
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

160

Manuscript received February 25, 2006.
Manuscript revised February 28, 2006.

Semantic Relation Based Exception Detection
in Workflow Systems

LI Hai-bo†,†† , ZHAN De-chen † ,XU Xiao-fei †

†Centre of Intelligent Computing of Enterprises, School of Computer Science&Technology, Harbin Institute of
Technology, Harbin 150001, China

††Engineering College, Northeast Agricultural University, Harbin 150030, China

Summary
Due to foreseen or unforeseen situations, deviations of workflow
processes from their specifications are unavoidable. To reduce
exceptions at run-time, exceptions should be found out first. An
approach to detect exceptional path of workflow is presented.
The proposed method analyzes the semantic relations between
business activities first, and then describes them as data
dependency rules. Using these rules, as a kind of semantic
supplement to workflow control rules, the given exception
detection algorithm can search all anticipative paths of
workflow; hence identify all exceptional paths. Without changing
workflow schema, the semantic rules can help to avoid
exceptional paths, so as to reduce the possibility of executing
ineffectual business processes. In addition, the method keeps the
rationality of business process logically. Finally, a practical
example is given to explain the exception detection algorithm.
Key words:
workflow; exception detection; semantic relation; data
dependency rule; control rule

1. Introduction

A workflow is the automation of a business process, in
whole or part, during which documents, information or
tasks are passed from one participant to another for action,
according to a set of procedural rules [1]. At build time,
business processes are defined in workflow schema.
Execution order of activities forms workflow path at run
time. However, due to foreseen or unforeseen situations,
such as system malfunctions due to failure of physical
components, database broken down, data error or changes
in business environment, deviations of those workflow
processes from their specifications are unavoidable [2-6].
The deviations are often called exception. What is
exception depends on what we plan and what we can
achieve, between which there are always conflicts [7].
Since it is impossible or time-consumed for developers to
predefine all potential exceptions in a workflow, especially
those special cases which seldom happen, exceptions
occur frequently during the execution of a business
process. In addition, if similar exceptions frequently arise,
they are always added into workflows schema as foreseen
exceptions. This results in a more and more complex
schema. Therefore, a WFMS (Workflow Management

System) has to provide exception mechanisms to deal with
constant amendment and other models related with it.

Among many causes of exception, one arises from
semantic relation between activities in workflow. For
example, in an equipment maintenance process, some
broken-down spare parts must be relegated to other
companies, and therefore if workflow system knows this
knowledge as early as possible, the process involving
dispatching, picking and repairing, which is doomed to
failure in future can be avoided, and can be turned to the
activity ‘repair on commission’ directly. This type of
exception occurs all the same although workflow schema
is correct. So semantic exception in workflow systems in
our view refers to unsuccessful situations caused by
lacking, malapropos or illogic semantic relation.

An information system should be able to fulfill three
functions about exception: to know, detect and resolve,
among which to detect semantic exception is one of the
important tasks in exception handling. The objective of
semantic exception detection is to capture failure in
workflow systems. We believe that capturing semantic
exception should depend on semantic characteristic. Many
researchers have discussed related methods. In Ref. [7],
exception detection can be achieved by supervising the
external inputs and outputs of workflow system
components, and comparing their behavior with the
specified behavior of the system. In Ref. [8], exception
detection can be treated as programming languages. All
these approaches have less operability or more complexity.
Exception handling can be described in workflow model
[9], but these can lead to more complex schema that is
difficult to understand. So it is significant to detect
exception in future workflow path without modifying
workflow schema before successor activities are executed,
especially in those processes which consume much more
manpower and material resources.

This thesis analyzes the basic feature of workflow
first, and mines data dependency relationship between
business activities. The data dependencies, as a kind of
supplement to workflow control rule, are employed by the
given exception detection algorithm to detect unsuccessful
paths beforehand in workflow schema. Because the
proposed exception detection approach is based on the
basic feature of workflow, it can be applied in various

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

161

environments. Employing the approach, not only
complexity and increasing maintenance cost of workflow
model caused by modification can be avoided, but also
rationality of business process logically can be kept.

The rest of the paper is organized as follows. Section
2 analyzes foundational features of workflow. In section 3
an intelligent research algorithm is explained and in
section 4, a practical example is given to verify the
effectiveness of this approach. Finally, section 5 shows the
conclusion.

2. Foundational Features of Workflow

A workflow schema is the formal description of a
business process, which is operated and executed
automatically by WFMS. A WFMS consists of two parts:
modeling and executing. Workflow specification given in
the modeling phase defines attributions related with run-
time data, such as input and output data. At run time,
execution of activities forms paths, i.e. workflow,
following logical relation and dependency rules defined in
workflow specification. The WFMS coordinates business
activities in a business process described in workflow
specification. Logical control relation between activities
depends on four types of control structures, namely
sequence structure, parallel structure, selective structure
and iterative structure, which are defined by Workflow
Management Coalition (WfMC) [1]. Besides control
dependency between activities, there exists data
dependency, for example, data input of one activity
depends on data output of other activities. These basic
features, as foundation of workflow, are defined by
workflow specification. We give some definitions about
workflow specification and these features first.
Definition 1(Workflow Specification) Workflow
specification ws is a triple ws=(N, F, R), where N
={n1,n2,…,nn} is a set of activity nodes, F={ fi
|fi=<ns,nt>,ns,nt ∈N }is a set of path between nodes.
R={DR,CR} is a set of dependency rules, where DR
represents a set of data dependency rules and CR is a set of
control rules. There exist only one initial activity ns and
one final activity ne.

Path <ns,nt> represents a partial order between ns and
nt. This partial order can be denoted as nsp nt. In fact,
control nodes should be involved in definition 1. Here we
ignore control nodes due to its unimportant effect.

Partial order between activities depends on control
rule. In information system, dependency rules act as
function or predication, including data dependency rule
and control rule. The former refers to dependency based
on data at run time, while the later refers to dependency
based on logical control relation.

Definition 2(data dependency) Let ai.D and aj.D be data
operated by activity ai and aj respectively. If producing
aj.D needs to read ai.D, say that there exists data
dependency between activity ai.D and aj.D. If producing
aj.D must satisfy Pi(ai.D)=TRUE, then Pi is data
dependency rule between ai.D and aj.D, denoted as
Pi(ai.D)→aj.D where Pi∈DR is predication of
dependency rule, while if there does not exist data
dependency relation, denoted as Pi(ai.D) aj.D.

Exceptions caused by semantic deviations need to be
caught by analyzing semantic relation between activities,
such as data dependency. The data dependency between
activities is composed of two categories: explicit
dependency and implicit dependency. The former refers to
the relation of data input and output between different
activities, while the later characterizes that business
activities are triggered by others depending on some
global data or changing states. In the case of implicit
dependency, data is not transferred explicitly, for example,
the state of an order list is changed after being authorized,
and the activity purchase is triggered. Timing triggering in
workflow system is another example of implicit
dependency.

The given data dependency is concerned with
relationship between different activities. For data inside
the same activity, the dependency rule is guaranteed by
itself. So we say that Pi(ai.D) is precondition of executing
aj if Pi(ai.D)=TRUE is met when executing aj. In order to
discuss expediently, we suppose that data set used to write
does not intersect with each other for avoiding data
writing conflicts.
Definition 3(control dependency) For ∀ai,aj, if a partial
order can be determined between ai and aj , according to
P∈CR, controlled by four basic control structures, we say
that there exists control dependency between ai and aj ,
denoted as ai

P aj. P is called control dependency rule,
for short, control rule.

3. Exception Detection of Workflow

3.1 Some Properties of Workflow Schema

Execution of activities in logistic order forms a flow at run
time, which can be described by directed graph. In the
graph, nodes represent activities, and directed arcs denote
logistic order of nodes, i.e. control dependency between
activities. The formal model is transformed to a middle
language which can be recognized by computer, and is
called workflow specification generally. Directed arc is
also used to describe data flow, i.e. data dependency
between activities. Depending on different significations
of arc, we define two types of directed graphs. If arc

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

162

represents control flow, the graph is called control
dependency graph, denoted as GCtrl, while if data flow, the
graph is called data dependency graph, denoted as GData.

The two ‘flow’s formed by data dependency and
control dependency between activities are not always
consistent. In some situations, after an activity node
completes, it offers data not only to next node which has
control dependency with it, but also to other nodes without
direct control dependency with it, while the ‘other nodes’
have not reasonable control dependency relation with the
node which has been completed, so that this situation can
not be described in GCtrl [10]. In Fig.1, activity c is not
directly connected with node a, but there exists data
dependency between them, as dotted line. Though GCtrl
and GData are not always consistent, the following
properties are useful.
Property 1 If control dependency exists between nodes in
GCtrl, data dependency exists between them also.
Proof. Give two nodes a and b, and control dependency
between them, having order a p b or b p a. Assume
Pi(a.D) b.D, i.e. input data of b is not read from
output data of a, then there exists uncertain logistic order
between them, i.e. none control dependency between them
is available. Therefore, the reasoning result conflicts with
the assumption ap b or bp a.

If node c is a successor of node b, showed in Fig.2(a),
node b must provide some data to node c, i.e. there must
be data dependency between node b and c, or node c
need not be successor of b. For example, activity b and c
can execute in parallel theoretically, see Fig.2(b).

a b c

Fig.1 data dependency relation between activities

(a)

a b c

(b)

a
b

c

Fig.2 control dependency relation between activities

Property 2 GCtrl of workflow is a subgraph of its GData,
and they have equal amount of vertexes.
Proof. Let amount of vertexes in GCtrl and GData be m and
n respectively. If m<n, there exists at least an activity a,
and its position in GCtrl is uncertain, that is, having no
certain partial order with other nodes. This conflicts with
definition 3. If m>n, it does not satisfy property 1. So they
must have equal amount of vertexes. Let amount of arcs of
GCtrl and GData be s and t respectively. Assume s>t, this
does not satisfy property 1, either. So we get s≤t, i.e. GCtrl
of workflow is a subgraph of its GData.

3.2 Exception Detection Algorithm of Workflow

Constrained by a set of control dependency rules CR,
execution of activities forms a path. Property 2 concludes
that data dependency rules, as a kind of semantic
supplement, enrich control rules of routing if they are
considered before routing. Control rules take effect only
when the last activity completes, and its next activity will
be started. Whereas, data dependency rules can be applied
at any run time as long as activities that produce output
data complete. By using exception detection algorithm to
search all possible paths before starting an activity, a
WfMS can detect those consequentially unsuccessful paths
in future. These paths are exceptional paths. This is the
core of ideology for exception detection in workflow. In
addition, some data related with data dependency rule take
effect only when its activity completes. The following are
some definitions.
Definition 4 (path) In sequence p, where
p=<n1,…,nt>,nj∈N,j=1,…,t, if <ni,ni+1>∈F, i=1,…,t-1,
say p is a path in workflow specification ws.
Definition 5 (Available Data) Activity node n completes,
say n.D is available data, denoted as Available
(n.D)=TRUE.
Definition 6 (Exceptional path) On path p=<n1,…,nt>,
for ∀nj∈N,j=1,…,t, and all data dependency relation
Pi(ni.D) →nj.D, Pi∈DR, if ∃Pi(ni.D) = FALSE and
Available (ni.D) = TRUE, say that p is exceptional path.
Exceptional path is always denoted as Valid(p), which
returns a boolean variable. If Valid (p) = FALSE, p is
exceptional path.

The definition of exceptional path shows that data
operated in an activity will have impact on its next activity
in the same path when the activity has completed. This
impact is characterized by data dependency rules, which
provide more semantic rules to identify exceptional paths
in workflow. In order to detect exceptional paths,
exception detection algorithm search GCtrl first. We
consider GCtrl as DAG (Directed Acyclic Graph) [11].
Soundness of workflow schema requires that it be
reachable from the start node to any other nodes and
further more, that it be also reachable from any reachable
nodes to the end node, and that there be only one start
node and one end node in a workflow schema [11]. In GCtrl,
all workflow execution sequences have only one entrance
because in workflow graph it is the only node which has
not any incoming arcs, but has outgoing arcs. Similarly, in
workflow schema there is only one end node which has
not outgoing arcs, but has incoming arcs. Starting from
any node, the execution path must be able to end at node
ne [12].

We adopt traditional data structure - adjacent table to
store GCtrl. Let adjlist be adjacent table of GCtrl, adjlist[i]
be a list headed by node ni, node ni1,ni2,…, and nim be m

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

163

activities adjacent to ni. Let P and temp be array list used
to store path, Q be node list. Define the following basic
functions: FIRSTADJ(GCtrl ,ni) represents the first adjacent
of node ni, NEXTADJ(GCtrl, ni ,nj) represents the next
adjacent node of adjacent node nj of node ni,
EnQueue(Q,v) and v=DeQueue(Q) represent the function
of inputting node v to list and outputting node v
respectively, GetPath(P,v) represents the function of
getting all paths whose last node is v, PutPath(p,v)
represents putting node v to the end of each path p, and
COPYLIST(P1,P2) represents copying all paths from P2
to P1.
Algorithm 1 AllPath(GCtrl, v0) - seek all paths from any
node v0 to end node ne.
Input: GCtrl and any node v0 in GCtrl, v0≠ne
Output: set of all paths Path={p1,…,pk}, between node v0
and ne
Q=∅; EnQueue(Q, v0); Path [1]=< v0>;
While Q≠∅ do
 v = DeQueue(Q);
 w = FIRSTADJ (GCtrl , v);
 temp = ∅;
 temp = GetPath(Path , v);
 While w≠∅ do
 PutPath (temp , w);
 COPYLIST(Path , temp);
 EnQueue(Q , w) ;
 NEXTADJ(GCtrl , v , w);
 Return Path;

In fact, algorithm 1 is a Breadth First Search(BFS) in
GCtrl, and gets out the set P of paths, and P≠∅ as long as
v0≠ne, whose integrality is guaranteed by Ref.[12]. GData of
workflow is a semantic supplement to GCtrl. By property 2,
given a path, algorithm 2 is employed to detect its validity.
Define a basic function first: P=GetRule(nj.D) represents
getting the set of data dependency rules which are
depended by nj.D.
Algorithm 2 ExceptionChecking(p) – detecting
exceptional path
Input: p=<n1,…,nt>
Output: boolean value
j=1;
while j<t do

P = GetRule(nj.D);
While P≠∅ do

P ←P – {∀Pi| Pi ∈ P };
If Pi(ni.D) =FALSE and Available (ni.D)=TRUE

then
return FALSE;
j=j+1;

return TRUE;
At any time when an activity completes, and the next

activity will be started, algorithm begin to identify validity
of all possible paths which the next activity belongs to first,

and then search all exceptional paths. The result provides
semantic support for scheduling next activity.
Algorithm 3 SearchAllExceptionPath(GCtrl, v0)-search all
exceptional paths
Input: GCtrl and any node v0 in GCtrl,v0≠ne
Output: all exceptional path Path={pm,…,pn} between v0
and ne
P = AllPath(GCtrl, v0);
While P≠∅ do
 P ← P - {∀Pi| Pi ∈ P };
 If ExceptionChecking (Pi) = FALSE then
 Path ← Path ∪ { Pi };
return Path;

Through semantic supplement, search algorithm for
exceptional path is actually a strategy of searching forward.
The algorithm not only offers more semantic support to
schedule activities in workflow, it but also provides
decision support to workflow participants, and avoids
executing unsuccessful paths.

3.3 Algorithm Analysis

When identifying exceptional path, the set of data
dependency rules applied in some paths are conditions, so
we consider the time complexity of traversing paths as the
performance of algorithm. In order to search all paths from
node v0 to ne, algorithm 1 must re-expand those visited
nodes. Fully expanded graph is equivalent to a tree whose
leaf-nodes are v0, and therefore, the time complexity of the
algorithm depends on two aspects. The first is the amount
of nodes whose out-degree>1. These nodes determine the
amount of re-expanded nodes. The second is the position
of nodes whose out-degree>1. The closer to v0 these
nodes are, the more amount of successors of v0 the
algorithm needs to expand. Assume that OD(v) is out-
degrees of any node v from v0 to ne and L is the longest
path from v0 to ne, where L>1, then the amount of paths is
OD(v0)+∑(OD(vi)-1), where OD(vi)>1. The time
complexity of search algorithm employing adjacent table
is O(L*(OD(v0)+∑(OD(vi)-1)). In the worst situation, all
nodes whose out-degree>1 are close to v0, the longest path
is near to L. In the best situation, all nodes whose out-
degree>1 are close to ve, the longest path is far less than L.
Therefore the actual time complexity of traveling graph is
between O(OD(v0)+∑(OD(vi)-1)) and
≤O(L*(OD(v0)+∑(OD(vi)-1))).

The soundness and reachability of workflow schema
(graph) can be guaranteed by Ref.[12], so the algorithm 1
can search all paths from v0 to ne. Because the intention
applying data dependency rules is to detect exceptional
path, it is beneficial to a WfMS if those exceptional paths
are identified earlier. Only when Available (ni.D)=TRUE
is met, can data dependency rules related with ni.D be
employed.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

164

4. Maintenance of Data Dependency Rule

Data dependency between activities is abstracted from
business rules. Nowadays business rules are mined mainly
through (1) gaining experience of enterprise management;
(2) data mining technology; (3) model mining technology
aimed at workflow [12]. In fact, WfMC does not define
data dependency rule [11], and only define the transfer
condition and workflow relevant data. The former is
equivalent to control rule, while the latter is data mainly
used in control rule. We have expanded the definitions of
WfMC above.
Data dependency rule can be converted to control rule
directly. This changes the structure of workflow schema.
The conversion, however, depends on many factors, such
as traditional business custom of enterprise, soundness of
workflow model, and data independence between
activities. Our method is based on changeless model
structure of workflow in this paper. We use algorithm
instead of conversion to realize detection of exceptional.
The conversion is a research issue in future.

5. Examples

We give an example of equipment maintenance process in
most manufacture enterprises. The following is an
explanation of business process. A request for repair is
submitted to ED(Equipment Department) when a
equipment failure occurs. If it is a common failure,
repairers of workshop can fix it, or another request is
submitted to ED again. At this time, engineers from ED
are dispatched to handle the failure. The repair steps are
composed of evaluating failure, dispatching, picking and
repairing. According to the engineer, if the failed spare
part must be repaired on commission, a third request is
submitted to ED for repairing on commission. The
meanings of business activities are labeled on the nodes in
Fig.3, and the words near the arcs are conditions,
representing control dependency rules between activities.
In order to discuss expediently, the workflow schema is
unwrapped, in which node X,X′and X″denote the same
activities, roles of activities are ignored. To satisfy
definition 1, let’s construct a virtual end activity n9.
Table.1 shows consumed time of each activity, involving
manually and automatically executed by computer.

Fail to
repair

passedpassed

Repair on
commission Picking

Dispatch

Evaluating

n3

n1″n6 n7 n3′ n4′

n5′

n1′

End

Requisition

Recheck

Record
repairing

Count
spare part
in workshop

n2 n4

n5 n8

n1

n9

Fig. 3 Equipment maintenance process

Let us consider the data dependency rule
IsNotConsign(n4.PartID)→n6.PartID. Corresponding
explanation is to judge if PartID needs repairing on
commission when activity n4 completes, and the result
will have an impact on activity n6. In fig.3, if dotted line is
considered, the graph is GData, or the graph is GCtrl. Let
IsNotConsign(n4.PartID)=FALSE, i.e. PartID must be
repaired on commission. After activity n1′completes,
Algorithm 3 is executed. The following is computing steps.

(i) By AllPath(GCtrl, n1′), search all paths between n1′and
n9, the result is PATH ={ Path1, Path2}, see the first
column in Table 2. Note that n1′ and n1″ are the same
activity.

(ii) For every Pathi in PATH, evaluate ExceptionChecking
(Pathi). The computing process is showed in the column
2, 3 and 4 of Table.2

Table 1: Executing Time of Activities (A:activity, ET:Exection time)

Table.2 Computing process (P: IsNotConsign(n4.PartID),F:FALSE)
All paths started by

n1′
P Impacted

activities
by P

Available
(n4.

PartID)

Detecti
ng

result

E
T

Path1=< n1′,n6,n7,
n3′,n4′,n5′,n9>

F n6 TRUE excepti
onal

18

Path2=<n1″,n8,n9> F none TRUE normal 4

Analyzing the computation result:
(i) It can be seen from the computing result that after

n1′executes, Path1 should be avoided and turned to
Path2 to continue execution. Not only executing time
can be shortened, but also the resource consumed by
Path1 can be cut.

(ii) Data dependency rule IsNotConsign can be converted
to control rule. However the conversion will change
workflow model, which violates our approach, as
mentioned in section 1. Our approach has the same
effect as that of changing workflow model.

A ET(mins) A ET(mins) A ET(mins)
n1 2 n4 5 n7 2
n2 0.1 n5 5 n8 2
n3 1 n6 3 n9 0

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.2B, February 2006

165

(iii) How to apply the searching algorithm in a workflow
also depends partly on rationality of practical
business process. In the example above, if searching
algorithm executes before node n1′, it will get the
same result, i.e. repair on commission as soon as
workshop checks repairing (n4), not submitting
request to ED(n1′). However the two business
activities n4 and n8 can not form rational logic, and
do not accord with business custom.

6. Conclusions and Future Work

By analyzing workflow foundational feature, when
routing workflow, data dependency rule can be
considered as an important supplement and restrictive
rules to search and identify exceptional paths of business
process beforehand. This approach not only avoids
complexity modeling caused by new rules and additional
cost, but also keeps rationality of business process. In
addition, detecting exceptional paths also saves
resources, especially those one-off resources.

Although searching algorithm of graph can solve
exceptional detection about semantic failure, for a
complex workflow schema, searching process is time-
consuming. In the future, the algorithm needs to be
enhanced to reduce complexity of searching space, so
that the approach can deal with more complex workflow
model.

Acknowledgments

The Project is supported by the National Natural Science
Foundation of China No. 60573086; The National High-
Tech. R&D Program for CIMS, China Grant
2003AA4Z3210, 2003AA413023 and 2002AA413310.

Reference
[1]Hollingsworth D. The workflow reference model,
Document No. WfMC-TC-1003. Workflow Management
Coalition.1995.
[2]C.Beckstein ,J.Klausner. A meta level architecture for
workflow management. Society for Design and Process
Science,1999,3. Volume 3,No.1,15-26.
[3]Zongwei Luo, Amit Sheth, Krys Kochut, et al.
Exception Handling for Conflict Resolution in Cross-
Organizational Workflows. University of Georgia,
2002.4.10.
[4]Michael Adams, David Edmond, and Arthur H.M. ter
Hofstede. The application of activity theory to dynamic
workflow adaptation issues. In Proceedings of the 2003
Pacific Asia Conference on Information Systems (PACIS
2003), Adelaide, Australia, 2003.7.1836–1852.
[5]M. Klein, C. Dellarocas, A knowledge-based approach
to handling exceptions in workflow systems. Computer

Supported Cooperative Work (CSCW) ,2000,9 (3/4):399–
412.
[6] T. Murata, A. Borgida, Handling of irregularities in
human centered systems: a unified framework for data and
processes. IEEE Transactions on Software Engineering.
2000.10, 26 (10):959– 977.
[7] Zongwei Luo , Amit Sheth , Krys Kochut , John Miller,
Exception Handling in Workflow Systems, Applied
Intelligence, v.13 n.2, 9-11 2000: 125-147
[8] C. Hagen, G. AlonsoException Handling in Workflow
Management Systems.IEEE Transactions on Software
Engineering, Vol. 26, No. 10, 10 2000.
[9]Oberweis, A. Specification of techniques for handling
exceptions with Petri nets. Automatisierungstechnik
1992.40(1) :21-30.
 [10]FAN Yushun. Foundation of Workflow Management
Technique. Beijing: Tsinghua University Press and
Springer, 2001. (in Chinese)
[11]W.M.P van der Aalst. The application of Petri nets to
workflow management. Journal of Circuits,Systems and
Computers, 1998,8(1):21-66.
 [12]W.M.P.Van der Aalst. Verification of Workflow Nets.
In P.Azema and G.Balbo, Editors, Application and Theory
of Petri Nets 1997, Volume 1248 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 1997.407-426.

LI Hai-bo received the B.S.
and M.S. degrees from Heilongjiang
University in 1994 and Northeast
Agricultural University in 2001,
respectively. He is presently a Ph.D
candidate at Center of Intelligent
Computing of Enterprises, School of
Computer Science and Technology
in Harbin Industrial of Technology

of China. His current research areas include ERP, workflow
system and component-oriented development.
ZHAN De-chen He is He is a doctor, professor and doctoral
supervisor of HIT, His research interest includes modern
enterprise management, data and knowledge engineering ,
software reconstruction and reuse
XU Xiao-fei, He is He is a doctor, professor and doctoral
supervisor of HIT, His research interest includes enterprise
intelligent computing, management and decision information
system, ERP, supply chain management, E-commerce and
business intelligent, knowledge engineering and application.

