds a
threshold Ndrop, this flow of packets will be filtered. After
the attack packets are identified, it turns into the packet
classification phase.

For each incoming packet, BFC examines the bits in IP
header for DDoS signatures. In our experiments, the bits
are 8 bits of TOS, 16 bits of Fragment ID, 1 bit of
Reserved Flag and 32 bits of Destination IP Address.
Justification of using these bits can be found in [22]. Once
a match of signature is found, the packet is dropped. BFC
has no false negative (missing a real DDoS packet) and
only an extremely low false positive rate (in order of 10e-
15).

3.3 Data Structures and Algorithms

The data structures of the Bloom filter-based classifier
(BFC) are shown in figure 2. The filter is an array of data
structure BFC, which length is decided by the number of
element (the same as the number m discussed in section 2).
An element BFC consists of two field. One bit hit is of the
same purpose as in the traditional Bloom filter, which is
used to test if the member exists. The second field in the
BFC element is a pointer lead to a link list of structure
l_hit_array, which is introduced below. The node of link list
l_hit_array has two fields, one is a 16-bit word
hit_index_sum, and the other is the pointer that leads to the
next node, if the next one exists.

There are two steps of the classification by BFC. One is
construction of BFC, and the other is membership testing.
Here we have the assumption that the hash functions used
are perfectly random. That is, for the same signature S and
different hash functions Hi and Hj (i≠j), the hashed values
are always different.

BFC filter[int NUMBER_ELEMENT];

struct BFC {
 bit hit;
 struct l_hit_array* list;
};

struct l_hit_array {
 bit hit_index_sum[16];
 struct l_hit_array* next;
};

Fig. 2 Data structures of BFC.

The construction of BFC is shown in figure 3. Initially,
each hit bit in the element BFC is set to 0 and the pointer list
is set to null. Then each attack signature Si, i∈[1, n] is
hashed by function Hj, j∈[1, k] with corresponding hit bit
in BFC being set to 1. A new node of link list l_hit_array is
created with the hit_index_sum field being filled by the sum
of previous value and the last 16 bits of the index value of
the filter that are being set to 1. The field hit_index_sum
provides the ability to reduce false positives. In another
word, it is used to determine which exact signature causes
the value 1 set by hash functions. In traditional Bloom
filter, there is no such detection mechanism thus different
signatures will possibly result in the same bit being set to
value 1. The attack signature Si, i∈[1, n] are hashed k
times. If the bit has already been set to 1, a new node of
link list l_hit_array is appended to the list. Note the index of
the filter array usually can be an integer with 32 bits (it
can also just be a short integer with 16 bits), while we only
utilize 16 bits for hit_index_sum. This design does not
affect much accuracy because in all the experiments the
false positive rates are the same. However, this design
saves nearly half of memory space for the link list
structure. If the addition procedure has overflow, the
overflow bit will be discarded to maintain this 16-bit
structure. The algorithm of construction of BFC is shown
in figure 4.

H2

H1

Fig. 3 Construction of BFC.

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

110

Fig. 4 Algorithm of construction of BFC.

In the membership testing step, for each query T, we
compute hashed value by Hj, j∈[1, k]. The sum of last 16
bits of all hashed values (compare_sum) is kept in the
memory. Once any hashed bit is not equal to the
corresponding bit in the preset BFC array, then it means
the query does not belong to signature base. After all the
hash procedures are finished, we search the current list for
the same value of compare_sum. If no matching value is
found, it means the query does not belong to signature
base. If any match is found, then the result of query is true.
Figure 5 shows some examples of membership testing. For
instance, T1 and T3 are not the members of signature base,
and T2 is a true match. Our scheme is free of false positive
that occurs in the traditional Bloom filter. For example, the
query T3 has all hashed value of 1. In traditional Bloom
filter, it will be falsely classified as a match. In this
scheme, this case will not happen. More precisely, the
exact matching signature can be found. This is especially
beneficial if multiple signatures lead the same bit to be set
to 1. The algorithm of membership testing of BFC is
shown in figure 6.

match
1
0
0

1
0

0
1
0 null

null

null
null

null

T2

T3

H1
H2

H2

H1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 null

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 null

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 null
0 null

0 null

T1 H1

no match

Fig. 5 Membership testing of BFC.

for each query T do
 for each hash function Hj do
 index=Hj(T);
 if(BFC[index].hit==0)
 no match, return false;
 else
 set compare_sum=previous value+last 16 bits of index;
 endif
 end do
 if(compare_sum in BFC[index].list’s hit_index_sum)
 match, return true;
 else
 no match, return false;
 endif
end do

Fig. 6 Algorithm of membership testing of BFC.

Updating BFC is straightforward and easy. Adding an
entry of signature is the same as the steps of construction
of BFC. To delete an entry of signature, for all the hashed
indexed entries, the corresponding node in l_hit_array is
deleted. Then if the link list is empty, reset the hit bit in the
BFC elements to 0.

3.4 Optimization

From the above section we can see that in the construction
steps of BFC when signature Si is hashed by each hash
function Hj, all the corresponding nodes in the l_hit_array
must be updated. This not only consumes computing
resource, but also wastes memory. We optimize the first
design by modifying the data structure into figure 7. In the
optimized design, we move the bit array of hit_index_sum
into a separate list called sum_list. In l_hit_array only a
pointer that leads to the hit_index_sum is kept. In sum_list,
there is a pointer that leads to the signature array. This is
for the case when we need find out which signature does
the query T match (It is used in intrusion detection system).
Figure 8 illustrated the construction steps of optimized
BFC.

Fig. 7 Optimized data structure of BFC.

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

111

1
0
0

1
0

0
1
0 null

null

null
null

null

S1

S2

H1

H2

H2

H1

null

0 null

0 null

null

null

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 null

to S2

to S1

Fig. 8 Construction of optimized BFC.

3.5 False Positive

This scheme reduces the false positive that is a serious
problem in traditional Bloom filter, as it is discussed in
section 3.3. However, it still generates false positive
caused by the calculation of hit_index_sum, because
different combination of index sets still will result in the
same value of sum. Therefore, the false positive rate of
this scheme f can be loosely written as

∏ −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=

=

k

i

kkn

imm
f

0
)(

1111 (4)

Where m is the number of element of BFC, n is the number
of signatures, k is the number of hash functions used. From
the equation we can theoretically compute the false
positive rate for this scheme. For example, when n=1000,
m=10000, the optimized k for traditional Bloom filter is
k≈7 and false positive f=8.19e-3. On the other side, for
BFC, f=5e-15, which is much smaller than the one of
traditional Bloom filter. Therefore, we can safely see that
if the assumption of perfect hash function is true, this
scheme is virtually near zero false positive. The
experiments below will again verify this.

4. Experiments and Evaluation

4.1 Introduction

In the project of Distributed Denial of Service Simulators
at Deakin University [5], two DDoS tools, TFN2K and
Trinoo, are adopted and integrated into SSFNet simulator
[17] to create virtual DDoS networks to simulate the
attacks. The TFN2K and Trinoo are originally written in C
language and are ported to Java to be embedded into
SSFNet. By using the DDoS simulators, we can launch
any DDoS attack with different features such as duration,
protocol, attack rate, etc. In order to simulate the DDoS
attack as real as possible, we also use the real Internet

topology from Cooperative Association for Internet Data
Analysis (CAIDA)’s Skitter project [4]. The data set used
is generated from server aroot ipv4.20040120 on
09/Jan/2004. To simplify the problem, we connect all
routers by 100M network interfaces. We randomly choose
the 1000 attack hosts and let the rest be legitimate clients,
and let the Skitter server be the victim. Constant rate
attack of 300Kbps is applied to all attack hosts. According
to the hop distribution (number of routers between the
victim and its clients), most of the clients locate in the
distance between 10 hops and 25 hops. Therefore, we
deploy the FDPM encoding module at routers 10 hops
from the victim, and the MADF at routers from 1 to 9
hops from the victim. Then the MADF generate the
signatures for packet classification. The signatures in this
simulation consist of two parts, one is the desination IP
address (32 bits) and the other is the mark from FDPM (25
bits). Therefore, the total length of the signature is 57 bits.

4.2 Metrics of Evaluation

There are many metrics for packet classification
algorithms such as search speed, low storage requirements,
low false positives, fast updates, and flexibility. We
summarize these metrics in table 1. Different classification
applications have different requirements. For this DDoS
packet classification application, search speed, low storage
requirements and low false positives are the major goals.
For fast updates, a relative low update rate is sufficient for
this application because there is no need to change the
signatures all the time, which require very frequent
updates. We only need to classify packets into two
categories, attack packets and normal packets. We also
consider flexibility is not an obligatory requirement
because the classification problem here is not a general
purpose application. In section 5.2 we will discuss the fast
update metric for an intrusion detection application.

Table 1 Metrics of classification

Metric Description
Search speed The speed to find the matched rules. Faster

links require faster classification.
Low storage
requirements

Small storage requirements enable the use of
fast memory technologies like static random
access memory (SRAM).

Low false
positives

False positives is tolerable if the value is very
small. Ideally it is zero.

Fast updates The classifier changes from time to time,
therefore fast and incrementally update of the
data structure is essential to a good
classification algorithm.

Flexibility The capability to support general rules,
including prefixes, operators and wild cards.

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

112

4.3 Performance

First, we test the search speed of BFC. The scheme is
tested on a PC with Intel Celeron CPU 2.0GHz, 512M
RAM. For comparison, the Hierarchical Tries algorithm is
also implemented. This algorithm is an extension of the
one dimensional radix trie data structure. Table 2 shows
the search time for different number of signatures. When
the number of signatures is 800, for example, BFC is on
average 354% faster than a traditional H-Trie classifier.
Under the same condition, the BFC can achieve the
average search time at about 33.8ns and the maximum
search time at about 42.6ns. This means the classifier can
process at least 23.8 million packets per second. If we
assume the minimum length of an IP packet is 40 bytes,
this classifier is power enough to process packets at 7.6
Gbps speed, which meets the requirement of most current
high-speed networks.

Table 2 Search time (ns)

H-Trie BFC number of
signatures Averag

e
Maximum Averag

e
Maximum

50 143.3 157.2 27.1 37.1
100 146.2 159.7 30.4 37.3
200 148.4 161.4 30.3 38.4
300 149.3 162.6 30.7 38.7
400 149.2 163.2 31.4 39.4
500 150.1 163.7 31.5 39.4
600 152.4 164.6 32.9 41.5
700 151.9 168.1 33.5 42.7
800 150.4 167.4 33.8 43.6
900 152.4 169.2 33.9 44.1

1000 153.4 169.6 34.1 44.1

On different platforms the search time will be different
depending on the power of the hardware and operating
system. Therefore, another metric that can reflect search
speed is the average number of memory access per search.
This value is algorithm-dependent. From figure 9 we can
see this scheme requires a very small number of memory
access per search, which is below 10 times for 1000
signatures. Moreover, when the number of signatures
increases, the number of memory access per search does
not increase in a direct ratio. Instead, it increases slowly.
When it is tested in the condition of 10000 signatures, the
average number of memory access per search is 40. This
proves the scheme’s search speed is high when scalability
is concerned.

Average number of memory access

0

2
4

6
8

10

50
100 200 300 400 500 600 700 800 900

100
0

Number of signatures

nu
m

be
r o

f m
em

or
y

ac
ce

ss

 Fig. 9 Average number of memory access.

Second, we test the memory consumption of BFC.
Although in our experiments the memory consumption is
not a remarkable issue, because there are usually less than
500 rules to be used in the classification for DDoS
filtering, the BFC still shows good storage efficiency
compared with the H-Trie classifier. For example, for the
500-rule test in figure 10, our classifier consumes only
2.259% of what an H-Trie classifier needs. On scalability,
even if tested by up to 10000 artificial generated rules (not
by DDoS tests) the Bloom filter-based classifier only
needs less than 3M memory. This proves it has potential to
be applied for other more memory-consuming applications.

0

2000

4000

6000

8000

10000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of rules

M
em

or
y

(K
B

)

Bloom filter-based
H-Trie

Fig. 10 Comparison of memory consumption.

Third, we test the false positive rate of BFC. Unlike some
kinds of classification schemes that are free of false
positives, BFC do theoretically have false positives, as we
analyzed in section 3.5. However, practically, in our
experiments all the tests show zero false positive. This
confirms the conclusion that BFC is virtually near zero
false positive.

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

113

5. Related Work and Discussion

5.1 Related Work

Fast packet classification is an important issue to deal with
the DDoS attacks, which is inherently difficult. Currently
there have been many different approaches for packet
classification. Trie structure is the most popular approach
used so far. Hierarchical trie [16] is constructed by
building one-dimensional binary trie on each field
recursively. The problem of this approach is the difficulty
in finding all possible matches. Set-pruning trie proposed
to copy signatures for all possible paths, and grid of trie
proposed to use switch pointers directing next signature.
These approaches still have an issue that they require a lot
of pre-processing and are not easily applied to multiple
dimensions [10].

Linear time search or parallelisms are used to search
through all signatures sequentially, such as multi-
dimensional range matching [16] and Ternary-CAMs [19].
However, these solutions will be expensive when the
DDoS filtering signature sets are large. Heuristic methods
such as Recursive Flow Classification (RFC) [9],
Hierarchical Intelligent Cuttings (HiCuts) [10], and Tuple
Space Search [28] have lower complexity in worst-case
time requirements than linear search schemes. HiCuts
partitions the multidimensional search space guided by
heuristics of classifier. The partitioning is continued until
leaves of the tree include a pre-defined small number of
signatures, and linear search is performed for those
signatures. Required pre-processing to construct the tree is
reasonable. However, other limitations such as storage
requirements and scalabilities make them unsatisfactory
for fast packet filtering in DDoS problems.

5.2 Discussion

In this section we discuss some practical issues such as
using BFC for intrusion detection systems (IDSs) [12] and
hardware implementation.

Instead of looking up signatures from IP headers, as it is
shown in classifying DDoS packets application, IDSs
require signature matching for strings. An IDS collects
intrusion signatures and scans the payload of the packets
passed by (sometimes the information from different
packets needs to be correlated), and then searches for
match and sends alarm. For example, Boyer-Moore
algorithm is used for string matching in an open source
IDS Snort [15]. To test BFC in this application, we define
different sets of signature as from 2 to 160 bytes of string.
The search time curves of different number of signatures
(NoS) and different lengths of signature are shown in

figure 11. From the figure we can see the search time is
between 19ns to 50ns for all the tests. Therefore, in the
worst case, the system still can provide 2.62Gbps
throughput. Based on current intrusion detection
technology, most of IDSs are only capable of real-time
analysis on Fast Ethernet links (100Mbps).

Search time

10
15

20

25

30
35
40

45
50

0 20 40 60 80 100 120 140 160
Length of signature (byte)

Ti
m

e
(n

s)

NoS=100

NoS=500

NoS=900

 Fig. 11 Search time for IDS application.

When updating of signatures is considered, BFC also
offers good performance, since updating signatures in IDS
application is an important issue. Table 3 shows the
updating time per signature with different signature
numbers. To update total 1000 signatures in one of the
experiments, it approximately costs 1.5ms, which is a very
fast updating speed.

Table 3 Updating time per signature (ns)

Number of
signatures

Average Maximum

50 0.044 0.14
100 0.094 0.14
200 0.11 0.17
300 0.32 0.42
400 0.54 0.73
500 0.65 0.85
600 0.77 0.97
700 0.88 1.27
800 0.92 1.31
900 1.04 1.35

1000 1.24 1.56

BFC can be further implemented into a hardware device.
By using a Field Programmable Gate Array (FPGA) [19],
BFC can be realized as a fast hardware-based DDoS filter
or a hardware-based IDS. Figure 12 depicts the FPGA
implementation of BFC. Because an FPGA chip can
usually have 10Mb SRAMs, we can conveniently put all

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

114

the data structures of BFC on chip. For the IDS
application, we need to move the signature base off-chip
because it can be very large. However, this design does
not affect the searching because in the data structure
sum_list there is a pointer leads to the actual signature in
the off-chip base.

Incoming
packets

Header Payload

Correlated

String
matching

(IDS)

Packet
header

classification
(DDoS

filtering)

DDoS packets
dropped Alarm generated

Layered IP Wrappers

FPGA hardware

Fig. 12 FPGA implementation of BFC.

6. Conclusion

In this paper we present a Bloom filter-based packet
classifier for DDoS packet classification. The proposed
scheme shows good performance in terms of search speed,
updating time, storage and false positive rate. We also
demonstrate a design of FPGA hardware implementation,
which can be used in high-speed networks that require
gigabit processing speed for DDoS defense systems and
intrusion detection systems. It is also possible to apply this
scheme into other packet classification problems such as
IP lookup for programmable routers.

References
[1] H. Aljifri, "IP Traceback: A New Denial-of-Service
Deterrent?" IEEE Security & Privacy, vol. 1, no. 3, pp. 24-31,
2003.

[2] B. Bloom, "Space/Time Trade-offs in Hash Coding with
Allowable Errors", Communications of the ACM, vol. 13, no. 7,
pp. 422-426, 1970.

[3] A. Broder and M. Mitzenmacher, "Network Applications of
Bloom Filters: A Survey", Internet Mathematics, vol. 1, no. 4, pp.
485-509, 2003.

[4] CAIDA, Cooperative Association for Internet Data Analysis,
Skitter Project, http://www.caida.org/tools/measurement/skitter/,
2005.

[5] R. C. Chen, W. Shi and W. Zhou, Simulation of Distributed
Denial of Service Attacks, Technical Report, TR C4/09, School
of Information Technology, Deakin University, Australia, 2004.

[6] P. Ferguson and D. Senie, RFC 2267 - Network Ingress
Filtering: Defeating Denial of Service Attacks Which Employ IP
Source Address Spoofing, Network Working Group, 1998.

[7] S. Floyd and V. Jacobson, "Random Early Detection
Gateways for Congestion Avoidance", IEEE/ACM Transactions
on Networking, vol. 1, no. 4, pp. 397-413, 1993.

[8] L. Garber, "Denial-of-Service Attacks Rip the Internet",
IEEE Computer, vol. 33, no. 4, pp. 12-17, 2000.

[9] P. Gevros, J. Crowcroft, P. Kirstein and S. Bhatti,
"Congestion Control Mechanisms and the Best Effort Service
Model", IEEE Network, vol. 15, no. 3, pp. 16-26, 2001.

[10] P. Gupta and N. McKeown, "Algorithms for Packet
Classification", IEEE Network, vol. 15, no. 2, pp. 24-32, 2001.

[11] S. Haykin, Neural Networks: A Comprehensive Foundation,
2nd Edition, Prentice Hall, 1998.

[12] R. A. Kemmerer and G. Vigna, "Intrusion Detection: A
Brief History and Overview", IEEE Computer, vol. 35, no. 4, pp.
27-30, 2002.

[13] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, D. Mosse
and T. Znati, "Proactive Server Roaming for Mitigating Denial-
of-Service Attacks", 1st International Conference on Information
Technology: Research and Education, pp. 286-290, 2003.

[14] K. Park and H. Lee, "On the Effectiveness of Route-based
Packet Filtering For Distributed DoS Attack Prevention in
Power-law Internet", ACM SIGCOMM, pp. 15-26, 2001.

[15] M. Roesch, Snort Project, http://www.snort.org, 1998.

[16] V. Srinivasan, G. Varghese, S. Suri and M. Waldvogel,
"Fast and Scalable Layer Four Switching", ACM SIGCOMM, pp.
191-202, 1998.

[17] SSFNet, Scalable Simulation Framework,
http://www.ssfnet.org, 2005.

[18] D. E. Taylor, J. W. Lockwood, T. S. Sproull, J. S. Turner
and D. Parlour, "Scalable IP Lookup for Programmable Routers",
IEEE INFOCOM, pp. 562-571, 2002.

[19] S. M. Trimberger, Field-Programmable Gate Array
Technology, Kluwer Academic Publishers, 1994.

[20] Y. Xiang and W. Zhou, "Mark-Aided Distributed Filtering
by Using Neural Network for DDoS Defense", IEEE
GLOBECOM, pp. 1701-1705, 2005.

[21] Y. Xiang, W. Zhou and M. Chowdhury, A Survey of Active
and Passive Defence Mechanisms against DDoS Attacks,
Technical Report, TR C04/02, School of Information
Technology, Deakin University, 2004.

[22] Y. Xiang, W. Zhou and J. Rough, "Trace IP Packets by
Flexible Deterministic Packet Marking (FDPM)", IEEE

IJCSNS International Journal of Computer Science and Network Security, Vol. 6, No. 2 B, February 2006

115

International Workshop on IP Operations & Management, pp.
246-252, 2004.

[23] J. Yan, S. Early and R. Anderson, "The XenoService A
Distributed Defeat for Distributed Denial of Service", The 3rd
Information Survivability Workshop (ISW 2000), 2000.

Yang Xiang is presently a PhD
candidate at School of Engineering and
Information Technology, Deakin
University, Melbourne, Australia. He
received the B.Eng degree from Dalian
University of Technology in 1997 and
M.Sc degree from the Chinese
Academy of Sciences in 2000. Before
he came to Deakin University in 2003,
he was a software engineer in Mustek

Opto-Electronics Inc., Taiwan and West Lake Software, China.
His research interests include network security, web services and
wireless systems. In particular, he is currently working in a
research group developing new Internet security architectures
and active defense systems against DDoS attacks. Mr. Xiang
published many international journal and conference papers and
has been involved many international conferences as reviewer
and tutorial presenter. He is a member of IEEE and Australian
Computer Society.

Professor Wanlei Zhou received the
B.Eng and M.Eng degrees from Harbin
Institute of Technology, Harbin, China
in 1982 and 1984, respectively, and the
PhD degree from The Australian
National University, Canberra,
Australia, in 1991. He is currently the
Chair Professor of IT and the Head in
School of Engineering and Information
Technology, Deakin University,

Melbourne, Australia. Before joining Deakin University,
Professor Zhou has been a programmer in Apollo/HP at
Massachusetts, USA, a Chief Software Engineer in HighTech
Computers at Sydney, Australia, a Lecturer in National
University of Singapore, Singapore, and a Lecturer in Monash
University, Melbourne, Australia. His research interests include
theory and practical issues of building distributed systems,
Internet computing and security, distributed and heterogeneous
databases, mobile computing, performance evaluation, and fault-
tolerant computing. Professor Zhou is a member of the IEEE and
IEEE Computer Society.

Professor Zhou has published more than 150 papers in refereed
international journals and refereed international conferences
proceedings. Professor Zhou was the Program Committee Co-
Chair of the 2000 IEEE International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP 2000), the
Program Committee Co-Chair of ICA3PP 2002, and the Program
Committee Co-Chair of The Second International Conference on
Web-Based Learning (ICWL2003). Since 1997 Professor Zhou
has been involved in more than 50 international conferences as
PC Chair, Session Chair, Publication Chair, and PC member.

