
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

139

Comparison of Security Patterns

David G. Rosado, , Eduardo Fernández-Medina, Mario Piattini

ALARCOS Research Group. Information Systems and Technologies Department
UCLM-Soluziona Research and Development Institute. University of Castilla-La Mancha

Paseo de la Universidad, 4 – 13071 Ciudad Real, Spain

Carlos Gutierrez

STL. Calle Manuel Tovar 9, 28034 Madrid, Spain

Summary
Security patterns are a recent development as a way to
encapsulate the accumulated knowledge about secure
systems design, and security patterns are also intended to
be used and understood by developers who are not security
professionals. In this paper, we will compare several
security patterns to be used when dealing with application
security, following an approach that we consider important
for measuring the security degree of the patterns, and
indicating a fulfilment or not of the properties and
attributes common to all security systems. We will see that
these patterns present some weaknesses. Although they
fulfil the design original intention, they don’t fulfil many
security attributes.
Key words:
Security, Security Patterns, Security Architecture

Introduction

It is very common not to consider security in the first
stages of systems development but to deal with it once the
system has been designed and implemented. However,
those aspects known as “quality requirements” [5, 8],
being security one of them, must be described in a
concrete way before the system architecture is designed
[4]. Ignoring security issues is dangerous because it can be
difficult to retrofit security in an application [15].

Security patterns are proposed as a means of bridging
the gap between developers and security experts. Security
patterns are intended to capture security expertise in the
form of worked solutions to recurring problems. Security
patterns are also intended to be used and understood by
developers who are not security professionals [12]. The
first person who used the pattern approach was
Christopher Alexander [2], and in his book he indicated
that each pattern describes a problem which occurs over
and over again in our environment, and then states the core

of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice. The “Gang of Four” book, as it is
commonly known, defined design patterns as “descriptions
of communicating objects and classes that are customized
to solve a general design problem in a particular context”
[10].

This paper will study a series of security patterns that
help us implement security requirements in the
applications design. They are patterns that guide the
systems design to make them more secure in a comfortable
and efficient way. The rest of the paper is organized as
follows. In section 2, we will define a template to define
patterns; in section 3, we will describe each one of the
selected patterns in order to make the comparison study.
Then, we will describe the comparison framework that we
have used and we will perform the patterns comparison.
Finally, we will put forward our conclusions.

2. Security Pattern Template

It is advisable that a software pattern is organized into
multiple sections (the total set will be known as template)
that deal with different aspects such as name, problem and
solution. Templates can be defined as we like but always
maintaining the main categories. Thus, each author can
describe all sections he/she considers important according
to his/her viewpoint [14].

In this section, it will be defined a template formed by
the following sections (based on [1, 10]) i) Intent: It
describes what the pattern does, which its rationale and
intent are, and what particular design issue it addresses. ii)
Context: It describes the context of the problem. iii)
Problem: It gives a statement of the problem that this
pattern solves. iv) Description: A scenario that illustrates a
design problem. v) Solution: To give a statement of the
solution to the problem. vi) Consequences: To describe the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

140

trade-offs and results when we use the pattern. vii) Known
uses: Examples of the patterns found in real systems viii)
Related patterns: To list other related patterns that use this
pattern as a reference.

3. Security Patterns Selected

Once the template has been defined, we select a set of
patterns to perform a study of their characteristics and find
out the degree of security that they supply to the systems
that use them. These patterns are as follows: 1)
Authorization Pattern [7]; 2) RBAC Pattern (Role-Based
Access Control) [7]; 3) Multilevel Security Pattern [7]; 4)
File Authorization Pattern [6]; 5) Virtual Address Space
Access Control [6]; 6) Reference Monitor Pattern [6]; 7)
SAP Pattern (Single Access Point), [14, 15]; 8) Check
Point Pattern [14, 15]; y 9) Session Pattern [14, 15].

Due to space constraints, we will not consider all the
sections of the template but only those sections that we
consider relevant to clearly define the considered pattern.

3.1 Authorization Pattern

i) Intent: It describes who is authorized to access the
resources systems ii) Context: Any environment where we
need to control the access to computing resources. iii)
Problem: The permissions granted for security subjects
that have access to protected objects need to be explicitly
indicated. On the contrary, any subject could access any
resource. iv) Description: To structure the different access
policies, we distinguish between active entities (subjects)
and passive resources (protection objects). v) Solution:
The Authorization structure (see Fig. 1) can be captured
from classes and relationships or associations. vi)
Consequences: The solution is independent of the
resources to be protected. The subjects can be executions
of processes, users, roles and group of users; the objects to
be protected can be transactions, memory area, I/0 devices,
files or other resources of the operating system and the
type of access can be reading, writing, execution or
methods in higher level objects.

Fig 1. Authorization Pattern. The active entities are represented by the
Subject class and the passive resources (or resources to be protected) are

represented the by Object class. The relationship between subject and
object describes what subject is authorized to access certain objects

(Rights).

3.2 RBAC Pattern

i) Intent: To control the access resources only based on the
subject role. ii) Context: Any environment where we need
to control the access to computing resources and where
users can be classified according to their jobs and tasks.
iii) Problem: It is necessary to assign rights and
permissions (central authority) in an appropriate way for
users to be able to access the protected objects. iv)
Description: It improves the administration by using roles
that can be assigned to individual users or groups. v)
Solution: It extends the idea of the Authorization pattern
by translating roles as subjects. A basic model for RBAC
is shown in Fig. 2. Users are assigned to roles, roles are
given rights according to their functions and the Right
association class defines the types of access that a user
within a role is authorized to apply to the protection object.
vi) Consequences: When introducing roles, the
administrative effort is reduced because there is no need of
assigning rights to individuals. The roles structure let us
manage big groups as well as reduce rules.

Fig. 2. RBAC Pattern.User and Role classes describe registered users and
predefined roles, respectively. The combination Role, Protection Object

and Rights is an instance of the Authorization pattern.

3.3 Multilevel Security Pattern

i) Intent: It provides a mechanism of access management
in a system with several levels of security classification. ii)
Context: It is applicable to systems that need to provide
several security levels. iii) Problem: How to decide access
in an environment with security classifications. iv)
Description: In many systems, data integrity and
confidentiality need to be guaranteed. This model would
be able to be used in any architecture level and it provides
a structure that allows us to have differente security levels
for both subjects and objects. v) Solution: To represent the
structure of Multilevel Security, there must be an instance
of the class Subject Clasification for each subject and an
instance of the class Object Classification for each object
(see Fig. 3). These instances are used to add levels and
objects security categories to a subject. vi) Consequences:
It facilitates the administrative work in an environment
that requires the classification of subjects and objects. The

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

141

multilevel security can be expensive since subjects and
objects need to be classified into certain levels of
sensitiveness.

Fig. 3. Multilevel Security Pattern

3.4 File Authorization Pattern

i) Intent: To control the access to files in the operating
system. ii) Context: Operating systems users need to use
files to store information and access must be restricted
only to authorized users. iii) Problem: Files can contain
important information and the access to them must be
carefully controlled. As files can be shared, it is difficult to
impose security. iv) Description: There can be different
categories of subjects (users, roles and groups). All these
subjects can be uniformly managed and must be
authorized to access files, directories and workstations. v)
Solution: To specialize the Authorization pattern as it is
shown in Fig. 4. vi) Consequences: It can contain a variety
of subjects (users, roles and groups) that can be structured
in a recurrent way. Access objects can be simple files or
directories or recurrent structures of directories and files;
and all files within a directory can have the same types of
access.

Fig. 4. File Authorization Pattern. Two versions of the Authorization
pattern 1) Replacing objects by files or directories, and rights by access

permissions and 2) the same subject and objects are replaced by
workstations.

3.5 Virtual Address Space Access Control Pattern

i) Intent: To control the access by processes to specific
areas of their virtual address space (VAS) according to a
set of predefined access types. ii) Context: Each process is
executed in its own address space. The allowed accesses
are reading, writing and executing, and other types. iii)
Problem: Processes must be controlled when they access
memory, otherwise they could overwrite areas from other
processes or gain access to private information. iv)
Description: There is a variety of structures of virtual
memory addresses space: some systems use a separate set,
others an only level address space. Furthermore, VAS can
be divided into users and operating system. We would like
to control the access to all these kinds in a uniform way.
This implies that an implementation of the solution will
require a specific hardware architecture. However, the
solution must be independent of the hardware. v) Solution:
To divide VAS into segments corresponding to logical
units within the programs. To use descriptors to indicate
access rights such as the beginning address of the accesible
segment, the limit of the accesible segment and the type of
allowed access (reading, writing, executing). Fig. 5 shows
a diagram to indicate the solution to the class. vi)
Consequences: This pattern provides a protection of the
required segment because a process cannot access a
segment without an own descriptor. If all resources are
outlined in a virtual address space, the pattern can control
the access to any kind of resource, including files. The
solution is dependent of the hardware.

Process

Descriptor

base
limit
access_type

*

VAS

Segment

address
size

*

* 1Accesses

Fig. 5. Virtual Address Space Access Control Pattern. A process (Process
class) must have a descriptor (Descriptor class) to access a segment in the

VAS.

3.6 Reference Monitor Pattern

i) Intent: To make it possible that all authorizations are
fulfilled when a process requires resources. ii) Context: A
multiprocess environment making petitions by resources.
iii) Problem: If the defined authorizations are not fulfilled,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

142

processes can execute all kind of illegal actions, for
instance, any user could read any file. iv) Description: To
define authorization rules is not enough; these rules must
be imposed when a process makes a petition to a resource.
There are many implementations and we need an abstract
execution model. v) Solution: To define an abstract
process that intercepts all petitions from resources and
confirms them. Fig. 6 shows us a class diagram in which
we can see a Reference Monitor. vi) Consequences: If all
petitions are intercepted, we can assure that they fulfil the
rules. The specific implementations are necessary for any
kind of resource. To check each petition can mean a
performance loose.

Fig. 6. Reference Monitor Pattern. Authorization rules indicate a
collection of authorization rules organized as ACLs (access control lists)

3.7 Session Pattern

i) Intent: To provide us with an environment where a
user’s rights can be restricted and controlled. ii) Context:
Any environment where we need to control the access to
computing resources. iii) Problem: Depending on the
context, for example, within a certain application, a user
will only activate a subset of the authorizations he/she has.
This will avoid that users use their rights wrongly (for
instance, to accidentally delete certain files). In this way, if
an attacker endangers a process, the damage potential is
reduced. iv) Description: In many systems, global
information is necessary in several points. To overcome
this problem, Session objects that provide the necessary
information are used. v) Solution: Fig. 7 shows us
elements of a class diagram session. A subject can be in
several sessions at the same time and it has a limited
lifetime. When we start a session (for example, when
registering ourselves), a user only activates a set of
authorization contexts assigned to him/her, then, only the
necessary rights are available within this session. vi)
Consequences: Each session gains all privileges that are
necessary to carry out the desired tasks. Thus, damage will
be potentially reduced when a session is in danger because
only an activated subset of authorization can be wrongly
used.

Fig. 7. Session Pattern. The Subject class describes an active entity that
accesses the system and asks for resources. The AuthorizationContext
class describes a set of contexts of executions or active rights that the

user has in a given interaction.

3.8 SAP Pattern

i) Intent: The Single Access Point pattern defines one
single interface for all communication with system
external entities in order to improve control and
monitoring. ii) Context: SAP can be applied to self-
contained systems that need to communicate with external
entities. It can be used at the application-level as well as at
the host or network-levels, even though implementation at
the abstraction-level of application development is more
apparent at first glance. Application at the network-level
implies that all sub-nets inside the system's boundaries are
isolated from other nets. The only connection to the
outside is a Single Access Point. While we assume virtual
isolation of system internal entities in high abstraction
levels, lower design levels have to include this goal in their
models (for example by adding encryption, signing of
messages, and tokens that guarantee freshness). The
system's deployment structure determines where further
securing effort is necessary. iii) Problem: A security model
is difficult to confirm when it has multiple main, back and
lateral doors to come in the application. iv) Description:
Due to various access points, many systems cannot be
protected effectively against attacks from the outside.
Hidden back doors and different (inconsistent)
implementations of security policies aggravate protection.
The application of the Single Access Point pattern
prevents external entities from communicating directly
with components in the system. All inbound traffic is
routed through one channel, where monitoring can be
performed easily. Additionally, the Single Access Point is
an appropriate place for capturing an information log on
the parties currently accessing the system. This data may
be useful inside the system to verify certain access
requests and to determine their rights. v) Solution: SAP
represents the only connection of the system with outside
(see Fig. 8). All incoming communication petitions are
taken to the SAP instance that works as a mediator. If

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

143

certain policies need to be imposed, all petitions should be
sent to a Check Point class before they are transmitted to
their addresses. vi) Consequences: SAP will provide a
good place to capture register information as well as to
carry out authorization tasks. The undesirable modification
of data can be avoided with efficient checks that let us
access the system. Confidentiality can also be improved as
disclosure of information to unauthorized parties is more
unlikely. Every access will pass the Single Access Point
and can be monitored. Undesirable modification of data
can be prevented better by efficient checks who is allowed
to access the system (integrity). Availability may be
reduced if the Single Access Point cannot handle all
accesses concurrently. Denial of Service (DoS) Attacks
can be prevented more efficiently. All information that is
necessary for their detection can be gathered at the Single
Access Point.

Fig. 8. SAP Pattern and Check Point Pattern

3.9 Check Point Pattern

i) Intent: It states a structure to check the incoming
petitions. If it finds violations, this pattern is in charge of
taking the appropriate countermeasures. ii) Context: Check
Points are applicable in any security-relevant
communication. It can be used at each abstraction-level
from inside-application-level to network-level. In order to
perform a check, the system needs to have a policy that
will be enforced. The Check Point implementing that
policy should be able to distinguish between user mistakes
and malicious attacks. iii) Problem: In order to prevent
unauthorized access it is vital to check who interacts in
which manner with a system. It can be a difficult task to
determine whether a given access should be granted or not.
Any secure system needs a component that monitors the
current communication and takes measures if necessary.
iv) Description: It needs to take any kind of action, if there
are mistakes depending on the seriousness. v) Solution: A
Check Point is a component that analyzes all petitions and
messages. A SAP is predestined to be combined with a
Check Point for all messages to be supervised (see Fig. 8).
It implements a method to check messages according to
the current security policy. It gives place to actions that

could be necessary to protect the system against attacks.
vi) Consequences: Its application can benefit the system
confidentiality, if the checking algorithm is correct.
Undesirable modifications can be filtered if the checking
algorithm is able to detect those attacks. Complex
checking routines can make both the system and the
message interchange work slower. Denial of Service (DoS)
attacks can be prevented, if the Check Point algorithm
takes appropriate actions. Maintenance of security-relevant
code will be easier if it is located at one position. Though,
complexity of the check algorithm is, depending on the
implemented policy, high. Some communication activity
might be prevented even if it is not harmful. A high-
quality check algorithm is vital.

4. Comparative Framework

In this section, we will put forward a comparison based on
certain criteria that we consider important for security with
the purpose of distinguishing all properties and
characteristics of all previous patterns as well as showing a
general vision of the subject. There are some comparisons
[14] of patterns with certain criteria or security principles
[13]. Some of these defined criteria are based on the works
of Babar [3] and Firesmith [9], in which they select the
most commonly used attributes and security properties in
the security dominion. The used criteria to make our
comparison are the following: Authentication: It must be
validated the identity of customers to frustrate any
disauthorized access. Authorization: This attribute defines
the access privileges of entities to different resources and
services of a system. Integrity: To guarantee that data and
communications will not be compromised by active
attacks. Confidentiality: The guarantee that information is
not accessed by disathorized parts. Attacker detection: To
be able to detect and register access or modification intents
in the system coming from disauthorized users. No-
Repudiation: It prevents that certain participant in certain
interaction can deny to have participated in it. Auditability:
To let the security staff audit the state and use of the
security mechanisms. Maintainability: It facilitates the
introduction or modification of the security policy during
the software development life cycle. Availability: It
assures that authorized users can use the resources when
they are required. Reliability: It assures the system
operations due to failures or configuration mistakes.
Besides, it assures the system availability even when the
system is being attacked. Error management: A system
must provide a robust error management mechanism.
Performance: It indicates the impact of the pattern on the
functioning of a system. Implementation cost: Costs
accompanying the pattern use. Security degree: It indicates
the security level that the pattern has for the function it
fulfils.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

144

Table 1. Patterns Comparative Table for the selected security criteria

As it can be seen in Table 1, many patterns share the
same security properties but each one of them is designed
for a specific function. There are not two different patterns
having the same purpose; some patterns use others as a
basis, amplifying the design and incorporating into this
new pattern a new characteristic that improves security.
The majority of found patterns are based on guaranteeing
access control, supplying confidentiality and in some
cases, also integrity and reliability, but they do not take
into account properties as important as error management,
flexibility or maintenance, etc. There are patterns with a
high degree of security but they are complex patterns.
Then, if we want to have a system with a high degree of
security, they will be also more complex systems,
affecting their performance. Developers (not security
experts) can find many security patterns but it is very
difficult to determine which pattern is better to be used or
which pattern guarantees certain degree of security. For
this reason, we find a lack of a method or a flexible model
of security architectures that guarantees security of the

system in many aspects and that guides developers in the
right way for the security implementation in their systems,
according to the specific requirements of them [11].

Our future work will be that of studying the different
security architectures existing in the systems design
together with defining a method to specify flexible
security architectures that can be easily adapted to systems
with very different security requirements as well as
guarantee security.

Acknowledgements

This research is part of the following projects:
DIMENSIONS (PBC-05-012-2) financed by FEDER and
by the “Consejería de Ciencia y Tecnología de la Junta de
Comunidades de Castilla-La Mancha” (Spain), RETISTIC
(TIC2002-12487-E) and CALIPO (TIC2003-07804-C05-
03) granted by the “Dirección General de Investigación del
Ministerio de Ciencia y Tecnología” (Spain).

A
ut

he
nt

ic
at

io
n

A
ut

ho
riz

at
io

n
In

te
gr

ity

Co
nf

id
en

tia
lit

y
A

tta
ck

er
s d

et
ec

tio
n

N
o-

R
ep

ud
ia

tio
n

A
ud

ita
bi

lit
y

M
ai

nt
ai

na
bi

lit
y

A
va

ila
bi

lit
y

Re
lia

bi
lit

y
Er

ro
r m

an
ag

em
en

t
Pe

rf
or

m
an

ce
Im

pl
em

. C
os

t
Se

cu
rit

y
de

gr
ee

Authorization χ χ χ1 χ χ —a L M

RBAC χ χ χ1 χ χ †c M M

Multilevel χ χ5 χ6 χ1 χ χ —d H H

File Access χ χ χ1 χ χ †e L M

Virtual Address χ χ7 χ7 χ1 χ †f L M

Reference Monitor χ χ7 χ7 χ1 χ χ7 — H H

SAP χ χ χ2 χ χ χ χ χ χ χ —b H H

Check Point χ χ χ2 χ2 χ χ χ χ χ —b H H

Session χ χ χ χ1 χ3 χ χ4 †c H H
1. Only detection. 2. efficient check algorithm. 3. first step development. 4. Subset of the authorizations activated. 5. Bilba model. 6.
Bell LaPadula model. 7. To process level. a) Many users. b) complex checks. c) Efficient implementation. d) Evaluation access
rights. e) Tree of directories. f) If it uses Reference Monitor.

H : High;
M : Medium;
L : Low;
? Reduce;
? : Increase;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

145

References

[1] AGCS, "AG Communication System. Template Pattern,"

1996.

[2] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern

language: towns, builings, construction. New York: Oxford
University Press, 1977.

[3] M. A. Babar, X. Wang, and I. Gorton, "Supporting Security

Sensitive Architecture Design," presented at QoSA-SOQUA
2005, 2005.

[4] M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A. Stafford, C.

B. Weinstock, et al., "Quality Attribute Workshops (QWAs).
Third Edition.," Carnegie Mellon. Software Engineering
Institute. CMU/SEI-2003-TR-016, August 2003 2003.

[5] L. Bass, P. Clements, and R. Kazman, "Software Architecture

in Practice," 2nd ed: Addison-Wesley, 2003

[6] E. B. Fernandez, "Patterns for Operating Systems Access

Control," presented at 9th Conference on Pattern Languages
of Programs, PLoP 2002, Allerton Park, Illinois, USA, 2002.

[7] E. B. Fernandez and R. Pan, "A pattern language for security

models," presented at 8th Conference on Pattern Languages
of Programs, PLoP 2001, Allerton Park, Illinois, USA, 2001.

[8] D. G. Firesmith, "Commom Concepts Underlying Safety,

Security, and Survivability Engineering," SEI CMU/SEI-
2003-TN-033, December 2003 2003.

[9] D. G. Firesmith, "Specifying Reusable Security

Requirements," Journal of Object Technology, vol. 3, pp. 61-
75, 2004.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software:
Addison-Wesley, 1994.

[11] C. Gutiérrez, E. Fernández-Medina, and M. Piattini,

"Towards a Process for Web Services Security," presented at
WOSIS'05, Miami, Florida, USA, 2005.

[12] D. M. Kienzle and M. C. Elder, "Final Technical Report:

Security Patterns for web Application Development,"
February 2005.

[13] J. Viega and G. McGraw, Building Secure Software - How

to Avoid Security Problems the Right Way., 1st ed: Addison-
Wesley, 2002.

[14] R. Wassermann, "Using Security Patterns to Model and

Analyze Security Requirements," 032.04/E, 9th March 2004.

[15] J. Yoder and J. Barcalow, "Architectural Patterns for

Enabling Application Security," presented at 4th Conference
on Patterns Language of Programming, PLop 1997,
Monticello, Illinois, USA, 1997.

David G. Rosado has an MSc in Computer
Science from the University of Málaga
(Spain) and currently he is a PhD Student at
the University of Castilla-La Mancha. His
research activities are focused on security
architectures for Information Systems. He
has published several papers in national and
international conferences on these subjects.
He is a member of the ALARCOS research

group of the Information Systems and Technologies Department
at the University of Castilla-La Mancha, in Ciudad Real, Spain.
His e-mail address is: david.grosado@uclm.es.

Carlos Gutiérrez has an MSc from the
Autonomous University of Madrid (Spain)
and currently he is a PhD candidate and
Assistant Professor at the University of
Castilla-La Mancha. He has developed his
professional activities in national and
international companies doing consultancy
work. He is currently an Internet analyst in
Sistemas Técnicos de Loterías del Estado

(State Lotteries’ Technical Systems). His research activities are
focused on web services security and secure software
architectures. He has published several papers in international
conferences and diverse articles in national and international
journals on these subjects. He is participating at the ALARCOS
research group and he is an ACM member. His e-mail address is:
carlos.gutierrez@stl.es.

Eduardo Fernández-Medina holds a
PhD. and an MSc. in Computer Science
from the University of Sevilla. He is
Assistant Professor at the Escuela Superior
de Informática of the University of
Castilla-La Mancha at Ciudad Real
(Spain), his research activity being in the
field of security in databases,
datawarehouses, web services and

information systems, and also in security metrics. Fernández-
Medina is co-editor of several books and chapter books on these
subjects, and has several dozens of papers in national and
international conferences (DEXA, CAISE, UML, ER, etc.).
Author of several manuscripts in national and international
journals (Information Software Technology, Computers And
Security, Information Systems Security, etc.), he is a member of
the ALARCOS research group of the Information Systems and
Technologies Department at the University of Castilla-La
Mancha, in Ciudad Real, Spain. He belongs to various
professional and research associations (ATI, AEC, ISO, IFIP
WG11.3 etc.). Eduardo’s e-mail is eduardo.fdezmedina@uclm.es.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

146

Mario Piattini has an MSc and a PhD in
Computer Science from the Politechnical
University of Madrid. He is a Certified
Information System Auditor from the ISACA
(Information System Audit and Control
Association). Full Professor at the Escuela
Superior de Informática of the Castilla-La
Mancha University (Spain) and author of
several books and papers on databases,
software engineering and information systems,

Piattini leads the ALARCOS research group of the Information
Systems and Technologies Department at the University of
Castilla-La Mancha, in Ciudad Real, Spain. His research interests
are: advanced database design, database quality, software metrics,
object- oriented metrics and software maintenance. His e-mail
address is Mario.Piattini@uclm.es.

