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Summary 
It is quite necessary that optimizing complicated systems using 
multi-population coevolutionary genetic algorithms implemented 
on networks. But there is no effective way to allocate computa-
tional resources to improve the performance of algorithms. A 
decision-making model for resource allocation in multi-
population coevolutionary genetic algorithms implemented on 
networks is established, considering the case that all the popula-
tions coevolve synchronously. In this model, the optimized ob-
jective is to minimize the maximal computational time for aver-
age one-step iteration of a computational node, and the constraint 
is that each evolutionary population is allocated to one computa-
tional node at most. A method for solving the presented model 
based on genetic algorithms is also given. The validity of the 
model is shown through comparative examples. The results ob-
tained in this paper provide a feasible mode for resource alloca-
tion in multi-population coevolutionary genetic algorithms im-
plemented on networks. 
Key words: 
 genetic algorithms, coevolution, multi-population, implemented 
on networks, resource allocation. 

1. Introduction 

Genetic algorithms (GAs) are population based global 
probabilistic search algorithms presented by professor 
Holland in 1975 inspired by biological evolutions and 
genetics, whose idea is that a population evolves continu-
ously towards better solutions by applying genetic opera-
tors until optima are achieved [1]. GAs have been widely 
used in function optimization, parameter identification, 
robotic control, neural network learning, fuzzy logic sys-
tems, and many other areas because of their vivid features 
such as outstanding parallelity, generality, global optimi-
zation and manipulability et al. [2].  

However, it is hard for traditional genetic algorithms to 
solve complicated optimization problems with large di-
mensional variables, large search areas, complicated ob-
jectives and multiple objectives because they are apt to 
premature convergence and have low search efficiency in 
evolutionary anaphase. It is efficient for multi-population 
coevolutionary genetic algorithms (MPCEGAs) to solve 
the above problems. There are many manners of coopera-
tion, and island multi-population coevolutionary genetic 

algorithms are considered in this paper. In this model, 
multiple evolutionary populations are generated in a cer-
tain manner in same search space. After a number of evo-
lutionary generations (one calls the number of the above 
evolutionary generations populations’ evolutionary pe-
riod), optimal individuals of all populations are exchanged 
and new populations are formed. The evolution in the next 
populations’ evolutionary period continues based on the 
obtained new populations until a termination condition is 
met [3]. Kamiura et al considered a MPCEGA with dis-
tributed environment scheme and applied it to solve multi-
knapsack problems successfully. In this algorithm, differ-
ent populations search for different regions by adopting 
different evolutionary schemes and parameters [4]. Tong-
chim et al presented a MPCEGA with parameter adapta-
tion. After a number of evolutionary generations, besides 
of individuals’ migration, parameters that control different 
populations’ evolutions are adjusted based on evolutionary 
performance [5]. Two populations are involved in the al-
gorithm proposed by Liu et al. One is a traditional niche 
population for global search, and the other is an elitist 
population for local search. Only elitist individuals of the 
niche population are immigrated to the elitist one. The 
algorithm was applied to a portfolio investment model 
successfully [6]. Li et al proposed a MPCEGA for multi-
mode function optimization. In this algorithm, all popula-
tions’ optima are saved in an archive, and the distances 
between the individuals of each population and the archive 
are considered. Individuals’ fitness is adjusted based on 
niche technique so that one population’s optima affect 
other populations’ evolutions. The efficiency of the algo-
rithm was validated by typical multi-mode function opti-
mization [7]. The algorithms in [4]-[7] were implemented 
on a single computational node, which prolongs the algo-
rithms’ runtime. 

For complicated optimization problems, one expects to 
obtain their optima in short time by using MPCEGAs. 
Because of complexity resulted from individuals’ evalua-
tion, migration and substitution, as well as limitation of a 
single node’s computational capacity, it is often difficult 
for MPCEGAs to achieve optimal solutions when they are 
implemented on a single node. The fast developments and 
prevalent applications of computer networks establish 
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foundation for MPCEGAs implemented on networks. The 
long computational time will be conquered effectively if 
different populations evolve on different computational 
resources and coevolutionary information is transmitted by 
high-speed communication networks, therefore the per-
formance of such algorithms will be improved and their 
application scope will be enlarged greatly. Veldhuizen et 
al presented a platform of MPCEGAs implemented on 
networks. The formula for the algorithms’ runtime was 
given assuming homogeneous computational nodes and 
same computational task in different computational nodes 
[8]. It was not considered that how to allocate computa-
tional resources reasonably to keep the whole runtime 
short in heterogeneous paradigms, which is a resource 
allocation problem. It is important for resource allocation 
problems in MPCEGAs’ implementation on networks. The 
rational resource allocation can reduce the runtime and 
improve the performance of algorithms greatly. Ripe con-
clusions on such problems are absent up to now. So, it’s 
quite necessary to research the above problems. 

Resource allocation problems of MPCEGAs implemented 
on networks are studied in this paper. A decision-making 
model for resource allocation is established, considering 
the case that all populations coevolve synchronously. In 
this model, the optimized objective is to minimize the 
maximal computational time for average one-step iteration 
of a computational node, and the constraint is that each 
evolutionary population is allocated to one computational 
node at most. A method for solving the presented model 
based on GAs is also given. The validity of the model is 
shown through comparative examples. 

2. Decision-making Models for Resource Al-
location in Multi-population Coevolution-
ary Genetic Algorithms Implemented on 
Networks 

MPCEGAs’ implementation on networks is more compli-
cated compared with their implementation on a single 
computational node. A main reason is that factors to be 
considered increase greatly. The corresponding factors 
include system’s framework and constitution for imple-
mentation, strategies for saving, accessing and exchanging 
coevolutionary information, design of computational node 
interface and implementation of each population’s evolu-
tion et al. Among these, the focus is a resource allocation 
problem, which will be solved in this section. The purpose 
for establishing decision-making models in MPCEGAs is 
to allocate computational resource to all evolutionary 
populations so that expected performance indexes are op-
timal in the case that some constraints are met. 

The following factors will be considered for establishing 
decision-making models. 

(1) The time for evolutionary populations to perform ge-
netic operators, which is decided by genetic strategies. 
Different genetic operators and control parameters will 
result in different runtime. 

(2) The time for exchanging representative individuals 
from different populations, which varies with the number 
of coevolutionary populations. The larger the number of 
populations, the longer the time is. 

(3) The time for transmitting representative individuals in 
networks, which is related to network medium and trans-
mission mechanism. Different network media and differ-
ent computational resource positions will result in differ-
ent communicating time for same information to be trans-
mitted.  

(4) Capacities of computational resources, which vary 
with different configurations. 

2.1 Assumptions 

The following hypothesis and stipulations are made in 
order to establish decision-making models. 

(1) Let nppp ,,, 21 K  be coevolutionary populations, 
whose population size is nppp ,,, 21 K , respectively.  

(2) Let mrrr ,,, 10 K  be available computational resources 
whose computational capacities are mccc ,,, 10 K  respec-
tively, where 0r  is a supervisory node and the rests are 
computational nodes. The distances between a computa-
tional node and the supervisory node are mddd ,,, 21 K , 
respectively. 

(3) All populations exchange representative individuals 
synchronously after g generations. The time for exchang-
ing is correlated with the number of evolutionary popula-
tions. It is assumed that the time for every exchange is 

nte ⋅ . 

(4) It is assumed that the time for transmitting representa-
tive individuals is proportional to the distance between a 
node and the supervisory node. The time for transmission 
of unit distance is τ . 

2.2 Decision-making Models for Resource Allocation 

There are many kinds of objectives for decision-making 
models in MPCEGAs implemented on networks. The ob-
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jective here is chosen to minimize the maximal computa-
tional time for average one-step iteration of a computa-
tional node.  

For all populations evolving synchronously on different 
computational nodes, it is meaningful to expect the maxi-
mal computational time minimal. In the case that the num-
ber of evolutionary generations is determined, the above 
objective is equivalent to minimize the maximal computa-
tional time for average one-step iteration of a computa-
tional node. Such objective is adopted in the following 
decision-making model. 

Let ( )
mnija
×

 be a decision variable that describes allocation 

of nodes. { }0,1 ,ija ∈ 1,2, , ,i n= K 1,2, ,j m= K , where n and m 

represent the number of coevolutionary populations and 
computational nodes respectively. If a population ip  is 
allocated to a computational node jr , then let 1=ija , oth-

erwise let 0=ija . Let jt be the time for average one-step 

iteration of a computational node jr , therefore, 
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Where 
ijα  is a coefficient describing the time for one-step 

evolutionary of ip  on jr . The objective of this paper is: 
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For simplicity, one only considers a simple constraint case 
that each evolutionary population is allocated to one com-
putational node at most. Of course, there may be some 
nodes without allocated evolutionary populations. In this 
case, one has  
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Based on these, the decision-making model established in 
this subsection can be expressed as: 
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2.3 Explanations for Models 

Some further explanations for the model established in 
subsection 2.2 will expound in detail in this subsection.  

In formula (2), the sum item contains 3 parts. The first one 
jiij cp ⋅α  is termed as an item for a single population evo-

lution, which represents the time for ip  to perform one-
step genetic operators. The bigger ip , the bigger the 

value of this item is. ijα  is different for different genetic 

strategies or computational nodes. If both genetic strate-
gies adopted by all populations and capacities of all com-
putational nodes are same, then one has αα =ij

. The 

value of this item is also related to jc .  

The second part gd j /⋅τ  expresses the average time for 

representative individuals to transmit in network, which is 
called an item for network transmission. The longer the 
distance between jr  and 0r , as well as the more the fre-

quency of exchanging representative individuals, the 
longer the time is. The value of this item is usually small 
because of fast information transmission of modern com-
munication networks.  

The third item 0/ cgnte ⋅⋅  describes the average time for 
representative individuals’ exchange, which is called a 
coevolutionary item. Different exchange methods result in 
different et . The more the number of coevolutionary 
populations, as well as the more the frequency of exchang-
ing representative individuals, the longer the time is. Be-
sides the above, the value of this part is also related to 0c . 
The above three parts are summed up because there may 
be many evolutionary populations running on same com-
putational node. Which populations evolve on jr  is de-

termined by 
ija . The rational resource allocation is just 

performed through ija  in this subsection. 

An extreme case that m equals 1 is considered. In this case, 
there is only one computational node besides the supervi-
sory node. All populations evolve on this computational 
node, but still exchange representative individuals on the 
supervisory node. The time for average one-step iteration 
of this node is: 
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It can be seen from formula (4) that less time will spend 
on each computational node in case that MPCEGAs per-
form on many computational nodes than that on a single 
computational node, and the same is true for the maximal 
time. The results well explain why adopting many compu-
tational nodes can save computational time. 
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2.4 Solutions of Decision-making Models 

The model given in subsection 2.2 is a typical combina-
tional optimization problem, hence corresponding methods 
such as traditional optimization techniques, intelligent 
computation, et al can be applied to solve it [9]. Because 
combinational optimization problems are NP-hard, it will 
take much time for traditional optimization techniques to 
solve them when the size of models (namely n, m) in-
creases, whereas intelligent computational methods can 
reduce the computational time efficiently. GAs are typical 
intelligent computational methods, therefore one applies 
GAs to solve them. 

When one applies simple genetic algorithms to solve the 
above model, binary encoding is adopted to encode a vari-
able whose length is n×m. Initial populations with certain 
size that satisfy formula (3) are produced randomly. Fit-
ness with punishment items to evaluate evolutionary indi-
viduals is established based on formula (2) and (3). Pro-
portional selection, one-point crossover and one-point 
mutation operators are utilized, and their probabilities are 

cp  and mp  respectively. Elitist strategies are adopted for 
individuals’ replacement. The termination condition is that 
the number of evolutionary generations reaches to a set 
value. The algorithms were expounded in detail in [2]. 

3. Examples 

In order to validate the efficiency of the presented model, 
a complicated system is optimized by a MPCEGA imple-
mented on local network. The parameters’ values in for-
mula (2) are set as table 1. The computational capacity of 
a node is characterized with the time consumed for com-
puting π  until 0.52 million bits after radix point. Compu-
tational capacities of nodes and distances between compu-
tational nodes and the supervisory node are given in table 
2. 

The following three cases are considered. The first one is 
that all populations adopt same genetic strategies. The 
second one is that all populations are divided into many 
groups, and different groups adopt different genetic strate-
gies. The last one is that different populations adopt dif-
ferent genetic strategies. They are expounded in detail as 
follows. 

Table 1: Parameter settings      
Parameters Values 

τ  0.1 
g 10 
et  0.1 
n 40 
m 7 

Table 2: Computational capacities and distances from supervisory node 
Nodes Computation Ca-

pacities 
Distances from supervi-

sory node 

0r  19 0 

1r  21 24 

2r  18 6 

3r  22 7 

4r  29 5 

5r  17 12 

6r  27 17 

7r  23 20 

3.1 Case 1: All Populations with Same Genetic 
Strategies 

In this subsection, all populations adopt same genetic 
strategies, namely, roulette selection, two-point crossover 
and two-point mutation. All populations’ size is 300, 
namely 300== ppi . The coefficients for one-step 

evolutionary time of all populations are same on same 
computational node, because same genetic strategies are 
adopted for all populations, which means that 

mjnijij ,,2,1;,,2,1, LL ===αα , where jα  is a coefficient 

for one-step evolutionary on jr . Because jα  is related to 

jc , for not lost generality, it is assumed that a coefficient 

for one-step evolutionary of a population on 0r  is 0α . One 

has 
0

0

αα
c
c j

ij = . The formula (2) is transformed as: 
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0α  is determined as follows. The above system is opti-
mized on the supervisory node, and let 0t  be runtime for a 

population to evolve Ｔ generations. Then 
T
t0

0 =α . The 

average value of 0α for many times of running is taken and 
one has 0248.00 =α . 

The allocation of populations to nodes is shown in table 3 
when the method presented in this paper is adopted. The 
corresponding maximal average one-step iteration time for 
the whole coevolution is 20.1164. 
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Table 3: Populations’ allocation to nodes 
Nodes Serial Number Population Numbers 

1r  4,14,19,24,34,38 6 

2r  6,7,8,9,10,13,29,36 8 

3r  3,20,22,26,31,32 6 

4r  16,35,37 3 

5r  5,11,15,17,23,25,27,28,30 9 

6r  2,39,40 3 

7r  1,12,18,21,33 5 

Table 4: Populations’ allocation to nodes 
Nodes Serial Number Population Numbers

1r  1,2,3,4,5 5 

2r  6,7,8,9,10,11,12,13,14 9 

3r  15,16,17,18,19,20,21 7 

4r  22,23,24,25,26,27 6 

5r  28,29,30,31,32,33 6 

6r  34,35,36 3 

7r  37,38,39,40 4 

The maximal average one-step iteration time for the whole 
coevolution is 33.9758 based on the allocation shown in 
table 4. This scheme is given based on the capacities of all 
computational nodes and the distances between computa-
tional nodes and the supervisory node without utilizing the 
presented model in this paper. 

3.2 Case 2: Division of Populations into Many 
Groups and Different Groups with Different Genetic 
Strategies 

In this subsection, all populations are divided into four 
groups and different ones adopt different genetic strategies, 
such as different selection, crossover or mutation operators. 
Therefore, different groups’ coefficients jα s for one-step 

evolutionary time are different on same computational 
node. The number of populations and their serial number 
are factors affecting the efficiency of algorithms. Assum-
ing the size of all populations is same, and its value is 300. 
Among 40 populations, the former 20 populations adopt 
roulette selection, while the later 20 populations utilize 
tournament selection and the size of tournament is 2. One-
point crossover and one-point mutation are adopted in the 
populations whose serial number is from 1to 10. Two-
point crossover and two-point mutation are adopted in the 
populations whose serial number is from 11 to 20. Three-
point crossover and three-point mutation are for the popu-
lations whose serial number is from 21 to 30 and the last 
10 populations utilize four-point crossover and four-point 
mutation. Four populations whose serial number is 1,11,21 
and 31 perform on the supervisory node for several times 

to gain their coefficients for average one-step evolutionary 
time. The results are shown in table 5. Other parameters 
are same as those in subsection 3.1. 

Table 5: Populations’ coefficients for average one-step evolutionary time 
Serial Number Average one-step evolutionary time coeffi-

cients 
1 0.0109 

11 0.0248 

21 0.0565 
31 0.0823 

The allocation scheme given in table 6 is gained by opti-
mizing the presented model, and the corresponding maxi-
mal average one-step iteration time for the whole coevolu-
tion is 32.2526. 

Table 6: Populations’ allocation to nodes 
Nodes Serial Number Population Numbers

1r  3,7,9;12,16,19;27;40 3+3+1+1=8 

2r  13;24,26,28;32,35 0+1+3+2=6 

3r  2,10;15;22,25;36 2+1+2+1=6 

4r  5;11,14,18;29 1+3+1+0=5 

5r  6;21;31,33,34,38 1+1+4+0=6 

6r  1,4,8;20;37 3+1+1=5 

7r  17;23,30;39 0+1+2+1=4 

The maximal average one-step iteration time for the whole 
coevolution is 35.3820 if an allocation scheme shown in 
table 7 is used. 

Table 7: Populations’ allocation to nodes 
Nodes Serial Number Population Numbers

1r  1;21,22;31,32 1+0+2+2=5 

2r  11,12,13,14;23,24,25;3
3 

0+4+3+1=8 

3r  15;34,35,36 0+1+0+3=4 

4r  2,3;16;37 2+1+0+1=4 

5r  4,5,6;17,18,19;26;38,39 3+3+1+2=9 

6r  7,8,9,10;27,28 4+0+2+0=6 

7r  20;29,30;40 0+1+2+1=4 

3.3 Different Populations with Different Genetic 
Strategies 

In this part, the case that all populations use different ge-
netic strategies is considered. The population size of dif-
ferent populations differs from each other, which is given 
as follows according to serial number. 

165,108,330,175,16,84,82,220,311,490, 
177,440,104,361,262,382,449,142,206,18, 
420,237,239,202,212,440,60,142,369,223, 

84,310,270,81,262,327,341,253,91,122. 
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All populations’ coefficients for one-step evolutionary 
time are as follows: 

0.0493,0.0387,0.0692,0.0194,0.0035, 
0.0173,0.0184,0.0322,0.055,0.0273,  

0.0245,0.0251,0.0314,0.0132,0.0266, 
0.0226,0.0415,0.0390,0.0255,0.0263, 
0.0298,0.0128,0.0094,0.0124,0.0192, 
0.0187,0.0454,0.0474,0.0199,0.0276, 
0.0301,0.0161,0.0166,0.0244,0.0172, 
0.0253,0.0246,0.0157,0.0406,0.0283. 

Other parameters are same as those in subsection 3.1. The 
allocation scheme shown in table 8 is obtained by optimiz-
ing the presented model, and the corresponding maximal 
average one-step iteration time for the whole coevolution 
is 16.4065. 

Table 8: Populations’ allocation to nodes 
Nodes Serial Number Population Numbers

1r  6,11,12,16,37 5 

2r  3,5,7,14,25,30,32,33,34 9 

3r  4,10,13,15,18,24 6 

4r  8,22,27,31,38 5 

5r  1,17,20,21,23,26,28 7 

6r  29,35,36,39 4 

7r  2,9,19,40 4 

It is difficult to determine which allocation scheme will 
minimize the maximal average one-step iteration time for 
the whole coevolution because different populations adopt 
different evolutionary strategies and population size. 
Therefore the efficiency of the algorithm presented in this 
paper is illuminated by compared with the outcome of a 
random allocation scheme. The maximal average one-step 
iteration time for the whole coevolution is 20.4817 in case 
of an allocation scheme shown in table 9, which is much 
larger than 16.4065. 

Table 9: Populations’ allocation to nodes 
Nodes Serial Number Population Numbers

1r  1,2,3,4,5 5 

2r  6,7,8,9,10,11,12,13,14 9 

3r  15,16,17,18,19,20 6 

4r  21,22,23,24,25 5 

5r  26,27,28,29,30,31,32 7 

6r  33,34,35,36 4 

7r  37,38,39,40 4 

It can be seen from the above 3 cases that the third one is 
the most difficult to determine the allocation scheme, 
whereas the maximal average one-step iteration time of 
the whole coevolution is the least. The reason is that dif-
ferent evolutionary strategies and different population size 
adopted by different populations result in different one-

step evolutionary time. It is shown from formula (2) that 
jiij cp ⋅α  will be small if all populations are allocated 

correctly. Based on these, one can get shorter evolutionary 
time than the former two cases. It can be concluded from 
the result that all populations utilizing different evolution-
ary strategies will result in short evolutionary time when 
topology frameworks of algorithms, computational capa-
bilities of nodes, and migration strategies are determined. 
Therefore, when MPCEGAs are applied, in order to im-
prove their efficiency, different evolutionary strategies 
should be adopted by different populations before alloca-
tion optimization. In addition, when MPCEGAs imple-
mented on networks are utilized to optimize complicated 
systems, it is informed from the comparative results that 
rational allocation of populations to computational nodes 
is very efficient for improving algorithms’ performance 
and reducing algorithms’ runtime. 

4. Conclusions 

In order to improve the performance of MPCEGAs im-
plemented on networks, a decision-making model for 
computational resource allocation is established in this 
paper. A method for solving the presented model based on 
GAs is also given. Finally, examples are detailed. The 
results show that the model established in this paper is 
able to allocate computational resource reasonably. Based 
on the optimized allocation scheme, the runtime for coevo-
lutionary populations to evolve on computational nodes 
reduces greatly. The outcomes are also suitable for other 
multi-population coevolutionary algorithms. 

It should be declared that only one objective, namely 
minimization of the maximal computational time for aver-
age one-step iteration of a computational node, is consid-
ered in this paper. Other objectives can also be considered 
during establishing decision-making models, and hence 
corresponding multi-objective decision-making models 
can be obtained. Good results are expected to achieve 
based on such models, which are the issues to be further 
researched. 
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