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Summary 
 
Most intrusion detection systems (IDS) are based on a single 
algorithm that is designed to either model the normal 
behaviour patterns or attack signatures in network data traffic. 
Most often, these systems fail to provide adequate alarm 
capability that reduces false positive and false negative rates. 
We here propose a double multiple-model approach capable 
of enhancing the overall performance of IDS. In a first step, 
every group of identical intrusion detection models are 
combined independently of the rest of the groups to produce a 
fused intrusion detection model. Then all the fused models 
are fused to produce the final intrusion detection model. 
 
Our IDS model adopted three reasoning methods: Naive 
Bayesian, Neural Nets, and Decision Trees. We used Darpa 
attack taxonomy and the KDD Intrusion Detection Dataset to 
demonstrate the working of our IDS model. 
. 
 
Keywords: intrusion detection system, combined detection 
model, fusion method. 
 
1. Introduction 
 
Intrusion detection systems have became a critical component 
of integrated security solution for today organisations. The 
most used intrusion detection systems taxonomy 
distinguishes two main classes: misuse and anomaly detection 
systems. Misuse detection systems called policy-based 
detection systems dispose of signature-base of known attacks. 
When log files are analyzed, these systems trigger an alert 
only if analysed event sequences completely match one of the 
saved signatures. Knowledge-based systems reach high 
detection rate of known attacks. However, a small 
modification in actions sequences of these attacks makes 
them undetectable by misuse systems. Another drawback of 
misuse systems is their incapability to detect unknown attacks. 
Thus anomaly detection or behaviour-based detection 
systems have been designed. These systems are based on 
normal or expected behaviour of system or user. They 
generate an alarm when analyzed activity sequences deviate 
considerably from learned acceptable behaviour. The main 
shortcoming of anomaly detection systems is their high false 
alarm rate [7, 22] 
 

The majority of commercial systems are generally misuse. 
Multiple research activities, last decade, focus on anomaly 
detection system trying to circumvent their shortcomings. In 
these, commercial systems and research prototypes, different 
analysis techniques have been experimented in modelling 
acceptable behaviour of systems or users. However, the 
majority of these works adopt a single algorithm either for 
modelling normal behaviour patterns and/or attack signatures 
which insures a lower detection rate and increases false 
negative rate. In our work, we propose the combination of 
analysis techniques not only to improve the overall 
performance of IDS but also to enhance representation of 
acceptable behaviour patterns and attack signatures. The 
proposed system will take simultaneously multiple aspects, in 
representing patterns or signature, which are provided each 
one by a single detection model. 
 
In this work, we propose the combination of multiple 
techniques for intrusion detection. Multiple algorithms will 
be adopted in implementing our intrusion detection system. A 
rule based, probabilistic and non-linear models will model 
system normal behaviour patterns and signatures of different 
attack categories. Two fusion approaches, probabilistic and 
evidential, will be experimented in combining decisions of 
these detection models. In all our experiments, training and 
testing data sets are those of DARP 1998 IDS evaluation data 
[11]. 
 
Our work is organized into 4 sections. In section 2, the 
proposed architecture of multiple models based IDS will be 
presented. Selected detection models on which is based our 
system will be discussed in section 3. Different combination 
methods and those implemented for pooling decisions of 
detection models will be examined in section 4. A complete 
numerical example is given in section 5 to illustrate 
processing steps performed by our combined detection model 
over all fusion methods. In the last section, we conclude with 
the advantages of the proposed approach and its preliminary 
empirical improvements. 
 
2. Our approach  
 
Multiple attack taxonomies have been proposed based on 
different criteria. DARPA taxonomy is one of the most used. 
It distinguishes (defines) 4 main classes based on intruder 
target. Denial of service (DOS) attacks form the first class of 
DARPA taxonomy. These attacks make computing resources 
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and memory of the target system too busy thus they become 
unavailable and inaccessible by legitimate and authorized 
users. The second class focuses on user-to-root (U2R) attacks 
that are mounted by normal users using multiple password 
guessing techniques to gain super user access to the system. 
The third class regroups attacks mounted remotely, generally 
by outsider entities. Remote-to-local (R2L) attacks exploit 
bugs in network infrastructure to gain unauthorised access to 
the target machine. The last class of probe attacks allow 
information gathering on vulnerabilities and possible exploits 
supported in the target system [11]. 
 
The DARPA taxonomy was used in simulation of data sets 
for IDS evaluation. It will be adopted in this work. Moreover, 
simulated network traffic will be analyzed by our system after 
it is preprocessed and subdivided into three data sets 
according to defined feature categories. In fact, network 
traffic features can be grouped into three main categories: 
basic, content and time-based features. Basic features in 
logged network traffic are extracted from packet header. They 
provide information on intrinsic characteristics of exchanged 
packets such as connection duration, protocol types and flags. 
Content features, extracted from packet content within a 
connection, allow information at access level. They provide 
different indicators on connections status such as the number 
of root and access control files access, the identity of logged 
entity and others. Traffic features, called time-based attributes, 
provide different statistics in the past two seconds on similar 
connections that have the same host or service. 
 
In our approach, we propose a hierarchical combination 
scheme for combining multiple decisions of heterogeneous 
intrusion detection models (Figure 1). Logged network data 
will be broken into three data sets according to defined 
feature categories. In each category, heterogeneous ID 
models will process the associated data set. Their decisions 
will be fused in the first combination level, within the same 
feature category. In the second level, the fused decisions by 
feature category will be forwarded to the final combination 
step or inter-categories combination in order to assign the 
given example to one of the four attack classes or normal 
class. 
 
In the proposed architecture, a set of modelling techniques 
will process each data log associated with a specific features 
category. The set of models consists of three heterogeneous 
classifiers: Decision Tree (DT), Naïve Bayes (NB) and 
Neural Network (ANN) classifiers. The decisions of these 
classifiers are combined locally, within the same feature 
category, then with others in different categories to assign the 
given example to the most likely class. 
 
3. Intrusion Detection Models 
Multiple algorithms have been applied in modelling attacks 
signatures or expected behaviour of the system. In this work, 
the three following models will be adopted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1. Naïve Bayes Model  
Naïve Bayes is one of the most practical and most used 
learning methods when dealing with large amount of data as 
in intrusion detection. The naïve Bayes classifier simplifies 
learning task relying on the assumption that features are 
independent given the class. Moreover, it ensures an accuracy 
level comparable to more sophisticated classifiers (and 
preserves a lower computation cost and complexity than 
these). 
Naïve Bayes classifier is based on probabilistic model for 
assigning the most likely class to given instance. Probabilistic 
model (approach) in classification field allows (model or 
looks for) the estimation of conditional probability of classes 
given instance, p(C/A1,…, AN) where C∈{C1,…,CM} the 
classes and Ai, i=1..N, a set of features describing dataset 
examples. Given a valued example, the most appropriate 
class to be assigned to is the class with the upper a posterior 
probability, 
 
 Argmaxc p(C=c/A1=a1,…, AN=aN) (1) 
 
Bayesian approach splits a posterior distribution into a priori 
distribution and likelihood,  
 

Argmaxc p(C=c/A1=a1,…, AN=aN) = 
 Argmaxc α p(A1=a1,…, AN=aN /C=c) p(C=c)     (2) 

 
 

Where α is normalization factor to ensure that sums of 
conditional probabilities over class labels are equal to 1. The 
distribution of features given class label is more complex to 
estimate. Its estimation is exponential in attribute number and 
requires a complete training dataset with sufficient examples 
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for each class. Such problem can be avoided, if we assume 
independence of features given class, and likelihood 
estimation uses the following formula. 

 
 p(A1=a1,…, AN=aN /C=c)=Πi p(Ai=ai /C=c) (3) 

 
This assumption is called Naïve Bayes assumption. It means 
that attributes have no joint impact within the data set of 
single class [10]. 
 
3.2. Neural Network Model 
ANN is one of pattern recognition technique that has the 
capacity to adaptively model user or system behaviour. This 
algorithmic technique can built a useful model of user or 
system behaviour relying on a reduced amount of log data. 
Thus, it is useful for IDS where experimented hacker can 
sometimes alter system or applications log files to hide their 
mounted attacks. Moreover, ANN technique has been 
employed in modelling anomalous data and detection of 
attacks signs in intrusive data. In [3, 15] ANN was capable to 
autonomously learn attack signature. In addition, it is able to 
detect learned attacks (encountered in training data) and 
relying on its generalization capacity it is able to identify and 
learn new unseen attacks 
 
ANN is a powerful technique for modelling complex 
relationship between input and output data. It consists of a 
network of computational units that implement a mapping 
function to approximate the desired output relying on a 
training data set. The network units or neurones are highly 
interconnected. Each unit receives weighted inputs to 
compute its activation and feeds a single output to other 
neurones that perform the same task. Each connection 
between two processing units has a weight which can be 
updated from iteration to another to adapt the network to the 
desired outputs [17]. 
 
In neural network, processing units are organized into layers. 
The input layer is the first layer the network structure. 
Neurons in this layer don’t perform any task rather than 
feeding input data to other neuron layers. The number of 
neurons of this layer depends on the dimensionality of logged 
network traffic data. The structure of ANN disposes a single 
input layer which is connected to the first hidden layer of 
neurons and may be to other layers in specific architectures 
(Recurrent Neural Network). The neural network can be 
formed by single or more hidden layers. Processing units of 
this layer process input data and give their weighted outputs 
to neurons of either the next hidden layer or the output layer. 
The last is the final neuron layer in the network structure. It 
returns the decision of the network to the given problem. The 
neurons of the output layer are connected either to those of 
input layer or the hidden layer. Their number depends on the 
treated problem. It can be a single neuron when dealing with 
function prediction problem or multiple neurons in the case of 
classification problem such for intrusion detection. 

 
3.3. Decision Tree Model 
Decision tree (DT) is one of the most used machines learning 
technique, the last decades, in intrusion detection field. This 
machine learning technique builds a tree structure of attack 
signature using anomalous log data as in [14]. Moreover, the 
normal behaviour of a system or a user can be traduced in a 
tree structure as in [24]. The decision tree technique was 
applied both for misuse and anomaly detection either for 
network or single host [25]. 
 
The DT classifier consists of decision and leaf nodes. Each 
decision node corresponds to a test over a single attribute of 
the given instances. It has different branches on other 
decision or leaf nodes that represent the possible values of the 
actual feature. Leaf nodes represent the possible attack and 
normal class labels that can serves as an output when 
classifying a new example.  
 
Generally, the DT classifier is generated relying on two 
phase’s process. The dimensionality reduction is the first 
phase in DT building process. In this phase, the appropriate 
decision nodes are selected.  This phase is required in every 
learning problem and it aims at reducing the complexity of 
learning process and optimizing the decision process of the 
learner when dealing with high dimensionality feature space. 
Multiple techniques can be used to extract relevant features to 
the actual learning task (selection criterion, GA).  In the 
literature, information gain measure is one of the most used 
selection criterion [9, 25, 28]. It evaluates the effectiveness of 
an attribute in classifying training examples and serves for 
ranking features according their computed relevance. In the 
second phase, the most relevant feature is taken as root node 
of the tree structure. The braches of this node are defined 
from training examples. Each branch defines a new sub-tree. 
The root node of the sub-tree is selected from the remaining 
set of feature, of the first phase. Moreover, it should be less 
relevant than the tree root node. This process is repetitively 
performed for all selected attributes, with respect to their 
relevance, until connecting branches on leaf nodes. Then, the 
train data examples are completely processed and the DT 
classifier is generated. 
 
Test data examples are classified by DT starting at the root 
node. The value of the root feature is tested and the 
convenient branch leads to other nodes is selected. By 
moving down to next root node of the new sub-tree, the same 
decision process is recursively performed until branching on 
a leaf node. The last is considered the most appropriate class 
associated to the given example.  
 
In our work, C4.5 DT induction algorithm is used to generate 
classifier both for normal and intrusive data sets. C4.5 of 
Quilan is based on information gain as a feature selection 
criterion. The information gain ratio of C4.5 allows the 
selection of the feature with maximal information gain and 
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minimal partitioning (minimal information split) at each level 
of tree building. The C4.5 algorithm can deal with data sets 
that have examples with missing values in specific attributes. 
Moreover, it can process features with continuous values such 
data size and connection duration attributes [26]. 
 
In our experiments, we will use weak 3.4.4 a java 
implementation of machine learning tools. Weka supports J48 
an improved implementation of C4.5 DT learner called 
release 8. NB detection model adopted for our experiments 
uses the kernel density estimator rather than normal 
distributions for numeric attributes. Numeric estimator 
precision values are estimated using training data sets [8, 26]. 
Moreover, Weka implementation of BPNN algorithm with 
500 epochs (iterations for each data fold), .2 learning rate and 
variable hidden layer node numbers (7-9-12) was used. In 
experiments, detection models were trained with 10-folded 
cross validation [26, 27]. 
 
4. Combination approaches 
 
Different combination methods have been presented in [28, 
20]. They can be classified into three types based on base 
models outputs. Output information of base classifier can be 
assigned to one of the three levels: abstract, rank and 
measurement. Type I classifier outputs abstract information 
that is the most probable class label for the input. Output 
information of type II classifier is a partial or complete 
ranked list of class labels. The most likely output class of this 
classifier is the top of the list. Type III classifier allow soft 
outputs that give its confidence on each class for the given 
input. 
Methods such as majority voting and Behaviour-Knowledge 
space allow fusion of type I classifiers outputs. Combination 
methods of type II classifiers outputs are based either on 
reduction or reordering approaches. They aim at improving 
the rank of the true class of the given input either by reducing 
or resorting class labels over all lists. The largest class of 
combination methods focus on classifiers output information 
at the measurement level. They thought of returned 
confidence values by each classifier as probability, possibility 
or belief measures the can reduce uncertainty level of the 
combined decision. In this work, both methods of first and 
third classes are used. 
 
4.1. Bayesian fusion 
 
Bayesian approach has been extensively studied and already 
applied in decision fusion. Bayes combination rule computes 
probabilities of hypotheses using evidences provided by 
classifiers, simultaneously. It allows the computation of 
posterior probabilities of hypotheses using both prior and 
conditional probabilities 
 

Consider that we dispose of p(C1), the prior probability of an 
attack class C1. At a given point, we obtain more knowledge 
in form of piece of evidence E that informs us on the state of 
the network. So it is more appropriate to express the new 
belief on C1 using conditional probability. According to 
Bayes theorem [5, 23] 
 

p(C1/E)=p(C1,E)/p(E) 
            = [p(E/C1)p(C1)] / [Σj p(E/Cj)p(Cj)] (4) 

If we have multiple evidences E1,…, EK, the posterior of C1 
became: 

p(C1/ E1,…, EK)= 
 [p(E1,…, EK /C1)p(C1)] /  p(E1,…, EK) (5) 

 
If all evidences are independent 
 

p(C1/ E1,…, EK) = [p(E1 /C1) p(Ek /C1).. p(EK /C1) 
p(C1)] / [Σj p(E1 /Cj) p(Ek /Cj).. p(EK /Cj)]         (6) 

 
This posterior probability collects all evidences of different 
classifiers and integrates their impacts on the given 
hypothesis for making the final decision. The last is based on 
Bayes decision rule defined by the following equation 

 
 p(C/ E1,…, EK) = maxj p(Cj/ E1,…, EK) (7) 
 
Bayes decision rule stated that the final decision of the most 
probable attack for the given example is the class to which is 
associated the grater posterior probability. 
In Bayes combination scheme, the decisions of classifiers are 
considered statistically independent. Moreover, the set of 
attack classes {Cj}, j=1..M, is supposed composed by 
mutually exclusive and exhaustive classes. And before 
performing combination, each class should have a priori 
probability, p(Cj). In addition, Bayesian combination scheme 
does not provide any information neither on the quality of 
computed probability nor on the existence of conflicting 
evidences that can influence Bayes decision criterion [12, 13,  
23]. 
 
Bayesian fusion methods used in this work are based on 
average and product rules. The average rule [28] computes 
the posterior probability of combined decision based only on 
confidence values returned by each classifier. However, 
product rule takes into account prior probability of each class 
in estimation of combined evidences support. The prior 
probability of each class is, generally, estimated from training 
data. Another variant of the product rule which incorporates 
both prior probability and information on feature categories 
in evidences fusion [16] is also considered. 
 
4.2 Evidential fusion 
 
The mathematical theory of evidence is a generalisation of 
probability theory to simply and directly represent ignorance. 
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The Dempster-Schafer theory (DST) of evidence is a 
powerful tool for representing knowledge, updating beliefs 
and combining evidences relying on Dempster’s combination 
rule. Thus, it becomes attractive for modelling complex 
systems and practical for multiple applications in different 
domains such as classification, information fusion, medical 
diagnosis and others. 
DST is based on Ω the frame of discernment. It is a set of 
mutually exclusive and exhaustive hypotheses Ω={C1,…, 
CM}. All possible subsets (C⊆Ω) of Ω are also hypotheses 
and they form superset of 2M. The impact of evidence or a 
subset of the power set can be measured by the mass function 
or the basic probability assignment (BPA). BPA is a mapping 
function of the power set to the interval [0,1]. Formally, its 
prosperities are the following: 

 
m: 2M →[0,1] 
     m(∅)=0  and  ΣC⊆Ω m(C)=1 
 

The evidences with not null mass are called focal elements. 
They represent the only elements in Ω taken into account in 
computing belief values. The belief function is based on mass 
function to evaluate the total belief committed to a given 
hypothesis C via its all subsets as given by following formula 

 
Bel(C)= ΣB⊆C m(B) (8) 
 

The plausibility relies also on BPA. It is the sum of all masses 
associated to a subset B that intersect with C 

 
Pl(C)= ΣB∩C≠∅ m(B) (9) 

 
Bel and Pl represent respectively the lower and upper bound 
that locate the probable impact of evidence on the hypothesis 
C. They fix respectively the minimum and the maximum 
extents to which current evidence allows to belief C [1, 2, 21] 
 
Dempster’s combination rule 
 
Dempster’s rule allows the pooling of two or more 
independent evidences within the same frame of discernment 
and from different sources into a single belief function that 
expresses the support of the proposition in both evidences 
bodies. 
Consider Bel1 and Bel2 two belief function and m1 and m2 
their respective BPA associated to independent evidences 
defined in the same frame Ω. The combined BPA that 
represents the aggregated impact of different pieces of 
evidences on the hypothesis is defined as follow 

          
∀ C⊆Ω m(C)= m1 ⊕ m2(C) 
  = K Σ(A,B⊆Ω; A∩B=C) m1 (A) m2(B) (10) 
 
Where    

K=1/(1-Σ( A∩B=∅) m1 (A) m2(B)) 

 
K is a coefficient of normalisation. It expresses the degree of 
agreement between sources. If it is null, it means the 
complete conflict between sources and the combination is 
impossible [1, 9, 6] 
The corresponding belief function Bel(C)= Bel1 ⊕ Bel2(C) 
can be computed using the combined masses by (10) and  
equation (8). 
DST is useful when dealing with incomplete and possibly 
contradictory information. it does not require  a priori 
knowledge on probability distribution of attack classes for 
performing evidence combination as in Bayesian scheme. 
However, DS combination scheme is similar to Bayesian 
scheme in that evidences are assumed to be statistically 
independent [23] 
 
Selected Combination Methods  
RSR method 
Xu et al. evidential combination method is based on detection 
model global information. Recognition, Substitution and 
Rejection rates (RSR) of attack classes and normal behaviour 
are used in this method [28]. These two measures are 
computed using confusion matrix of each detection model in 
testing phase. They will serve in computing belief mass (mk) 
of each hypothesis for each detection model.  
In this method, the detection model ( ek) decision for each 
given example x will be  

 
ek (x)=Cj

k  
where ek ∈ { e1 ,…, eK }, the set of detection models . 
 
- Cj

k = CM+1  , x is not recognised by the classifier ek, in this 
case we have a single focal element or it is the complete 
ignorance case and m(Ω)=1 

- Cj
k ∈Ω , we have two focal elements (Cj

k and ¬Cj
k =Ω- Cj

k ) 
and 

mk(Cj
k)=rj

k 
mk(¬Cj

k)= sj
k 

mk(Ω)=1- rj
k -sj

k   (11) 
 
Where are rj

k and sj
k are respectively recognition and 

substitution rates of detection model k and class j. The BPA 
of K detection models decisions will be fused using the 
orthogonal combination rule to assign of the given instance to 
the most appropriate class [13, 18, 4]. 
 
Predictive rate method (PRM) 
As in Xu et al’s method, Parikh et al. combination scheme is 
based on classifier level information. The predictive rates 
instead of recognition, substitution and rejection rates are 
used in hypotheses masses estimation. Belief masses are 
estimated for PRM method using the confusion matrix of 
each classifier. The predictive rate of each class takes into 
account misclassified instances of other classes. It measures 
to which extent the detection model can recognise this class. 
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The predictive rate of class j, pj
k, is used as BPA in Parikh et 

al PRM method when detection model k outputs Cj and the 
given example x is not rejected. The disbelief on Cj is (1- pj

k) 
if it is not the correct class of the given example according to 
the detection model k [18] 
 
Class Level method 
Rogova combination method is based on class level 
information. This method is based on a distance measure to 
estimate belief on hypothesis Cj for detection model k. For 
each model k and class Cj, it computes the reference vector 
Rj

k that characterizes them form class specific training data 
set. The distance measure dj

k = Φ(yk, Rj
k) is computed 

between the output of the classifier k (ek(x) = yk , yk is a 
vector of confidence values, one for each class) and the 
reference vector of class j, Rj

k. The distance dj
k serves to 

estimate BPA per-class-per-classifier as follow  
 

mj
k(Cj)= dj

k 
mj

k(Ω)= 1- mj
k(Cj) (12) 

 
To combine belief on different hypothesis, Rogova’s method 
takes into account classifiers votes not pro-hypothesis Cj , the 
disbelief on Cj is:  

 
m¬j

k(¬Cj)=1-Πi≠j di
k 

m¬j
k(¬Ω)= 1- m¬j

k(¬Cj) (13) 
 
Both BPAs mj

k(Cj) and m¬j
k(¬Cj) computed for all classifiers 

are combined using Dempster orthogonal sum rule to provide 
the final belief on each hypothesis ( Belj=m(Cj) ,Cj is an 
atomic hypothesis).  Rogova has given a simplified formula 
to compute belief masse of each hypothesis, formula (14). 
The combined belief on each hypothesis in Ω is computed 
using (15). The hypothesis with the max belief is taken as the 
appropriate decision of combined detection models [19, 4]. 
 

mm(Cj)=1- Πi dj
i    if j = m 

mm(Cj)=0    if j ≠ m 
mm(Ω)= 1- Πi (1-dj

i)   (14) 
 

m(Cj)=[pj Πi≠j (1- pi)]/[Σj pj Πi≠j (1- pi)+ Πi (1- pi)]  (15) 
 
where pj=mj(Cj). 
 
5. Illustrative example 
 
Logged network traffic records processed by our combined 
model are valued vector of 41 features illustrated by 
examples in figure 2. The explanation and complete list of 
features used in these examples can be found in [11]. 
 
Each record in training or testing data sets is broken into three 
fragments according to defined feature categories as depicted 

by following sample records. The data sets are then given to 
the appropriate set of models.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In training phase, each detection model is trained with normal 
and intrusive data set using 10-fold cross validation. On each 
training fold generated models is revised and updated then it 
is tested on remaining folds. A sample rule-based model 
(RBM) built by our DT detection model using traffic features 
is given in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each rule has one or two numbers after the output class or the 
consequent part that serve in computing the support. These 
numbers define respectively the correctly and incorrectly 
classified instances by this rule. 
The probabilistic model (PM) is based on distribution 
functions of features. Therefore, in training phase attributes 
distributions are estimated using training examples. For 
instance, NB models allows following probabilistic models 
for attack classes and normal behaviour of the system. 
 
 
 
 
 
 
 
 
 
 
 

..,0,0,0,0,0,..,dos 

..,1,2,1,0,0,..,u2r 

..,1,0,0,0,0,..,r2l 

..,0,0,0,0,0,..,probe 

..,1,0,0,0,0,..,normal 

0,tcp,klogin,S0,.. ,dos 
113,tcp,telnet,SF,.. ,u2r 
5057,tcp,ftp_data,SF,.. ,r2l
0,icmp,eco_i,SF,..,probe 
5,tcp,smtp,SF,..,normal

..,0,0.05,0.07,0,..,dos

..,0,1,0,0,..,u2r 

..,0,1,0,0,..,r2l 

..,0,1,0,1,..,probe 

..,0,1,0,0,..,normal

0,tcp,klogin,S0, …0,0,0,0,0,… ,0.05,0.07,0,.. ,dos
113,tcp,telnet,SF,… ,1,2,1,0,0,… ,1,0,0,..,u2r 
5057,tcp,ftp_data,SF,… ,1,0,0,0,0,…,1,0,0, ,r2l 
0,icmp,eco_i,SF,…,0,0,0,0,0,… ,1,0,1, ,probe 
5,tcp,smtp,SF,… ,1,0,0,0,0,…,1,0,0,..,normal

Intrinsic features Content features Traffic features 

Figure 2: Sample data sets for feature categories 

1. (dst_host_diff_srv_rate <= 0.61 ∧ dst_host_srv_diff_host_rate <= 0.4 ∧
srv_count <= 2 ∧ dst_host_srv_count <= 4 ∧ dst_host_serror_rate <= 0.1 ∧
dst_host_same_src_port_rate <= 0.75 ∧ count <= 1) ⇒ u2r (19.0/4.0) 

2.  (dst_host_diff_srv_rate <= 0.61 ∧ count <= 2 ∧
dst_host_srv_diff_host_rate <= 0.4 ∧ dst_host_srv_count > 86 ∧
dst_host_srv_diff_host_rate > 0)  ⇒ normal (239.0) 

3. (dst_host_diff_srv_rate <= 0.61 ∧ count <= 2 ∧
dst_host_srv_diff_host_rate <= 0.4 ∧ dst_host_srv_count > 86 ∧
dst_host_srv_diff_host_rate <= 0) ⇒ dos (62.0) 

Figure 3: Sample rules generated for attacks and normal behaviour 
using traffic feature category 

Class dos: Prior probability = 0.37 
count:  Normal Distribution. Mean = 168.0187 StandardDev = 211.7242 
WeightSum = 875….. 
Class u2r: Prior probability = 0.01 
count:  Normal Distribution. Mean = 0.6589 StandardDev = 1.2327   
WeightSum = 27… 
Class normal: Prior probability = 0.22 
count:  Normal Distribution. Mean = 3.8501 StandardDev = 11.0605 
WeightSum = 583 …. 

Figure 4: Probabilistic model for attacks and normal behaviour 
using traffic features  
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In this model, DOS attack prior probability is estimated from 
training data set. For this attack, the mean and standard 
deviation of each continuous attribute are estimated using 875 
data examples. The normal distributions of features and prior 
probabilities of classes are used in conjunction with formula 
(1, 6) to assign each given example to the most likely output 
class. 
 
Nonlinear model (NM) of attacks and system normal 
behaviour uses back propagation neural network (BPNN) 
with five output neurones and variable node numbers in input 
and hidden layers. The number of features in each category, 
intrinsic, content and traffic corresponds to the input nodes in 
first layer of each BPNN.  The BPNNs hidden layers for three 
categories have respectively 7, 9 and 12 neurons. The nodes 
in these neural networks are all sigmoid. Parameters of all the 
three BPNNs were initialized with 500 epochs, .3 learning 
rate and .2 momentum.  
 
To test detection models, we take the example labelled with 
U2R from network traffic sample records given before (figure 
2). The decision of each model of a specific feature category 
is confidence vector each value for an output class. The table 
1 present decisions of  base detection models associated to 
three feature categories for selected example, the right class 
for each model is in bold character. Following tables illustrate 
how implemented combination methods compute 
probabilities or beliefs on output hypotheses. These methods 
don’t care about base model that allows confidence values of 
1.0 or 0 for a given output in their computation steps.  
 
 
 

Feature 
categories/ Model DOS U2R R2L Probe Normal

RBM 0.4789 0.0133 0.1537 0.0001 0.3539
PM 3.99E-5 0.0315 1.94E-4 1.39E-5 0.9681

Intrinsic 
Feature 

Category 
(IC) NM 2.7E-4 8.3E-5 0.0045 0.0024 0.9926

RBM 0.9760 0.0198 0.0001 0.0001 0.0038

PM 0.0019 0.998 5.7E-75 6.E-151 4.11E-7

Content 
Feature 

Category 
(CC) NM 9.21E-7 0.9998 7.62E-5 4.99E-5 4.66E-7

RBM 0.1764 0.2352 0.4705 0.0001 0.1176

PM 1.4E-13 0.9999 7.8E-5 3.9E-19 2.8E-10

Traffic 
Feature 

Category 
(TC) NM 2.09E-4 0.0825 0.9171 1.2E-4 7.6E-6

 
Bayesian combination 
Bayes product and average rule require both posterior 
probabilities computed by each detection model. In addition, 
product rule uses prior probabilities of classes that are 
computed from training data set. The second variant of 
product rule incorporates information on feature categories in 
combination. Therefore, we will consider the number of 
feature categories in each combination level. The combined 
decisions of intrusion detection models relying on Bayesian 

rules and using classes’ prior probabilities (table 2) are 
illustrated by table 3. 
 
 

Class DOS (D) U2R (U) R2L (R) Probe (P) Normal (N)
Prior 0.37 0.01 0.1 0.3 0.22 

 
 

First level fusion by categoryBayesian 
Fusion 

 
Class

IC CC TC 

Second 
level 

fusion 

D 0.1597 0.3260 0.0588 0.1815
U 0.015 0.6726 0.4392 0.3756
R 0.0528 2.5E-5 0.4626 0.1718
P 8.1E-4 1.6E-5 4.1E-5 2.9E-4

Average 
rule 

N 0.7715 0.0013 0.0392 0.2707
D 2.5E-8 2.4E-6 7E-15 1.8E-18
U 6.4E-9 0.9999 0.9888 0.9999
R 1.6E-7 1E-80 0.0111 2.5E-80
P 1E-11 3E-156 5E-24 1E-180

Product 
rule 

N 0.9999 6.1E-13 2E-13 3.1E-16
D 1.5E-8 8.9E-8 2E-16 4.9E-27
U 1.0E-7 0.9999 0.9982 0.9999
R 4.0E-7 2.1E-81 0.0017 3.5E-85
P 1E-11 1E-157 2E-25 8E-189

Product 
rule 

modified
N 0.9999 3.8E-14 1.3E-14 1.9E-23

 
As an example, the probabilities of U2R attacks are computed 
by the three Bayesian rules as follow; we present an example 
of decisions fusion within Traffic feature category (TC) and 
then we perform the second combination step over all 
categories. 
 
Post-probabilities associated to U2R attacks outputted by 
base models (table 1): 

RBM: p1TC(U)= 0.2352 
PM: p2TC(U)= 0.9999 
NM: p3TC(U)= 0.0825 
Prior probability: pr(U)= 0.01 

 
-Average rule:  

− First level fusion: pTC(U)= (p1TC(U)+ p2TC(U)+ 
p3TC(U)) / 3 = 0.4932 

− Second level fusion: p(U)=  (pIC(U)+ pCC(U)+ 
pTC(U)) / 3 = 0.3756 

 
-Product rule:  

− First level fusion: pTC(U)= α p1TC(U) p2TC(U) 
p3TC(U) pr(U) = 0.998; ( the normalization factor 
α=5.09E+3) 

− Second level fusion: p(U)= α pIC(U)  pCC(U) pTC(U)  
pr(U)  = 0.999 

 
- Product rule modified:  

− First level fusion: pTC(U)= α p1TC(U) p2TC(U) 
p3TC(U) = 0.999;  

− Second level fusion: p(U)= α pIC(U) pCC(U) pTC(U)  
pr(U) -2  = 0.999 

Table 1: Outputs of base models for selected example on three 
feature categories 

Table 2: Output classes prior probabilities

Table 3: Combined models decisions using Bayes rules 
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DS combination 
DS combination methods adopted in this work use 
Dempster’s orthogonal rule and suppose a normalized BPA. 
Methods of first class require confusion or contingency 
matrices of detection models for computing recognition and 
substitution rates and predictive rate respectively for RSR and 
PRM methods, respectively. The second class’s method needs 
an extended training data set for each class to compute 
meaningful reference vectors. When sufficient data is 
unavailable, this is true for U2R attacks, confidence values 
that range in [0, 1] interval returned by each detection model 
can serve as belief masses [4]. 
The methods of first class require a belief masse of each 
hypothesis in Ω. Belief masses must be computed for each 
base model and combined models within the feature category 
(fist level combination). They are computed using confusion 
matrices outputted by models when tested on validation data 
set. Validation data set used for generating confusion 
matrices are composed by 100 examples for each output class. 
For instance, confusion matrix for rule-based model on traffic 
features is in following table (table 4). It states that 59 over 
100 instances of DOS attack in validation data were correctly 
classified using rule-based model generated for traffic feature 
category. 
 
 
 

 DOS U2R R2L Probe Normal 
DOS 59 2 6 4 29 
U2R 9 32 6 0 53 
R2L 7 1 39 0 53 

Probe 0 1 0 68 31 
Normal 21 2 0 0 77 

 
Belief masses for RSR and PRM methods are computed using 
confusion matrices for all base models and first level 
combined models. Computed belief masses for DOS attacks 
using confusion matrix of table 4 are as follow. 
-Xu et al. method belief masses computation for DOS attacks 
and all other classes uses (11): 

m1TC(DOS) = 59/100 = 0.59  (Recognition rate) 
m1TC (¬DOS) = (2 + 6 + 4 + 29)/100 =0.41 (Substitution 

rate) 
m1TC (Ω) = 1-(59+61)/100 =0 (Rejection rate) 

- PRM method belief masses computation for DOS attacks: 
m1TC (DOS) = 59/(59+9+7+21) = 0.6146 (Predictive rate) 
m1TC (¬DOS) = 1-0.614 =0.3854 

 
Combined detection models decisions using the three 
evidential fusion methods are illustrated by following table 
(table 5). 
 
Base models (RBM, PM and NM) outputs for selected 
example on traffic feature category were respectively classes 
R2L, U2R and R2L. To combine their decisions within the 
same feature category combined masses of same output  

 
 

First level fusion by 
category 

DS 
Fusion 

 
Class

IC CC TC 

Second 
level 

fusion 

D 0.826 5.0E-4 0 0.9998
U 0 0.9995 0.713 2.0E-4
R 0 0 0.287 0 
P 0 0 0 0 

RSR 
method 

N 0.1754 0 0 0 
D 0.6914 1.0E-4 0 0.0569
U 0 0.9999 0.0836 0.9165
R 0 0 0.9164 0.0266
P 0 0 0 0 

PRM 
method 

N 0.3086 0 0 0 
D 0.1997 0.4874 0.0507 0.2305
U 0.0137 0.5115 0.4763 0.3034
R 0.0519 2.0E-5 0.4400 0.1652
P 7.0E-4 1.0E-5 3.0E-5 2.0E-4

Rogova’s 
method 

N 0.734 0.0010 0.0327 0.3007
 
hypothesis over three base models are computed in first step 
using formula (10).Then they are combined in second step 
with others with different hypotheses. The same fusion 
process is performed for second level combination. A 
complete illustration of this process for three methods is 
given bellow; belief masses computed for PM and NM on 
traffic category and used in this numerical example can 
computed form models confusion matrices.  
 
-RSR method computation: 
-First level fusion: Base models belief masses: 

RBM: m1TC(R)= 0.39, m1TC (¬R)= 0.61 
PM: m2TC(U)= 0.45, m2TC (¬U)= 0.55 
NM: m3TC(R)= 0.34, m3TC (¬R)= 0.66 

− Combine masses with same hypothesis  
K=1/ (1- m1TC(R) m3TC (¬R)- m3TC(R) m1TC (¬R))    
=1.864 
m13TC(R)= m1TC(R) m3TC(R) K = 0.2478 
m13TC(¬R)= m1TC (¬R) m3TC (¬R) K = 0.7522 

− Combine masses with different hypotheses after 
normalization 
K=1/(1- m2TC(U) m13TC(R))=1.1255 
m TC(U)= m2TC(U) m13TC(¬R) 1.87K= 0.713 
m TC(R)= m13TC(R) m2TC (¬U) 1.87K= 0.287 

 
Combined models within traffic feature category output 
class U2R as the right class for the given example 
according to fused masses. 
 

-Second level fusion: combined models (CM) of first level 
have selected respectively DOS, U2R and U2R classes for 
taken example. Their belief masses on outputted hypotheses 
are (belief masses for the CM used by RSR method can be 
computed using their confusion matrices as for base models): 

 
CM intrinsic category: mIC(D)= 0.9999,  mIC (¬D)= 0.0001 

Table 4: Rule-based model on traffic features category 
confusion matrix 

Table 5: Combined decisions using DS methods 
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CM content category: mCC(U)= 0.23, mCC (¬U)= 0.77 
CM traffic category: mTC(U)= 0.06, mTC (¬U)= 0.94 
− Combine masses with the same hypothesis  

K=1/ (1- mCC(U) mTC (¬U)- mTC(U) mCC (¬U)) 
=1.3557 
mCCTC(U)= mTC(U)  mCC(U) K = 0.0187 
mCCTC(¬U)= mTC (¬U)  m3TC (¬U) K = 0.9813 

− Combine masses with different hypotheses after 
normalization 
K=1/(1- mCCTC(U) mIC(D))=1.0001 
m (U)= mCCTC(U) mIC(¬D) 1.87K= 1.9E-4 
m (D)= mCCTC(¬U)* mIC (D) 1.87K= 0.9998 
 

Combined models within traffic feature category output 
class DOS as the right class for the given example 
according to fused masses. 
 

-PRM method  
-First level fusion: Base models belief masses: 

Base models belief masses: 
RBM: m1TC(R)= 0.7647, m1TC (¬R)= 0.2353 
PM: m2TC(U)= 0.4369, m2TC (¬U)= 0.5631 
NM: m3TC(R)= 0.7234, m3TC (¬R)= 0.2766 

− Combine masses with the same hypothesis  
K=1.6174 
m13TC(R)= 0.8947 
m13TC(¬R)= 0.1053 

− Combine masses with different hypotheses after 
normalization 
K=1.642 
m TC(U)=  0.0836 
m TC(R)= 0.9164 
 

-Second level fusion: CM belief masses on selected output 
classes (complete belief masses for CM used by PRM method 
are computed as for base models) 

CM intrinsic category: mIC(D)= 0.588, mIC (¬D)= 0.412 
CM content category: mCC(U)= 0.9583, mCC (¬U)= 0.0417 
CM traffic category: mTC(R)=0.4 , mTC (¬R)=0.6  
− Combine masses with different hypotheses after 

normalization 
K= 3.722 
m (D)= 0.0569 
m (U)= 0.9165 
m (R)= 0.0266 

 
Combined models decision over all feature categories is 
the U2R class, the correct class of processed example. 

 
-Rogova’s method  

Rogova’s method is based on mass computation process 
different than the used by RSR and PRM methods. The 
proposed process for this method uses confidence values 
returned by base models to compute belief mass of each 
hypothesis. Using confidence values of table 1, belief mass 

for U2R attack is computed by this method using (14) as 
follow: 
 
puTC(U)=1-(1-0.2352) (1-0.9999) (1-0.0825) 0.44=0.4443; 
(0.44, the normalization factor) 
 
In first and second combination levels formulas (14, 15) are 
used to compute beliefs on hypotheses 
− First level fusion:  

mTC(D)= 0.0507 
mTC(U)= 0.4763 
mTC(R)= 0.4400 
mTC(P)= 3.0E-5 
mTC(N)= 0.0327 
 

− Second level fusion: combined beliefs masses within the 
feature category in first level are fused with others of 
different categories in the second step: 

mTC(D)= 0.2305 
mTC(U)= 0.3034 
mTC(R)= 0.1652 
mTC(P)= 2.0E-4 
mTC(N)= 0.3007 

 
6. Conclusion 
 
Multiple empirical studies and specific machine learning and 
pattern recognition applications have confirmed that even if a 
given model outperforms others in specific problem it is 
incapable to reach the best results on the overall problem 
domain. It is the case in intrusion detection field because 
often single algorithm can’t deal with all attack classes at the 
desired accuracy level. Thus, combination of multiple models 
tries to take advantage of the local different behaviour of the 
base model to improve overall performance of IDS system. 
Moreover, it enforces the system error recovery mechanism 
when single model fails in predicating the right class of attack 
and increases the opportunities of IDS to detect difficult 
attacks such as those of U2R and R2L classes. This was 
approved empirically by our combined model for intrusion 
detection that has increased detection rates of rare attacks and 
the overall system respectively by nearly 6% and 15%. 
Therefore, we will explore in our future works the 
capabilities of such model in detecting different attacks stages. 
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