
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

1

Manuscript received February 2, 2006.
Manuscript reviced February 28, 2006.

Processing Continuous k -Nearest Neighbor Queries in Location-
Dependent Application

Wei Zhang, Jianzhong Li, and Haiwei Pan

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China

Summary
A k nearest neighbor (k-NN) query retrieves k objects in a given
objects set which are closest to the query point q. Processing
continuous k-nearest neighbor (k-NN) query over moving
objects in location-dependent application requires that the
frequent location updates of moving objects and intensive
continuous k-NN queries must be efficiently processed at the
same time. In this paper, we propose a grid cell based
continuous k-NN query processing method (CkNN). It utilizes a
main memory grid index to store the location of moving objects.
Efficient k-NN search algorithm and incremental query
processing algorithm are designed in CkNN. CkNN minimizes
the cost of continuous k-NN query processing by reducing most
unnecessary checking on queries / moving objects and reusing
data obtained during query processing as moor as possible. The
comprehensive experimental evaluation shows that CkNN
outperforms state-of-the-art continuous k-NN query processing
approach in all problem settings.
Key words:
Query Processing, Continuous Query, Location-dependent,
Spatio-temporal

Introduction

As the development of positioning technology wireless
communication, the widely applied location-dependent
applications require new techniques to manage the
information of moving objects. Recently, processing
continuous k-NN queries over moving objects attracts
considerable attentions. Besides computing the k-NN of
queries after they are issued, the system needs to maintain
the results of continuous queries up-to-date at each update
cycle. The challenge of this problem is to efficiently
handle frequent location updates as well as process
intensive continuous k-NN queries. Early research in
spatial databases focused on processing the k-NN query
which retrieves k objects from the static dataset that are
nearest to a static query point according to Euclidean
distance. The existing algorithms in spatial database
consider that the data are indexed by a spatial access
method (e.g. R-Tree) and utilize some branch-and-bound
approach to restrict the search space. In addition, several
papers study variations of k-NN problems such as reverse
k-NN [14] and constrained k-NN query [15]. However, all
R-Tree based k-NN computing algorithms are designed
for processing queries over static data, those traditional
solutions in spatial database can not extend to the highly

dynamic applications, e.g. frequent location update of
moving objects.

Comparing with the traditional secondary memory based
approaches, main memory based access methods is a
better choice while processing continuous k-NN queries
over constantly moving objects. Location-dependent
application is characterized by a large number of objects
and a large number of continuous queries (or users). Most
users require the system answer their queries as soon as
possible or even process their query in real time. However,
the load of location-dependent service is heavier as it
becomes more popular, and the response time increases,
since more mobile objects are monitored and more
continuous queries registered in the system. In [3],
Kalashnikov et al. proposed that main memory grid index
is an effective structure for processing continuous range
queries over moving objects. This hash structure can
efficiently supporting frequent location updates of moving
objects, and the grid partition is also benefited to query
processing algorithm. Nowadays, the price of main
memory is much lower than ten years ago. It is common
for a computing server which is equipped with several
gigabyte main memories. Therefore, it is not only
applicable but also necessary to research an efficient main
memory continuous k-NN query processing algorithm for
location-dependent application.

In the paper, we propose a grid cell level based
continuous k-NN query processing algorithm, called
CkNN for short. It utilizes a main memory grid index to
store the moving objects. CkNN processes new registered
queries by k-NN search algorithm. It searches the k-NN of
queries according to the partition of grid cell level. During
query processing, CkNN tries to minimize the cost of
checking grid cells and moving objects. While processing
static continuous k-NN queries, CkNN employ an
incremental update and query processing algorithm. The
incremental algorithm makes the most of information
obtained in last query processing phase, and attempts to
reuse the data produced in query processing as moor as
possible. The comprehensive experimental evaluation
shows that CkNN outperforms state-of-the-art continuous
k-NN query processing approach in all problem settings.

The rest of the paper is organized as follows. Section 2
surveys related work on processing continuous k-NN
query. Section 3 proposes the grid cell level based
continuous k-NN query processing method. Section 4
presents the experimental evaluation of CkNN. Finally,
section 5 concludes the works in the paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

2

2. Related Work

Processing k-NN query over static objects has been well-
studied in spatial database. The most widely applied
approach is the branch-and-bound algorithm based on R-
tree [8]. The algorithm traverses R-tree through a best-
first search and maintains a priority list of k-NN
candidates. Since traditional methods in spatial database
are designed for processing k-NN queries over static data,
those approaches can not efficiently support the highly
dynamic location-dependent applications where the
information of moving objects is updated frequently.
Song and Roussopoulos [10] studied the problem of
processing moving query over static data. Their approach
attempts to reduce the cost of re-computing k-NN for
moved queries by returning redundant objects with
current k-NN results. If the moved query can be satisfied
by recently received objects, k-NN computation is
avoided. Tao and Papadias proposed a time-parameterized
query which assumes objects move with linear and known
velocities, returns validity period and next change of
current results [11]. Based on the linear movement
assumption, Kollios et al. [4] designed an algorithm for
processing k-NN query over 1D (and 1.5D) moving
objects. For two or higher dimensional, Benetis et al. [1]
proposed the algorithm for processing predictive k-NN
and reverse nearest neighbor query by employing TPR-
Tree [9]. Above predictive k-NN processing algorithms
require the velocity of moving object is available at query
time. If the linear movement assumption does not hold,
query results become invalid. CkNN does not make any
assumption about the movement patterns of moving
objects. It can process static or moving queries over
moving objects.

Processing continuous spatial queries over moving objects
is first considered in [7], where static range query is
indexed by an R-Tree based structure called Q-index and
moving objects probe Q-index to invoke updating of
influenced queries. Mobieyes [2] monitors continuous
moving range queries over moving objects in distributed
environment, while SINA [5] processes continuous range
queries in a center server. Kalashnikov et al. [3] proposed
that main memory grid index is more suitable for
monitoring continues range query over moving objects
than R-Tree based implementation. All aforementioned
methods are focus on processing continuous range queries,
and can not efficiently extend for k-NN query processing.
Recently, Yu et al. [12], Xiong et al. [12], and Mouratidis
et al. [6] proposed three approaches for processing
continuous k-NN query based on grid index, hereafter
referred to as YPK-CNN, SEA-CNN, and CPM,
respectively. YPK-CNN and CPM employ main memory
regular grid index, while SEA-CNN indexes objects in
secondary memory with regular grid index. SEA-CNN
only focuses on monitoring the changes in k-NN result of
continuous queries (It assume the initial k-NN results are
available). For any k-NN query point q, let q.kNN-dist
denote the distance between q and its kth nearest neighbor.
In SEA-CNN, the “influence region” is defined for every

query q, which is centered at q with radius q.kNN-dist.
The identifier of q is inserted into all cells overlapping q’s
influence region. The query q is re-evaluated when any
location updates of moving objects are related to cells
which record q’s identifier. If any of the current k-NN of q
moves out of q’s influence region, the radius of search
region is enlarged to the distance to the previous k-NN
which moved furthest from q, otherwise the radius of
search region keeps q.kNN-dist. After the search region is
determined, all moving objects in the search region are
scanned for updating q’s new k-NN. In YPK-CNN, the
registered continuous queries are re-evaluated every T
time units (hereafter referred to as result update cycle).
When a query q is evaluated for the first time, YPK-CNN
employs a two-phase search to compute k-NN of q. In the
first phase, the search algorithm start from the cell cq
containing q, and the square search region centered at cq is
iteratively enlarged until initial k candidates are found. In
the second phase, the search region is enlarged to the
square region centered at cq with side length (2 × d) + δ,
where d is the distance of furthest candidate object from q,
and δ is the cell side length. All moving objects in cells
which overlap with the square region are checked to
determine the actual k-NN of q. The system architecture
and index structure of CPM are same as that of YPK-
CNN. When computing the initial k-NN of a query q,
CPM partitions grid cells around q into conceptual
rectangles according to their proximity to q. The
conceptual rectangles are labeled by a direction and a
level number. The direction is U, D, L, or R, stands for up,
down, left, and right. The level number indicates how far
the rectangle is from q. CPM sorts cells and conceptual
rectangles based on their minimum distance to q. The
sorted cells and rectangles are accessed in a best-first way
to obtain the k-NN of q. For continuous query processing,
CPM employs an incremental approach to monitor the
changes in results of processed queries. The idea of the
incremental approach is to book the query q into all cells
intersecting q’s influence region (which is same as that
defined in SEA-CNN), and try to compute new result
based on all moving objects still in q’s influence region. If
the algorithm fails in getting enough results, k-NN of q is
recomputed. The aforementioned continuous k-NN
monitoring method is most related work to this paper.
Similar to these methods CkNN also assumes continuous
queries are processed by the centralized server (in main
memory). Since CPM outperforms YPK-CNN and SEA-
CNN [6], we only compare CkNN with CPM. In the next
section, we present CkNN in detail.

3. Continuous K-NN Query Processing in
Main Memory Grid Index

The paper focuses on processing continuous k-NN query
in main memory grid index. We assume objects move in
2-D space. The space is normalized to [0, 1) × [0, 1). The
grid index divides the space into n × n non-overlap grid
cells. The side length of each cell is δ = 1/n. Section 3.1
gives the overview of system architecture and continuous

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

3

query processing procedure. Section 3.2 designs a grid
cell level based k-NN search algorithm. Section 3.3
proposes an incremental algorithm for continuous query
processing.

3.1 System Architecture

The continuous k-NN query processing system includes
three parts:
1. Object table. It is a hash table for storing moving

objects’ coordinates. The hashed values of objects
identifiers are used to locate their coordinates. This
implementation provides the most efficient access to
coordinates of moving objects.

2. Query table. It is a hash table for storing the
information of continuous k-NN queries. Similar to the
object table, continuous queries are also located by
their identifiers. The entry of a k-NN query q contains
the identifier, the coordinate of q, the number of
required nearest neighbors k, the maximum distance
between q and its kth nearest neighbors q.kNN-dist,
and the list of nearest neighbors q.kNN-list.

3. Grid index. The grid index is composed by grid cells.
Each cell has two lists, object list and query list.
Objects list stores the identifiers of objects which
currently appear in the cell. Query list records the
identifiers of queries whose influence region overlap
the cell. The query list is used to support incremental
query processing. In order to efficiently support
intensive updates, the two lists are also implemented
in hash table.

Fig. 1 System Structure

During each result update cycle, the system first updates
objects table, query table and grid index, then processes
registered continuous queries. While updating the
coordinate of a moving object O in the object table, if O
moves across the cells of grid index, O’s identifier are
deleted from the object list of “old” cell and inserted in
the object list of “new” cell. When a new continuous k-
NN query q is registered in the system, the k-NN search
algorithm is invoked to search the initial result of q. For
all unmoved continuous queries, the incremental
algorithm is applied to monitor the change of the query
results. For all moved continuous queries, at first, their
identifiers are removed form query lists in grid index.
Then, their coordinates are updated in the query table. The

kNN-dist and kNN-list are cleared as well. Finally, all
moved queries are reevaluated by k-NN search algorithm.

3.2 k-NN Search Algorithm

The k-NN search algorithm is used to compute the query
results from scratch for new registered queries and moved
queries. As showed in Fig. 2, the algorithm divides grid
cells around the query point q into multiple levels, e.g. the
cell containing q is level 0 denoting as L0; all cells around
L0 construct level 1 (L1); the cells around L1 is level 2 (L2),
and so on. When a cell level Li is accessed during k-NN
search, the full clockwise scan of all cells in Li starts from
the left bottom cell, i.e. cell c0,0, c1,1 and c2,2. The basic ideal
of the k-NN search algorithm is to construct initial k-NN
candidates from cell levels around the query point at first,
and then use objects in the levels around those k-NN
candidates to refine the query result until all cells that
possibly contains k-NN of query point have been checked.
Meanwhile, the algorithm also tries to obtain the result by
checking as few objects as possible.

Fig. 2 Partition of Cell Levels

The k-NN search algorithm includes two phase. In the
first phase, if the total number of retrieved objects and
objects in current cell level is not greater than k, the
algorithm directly retrieves objects from current cell
levels. These objects (often less than k objects) are used to
construct initial k-NN candidates. In the second phase, the
algorithm builds and refines the final k-NN results
according to objects in the cell levels whose minimum
distance to the query is less than the kNN-dist of the query.
In this phase, all cells in a cell level are sorted based on
their minimum distance to the query. The algorithm visits
these cells in a best-first manner. For a given query q, let
mindist(q, c) represent the minimum distance between q
and cell c, mindist(q, Li) represent the minimum distance
between q and cell level Li, q.kNN-dist denotes the
minimum distance between query point q and its kth
nearest neighbor, and N(Li) denote the total number of
objects in cell level Li, respectively. In order to save the
cost of sorting cells, only qualified cells are sorted. A
qualified cell c must satisfy two criteria, (1) c contains at
least one object, (2) mindist(q, c) < q.kNN-dist. Moreover,
once the minimum distance of current sorted cells to q is
greater than q.kNN-dist, all remaining sorted cells are

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

4

discarded before sorting cells in next cell level. The
algorithm is terminated when the minimum distance of
next cell level to q is not less than q.kNN-dist.

Fig. 3 Example of 2-NN Search in Cell Levels

We use Fig. 3 as example to explain the idea of cell level
based k-NN search algorithm. The circle area center at the
k-NN query q with the radius of q.kNN-dist is the
influence region of q, such as the circle area enclosed by
the dashed line or the real line in Fig. 3. The search
procedure of 2-NN query q starts at L0. Cell level L0 is
ignored for containing no objects. Then, the search range
expands to L1. Since N(L1) ≤ 2, all cells in L1 are
sequentially scanned and objects in them are directly
retrieved to build the initial 2-NN candidates. While
obtaining the initial candidates o1 and o2, q.kNN-dist is set
to the distance between q and o2, dist(q, o2), and the
influence region of q is also determined (the area enclosed
by the dashed line). Before accessing cells in L2, the value
of mindist(q, L2) is computed. The cells in L2 is visited
only when cell level L2 overlaps current influence region
of q, i.e. mindist(q, L2) < q.kNN-dist. While accessing L2,
all cells in it are inserted into a sorted heap SH.
Accordingly, four cells in L2 are en-heaped into SH, i.e.
SH = { < c1,3, mindist(q, c1,3) >, < c1,4, mindist(q, c1,4) >,
< c4,1, mindist(q, c4,1) >, < c5,3, mindist(q, c5,3) >}.
Although c5,5 is not empty, it is not inserted into SH since
mindist(q, c5,5) > q.kNN-dist. After c1,3 is de-heaped, a
better 2-NN o3 is found and influence region is updated
(the area enclosed by real line). Next, c1,4 is de-heaped
and o4 is discarded. Since mindist(q, c4,1) is greater than
current q.kNN-dist, the rest entries in SH does not need to
be visited and the heap is cleared. When the search range
expands to L3 and mindist(q, L3) < q.kNN-dist, the
algorithm terminates and returns o1 and o3 as 2-NN of q.
In Fig. 3, all grey cells are visited during k-NN search.
The darker cells contain the initial k-NN candidates and
the darkest cells are en-heaped in SH. Fig. 4 gives the
pseudocode of k-NN search algorithm.

Unlike the algorithm proposed in [6], our k-NN search
algorithm avoids sorting cells which must be accessed for
obtaining the initial k-NN candidates. Moreover, the
criteria for filtering cells effectively reduce the cost of
sorting cells in heap. This is also confirmed by the
experimental evaluation.

Fig. 4 k-NN Search Algorithm

3.3 Incremental k-NN Query Processing

The result of a new registered continuous k-NN query can
be computed by the k-NN search algorithm. If the query
point is static, i.e. it does not move, its k-NN can be
maintained incrementally. The idea of incremental k-NN
query processing is to exploit the information obtained
from last query processing phase to reduce the cost of
query processing.

The query lists in grid cells are required to support
incremental processing. If a cell c overlaps the influence
region of the query q, the answer of q may be influenced
by the movement of objects in c. Accordingly, the
identifier of q is inserted into the query list of c. When
there is any object in c moves, the incremental k-NN
update algorithm is triggered to check whether q’s k-NN
is changed. In Fig. 3, for example, all cells in L0, L1, cell
c1,2, c1,3, and other three cells in L2 overlap with q’s

Algorithm: k-NN Search (GI, QT, q)
Input: Grid Index GI, Query Table QT, k-NN Query q;
Output: q.kNN-list

1. q.kNN-list = Ø; /*Initialize k-NN*/
2. i = 0; /*Initialize cell level*/
3. q.kNN-dist = ∞; /*Initialize kNN-dist */

/*Construct initial k-NN candidates*/
4. While (q.kNN-list.size() + N(Li) ≤ q.k) do
5. Insert all objects in Li into q.kNN-list;
6. If (q.kNN-list.size() = = q.k) then
7. Update q.kNN-dist;
8. i = i + 1; /*Increase cell level*/
9. End While

/*Get mindist between q and current cell level*/
10. MinLev-dist = mindist(q, Li);
11. While ((q.kNN-list.size() < q.k) or

(MinLev-dist < q.kNN-dist)) do
12. For all cells cj ∈ Li do
13. If ((cj not empty) and ((q.kNN-list.size() < k)

or (mindist(q, cj) < q.kNN-dist))) then
14. En-heap entry < cj, mindist(q, cj)> in SH;
15. While SH is not empty do
16. De-heap next entry<c, mindist(q,c)>from SH;
17. If (q.kNN-dist < mindist(q, c)) then
18. For each object o in cell c do
19. If (q.kNN-list.size() < k) then
20. Insert o into q.kNN-list;
21. Else
22. Update q.kNN-list and q.kNN-dist;
23. End For
24. Else
25. Empty SH
26. End While
27. i = i + 1 /*Increase cell level*/
28. MinLev-dist = mindist(q, Li);
29. End While

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

5

influence region. Therefore, the identifier of q is inserted
into the query lists of these cells. By recording the
identifiers of queries in the query lists of these cells,
incremental result update can be invoked when objects in
those cells change their locations.

The incremental update algorithm is proposed to maintain
the locations of moving objects in the grid index and the
results of k-NN queries. The algorithm is performed while
updating the locations of objects in the grid index. It
includes three parts. Firstly, the location of objects in grid
index is updated. Secondly, if the old position of an object
is in a query’s influence region, the query is checked for
result update. Thirdly, if the new position of the object is
in a query’s influence region, the query is checked for
result update, too. For example, when a moving object o
updates its location from position pold ∈ cell cold to pnew ∈
cell cnew, all queries recorded in the query lists of these two
cells are checked and updated as follow:

(1) For each query q in the query list of cold, if o is
currently in q.kNN-list, the algorithm removes o from
q.kNN-list;

(2) For each query q in the query list of cnew, if o’s new
position pnew is in q’s influence region, the algorithm
inserts o into q.tlist. If the number of objects in q.tlist
is more than k after o is inserted, the object with the
farthest distance to q is deleted from q.tlist.

Fig. 5 Incremental Update Algorithm

By applying incremental update algorithm, all moved
objects in current registered queries’ influence region are
checked. Meanwhile, if the total number of objects in a
query’s kNN-list and tlist is more than k, the updated k-
NN of the query can be obtained by merging these two
lists. The query does not need to be reevaluate after all
location update messages are processed by the algorithm.
The correctness of the incremental update algorithm can
be proved as follow: all moved objects in cold are checked
against the queries recorded in cold during step 3 ~ 6. If the

moved objects are the results of the recorded queries at
latest result update cycle, they are deleted from the
queries’ kNN-list at step 5. If any of those deleted objects
still stay in the checked queries’ influence region, it is
inserted back to the queries’ tlist at step 11. Moreover, for
all new objects move into cnew, if their coordinates are in
the influence regions of queries recorded in cnew, they are
also inserted into those queries’ tlist. If a query’s tlist has
more than k objects, it is safe to delete the farthest object
at step 13 since there are at least k candidate objects
which are not farther to q than the deleted object. Finally,
since all objects which move into the influence regions of
registered queries are checked, and the radiuses of the
influence regions are not change during incremental
update, objects in the kNN-lists and tlists must be the
updated results. Fig. 5 presents the incremental update
algorithm.

Fig. 6 Continuous k-NN Process Algorithm

After all location update messages are processed by the
incremental update algorithm, the results of queries are
maintained by continuous k-NN process algorithm. The
results of moved queries are cleared. The moved queries
are reevaluated by the k-NN search algorithm. For each
unmoved query q, firstly, objects in q.tlist are merged into
q.kNN-list. If the total number of objects in q.tlist and
q.kNN-list is more than k, only k nearest objects are kept
in q.kNN-list, and q.kNN-dist is updated as well. Secondly,
for those queries with less than k objects in kNN-lists, the
k-NN re-computation algorithm is invoked to compute the
results of the queries incrementally. The re-computation is
based on current kNN-dist and kNN-list of corresponding
query. Finally, the incremental query process algorithm
updates the query lists of cells in the grid index according

Algorithm: Continuous k-NN Process (GI, QT, OT)
Input: Grid Index GI, Query Table QT,

Object Table OT;

1. At each result update cycle do
2. Uq = Location updates set of moved queries;
3. Uo = Location updates set of moved objects;
4. For each query in Uq do
5. If q is terminated
6. Delete q from Uq and QT;
7. Else /*q is moved or new query*/
8. Update q’s location in QT;
9. Delete q from query list of cells in GI;
10. For each update message uo in Uo do
11. Incremental Update (GI, QT, uo);
12. For each query q in Uq do
13. k-NN Search (GI, QT, q);
14. For each query q in QT do
15. Merge objects in q.tlist into q.kNN-list;
16. If (q.kNN-list.size() < q.k) then
17. k-NN re-computation(GI, QT, q);
18. According to the change of q.kNN-dist, update

 query list of cells in GI

Algorithm: Incremental Update (GI, QT, uo)
Input: Grid Index GI, Query Table QT,
Location update message uo = <o.id, pold, pnew>,
where pold ∈ cold and pnew ∈ cnew;
Output: updated QT

1. If (cold ≠ cnew) then
2. Delete o.id from object list of cell cold ;
3. For each q.id in query list of cold do
4. If (o ∈ q.kNN-list) then
5. Delete o from q.kNN-list;
6. If (cold ≠ cnew) then
7. Insert o.id into object list of cell cnew ;
8. For each q.id in query list of cnew do
9. If (dist(o, q) ≤ q.kNN-dis) then
10. Insert o into q.tlist;
11. If (q.tlist.size() > k) then
12. Remove the farthest object in q.tlist;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

6

to updated results of continuous queries. Fig. 6 presents
the pseudocode of continuous k-NN process algorithm.

The main idea of k-NN re-computation algorithm is
similar to that of k-NN search in Fig. 4, except that it
utilized current kNN-dist to reduce unnecessary checking
of objects. For a give query q, it is easy to prove that
although q.kNN-list currently has less than k objects, all
these objects must be the part of q’s current k-NN.
Furthermore, there are no other moved objects in the
influence region of q, since the value of q.kNN-dist is not
changed during executing incremental update algorithm.
Therefore, If a cell or a cell level is fully contained in
current influence region of q (i.e. the maximum distance
between them and q is less than current q.kNN-dist),
objects in them must already contain in q.kNN-list and do
not need to be checked. The incremental search for query
q starts from cell level L0 and expand level by level. For a
cell level Li which is not fully contained in q’s influence
region, suppose the incompletely covered cells record m
objects, and q.kNN-list stores l objects. If (m + l) ≤ k,
those m objects can be directly inserted into q.kNN-list
and duplicated objects are deleted. The search range
expands until above condition dose not hold. Then, the
remaining search procedure is similar to that of k-NN
search algorithm. Besides the cell filtering criteria in k-
NN search algorithm, if a cell is fully covered by current
query’s influence region, it is not inserted into the heap,
too. Fig. 7 presents the pseudocode of k-NN re-
computation.

Fig. 7 k-NN Re-computation Algorithm

Compare to the k-NN re-computation algorithm of CPM
proposed in [6], our approach is more efficient. Firstly,
CPM consumes more memory for query processing. CPM
assigns each query a visit list and a sorted heap separately,
but CkNN only use one sorted heap to process all queries.

For example, if the total memory unit for a visit list and a
sorted heap is m, CkNN only need m memory unit to
process 5000 queries, while CPM needs 5000 × m units!
Secondly, CPM re-computes query results from scratch
for all moved queries. Although CPM utilizes visit list as
a cache of visited cells, all objects in those cells still needs
to be re-checked. This wastes the computation resource,
since most of those objects are already checked in
incremental update algorithm. On the contrary, CkNN
keeps the objects in kNN-list and reuses them. Meanwhile,
since the k-NN search algorithm of CkNN (invoked form
step 14) is more efficient, the overall running time of
CkNN is less than that of CPM. Although CPM uses
much more memory to build the cache for the query
processing algorithm, the performance of CkNN still
outperforms CPM. This is also confirmed by experiment
evaluation in the next section.

4．Experimental Evaluation

In this section, we evaluate the performance of cell level
based continuous k-NN process algorithm (CkNN). Since
the CPM outperforms all other existing continuous k-NN
process methods [6]. We only compare the performance
of CkNN with CPM.

Table 1: The settings of parameters in experimental evaluation

Parameters Default Range

Population of moving objects No 100k 10, 50, 100(k)

Location update rate of moving
objects at result update cycle Uo

50% 10, 30, 50(%)

Speed of objects / query medium Slow,
medium, fast

Population of continuous k-NN
queries Nq

5k 1, 5, 10(k)

Number of nearest neighbors k 32 1, 16, 32, 64

Location update rate of queries
at result update cycle Uq

30% 10, 30, 50(%)

The data sets in the experiment are generated by the same
spatio-temporal data generator used in [6]. The spatio-
temporal data is generated in the road map of Oldenburg
(a city in Germany), which is same as the map used in [6].
The output of the generator is a set of mobile objects (e.g.,
cars, trucks, or people) moving on the road map. Moving
objects are denoted by their coordinates in the map at
successive time stamps. The trip of each object starts from
network nodes in the map. After an object reaches a
random destination through the shortest path, it then
disappears. The speed of the moving objects is classified
to three types in the generator, slow, medium, and fast.
The slow speed equals 1/250 of the sum of the space
extents per time stamp. Medium and fast speeds are 5 and
25 times larger of slow speed, respectively. The
continuous k-NN queries are generated by the same
pattern as mobile objects. They are also objects moving

Algorithm: k-NN Re-computation (GI, QT, q)
Input: Grid Index GI, Query Table QT, k-NN Query
q;

1. i = 0;
2. N(Li)’ = N(Li) - number of objects in cells fully

covered by current q’s influence region;
3. While ((q.kNN-list.size() + N(Li)’) ≤ k) do
4. For all cell c in Li do
5. If (c ∩ q’s influence region ≠ c) then

/*check cells not fully in q’s influence region*/
6. For all object o in c do
7. If (o ∉ q.kNN-list)
8. Insert o into q.kNN-list
9. If (q.kNN-list.size() = = q.k) then
10. Update q.kNN-dist;
11. i = i + 1; /*Increase cell level*/
12. N(Li)’ = N(Li) - number of objects in cells fully

covered by current q’s influence region;
13. End while /*Obtain the initial k-NN objects*/
14. Similar to step 10 ~ 29 in algorithm k-NN Search

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

7

on the same road map, but they will not disappear in the
space during the simulation. At each result update cycle,
all queries are evaluated by CkNN and CPM. The length
of simulation is 100 time stamps. In each experiment,
only one parameter is changed, while other parameters
keep their default values. All experiments are performed
on a Pentium 3.2 GHz CPU with 1GByte memory. Table
1 lists the ranges and default values of parameters used
throughout experiments. The location update rate in table
1 is the percentage of moved objects (or queries) at each
result update cycle.

In the experiment, we evaluate the effects of five factors
on the performance of continuous k-NN query processing
method. The five factors are the most important issues
when evaluate the efficiency and effectiveness of the
algorithm for processing continuous k-NN queries over
moving objects. They are granularity of grid index,
number of nearest neighbors, scalability, the location
update rate of moving objects and queries, and the speed
of objects and queries. Granularity determines the
approximation of grid cell. The influence region can be
better approximate by smaller cells. However, it costs
query processing algorithm more time to check the grid
cells. Therefore, continuous query processing algorithm
can be benefit from appropriate granularity. For a given
granularity, the more nearest neighbors are required by
the query, the more objects and cells are needed to be
checked. A good algorithm must be less sensitive to the
increase in number of NNs. Generally, the enlarged
scalability in the workload increases the query processing
cost. An efficient algorithm should cost less overall
running time on processing the workload. If the location
update rate of objects increases, it takes more time for
grid index to update the location of objects in the index,
and more objects are checked during incremental update
of query results. If the location update rate of queries
increases (i.e. more queries moved), more queries need to
be reevaluated. As a result, the cost of query processing
increases. Similarly, if the speed of moving objects/
queries increases, it means that the environment becomes
more dynamic. The performance of an effective algorithm
must be better under this dynamic situation.

Effect of Granularity

Fig. 8 Overall CPU time versus various grid granularity

At first, we generate the workload with default parameters

in table 1. Fig. 8 presents the overall running time of
CkNN and CPM under various grid granularity ranging
between 32 × 32 and 512 × 512. Fig. 8 illustrates that
CkNN outperforms CPM for all grid sizes. As explained
in section 3, CPM incurs unnecessary sorting of cells and
redundant checking of moving objects. It is showed that
the 128 × 128 grid is benefit to both of the query
processing algorithms. Therefore, we use this granularity
to perform all remaining experiments.

Effects of number of nearest neighbors

Fig. 9 Overall CPU time versus number of NNs

Fig. 9 measures the overall running time of CkNN and
CPM on processing continuous k-NN queries which
require various number of nearest neighbors. It shows that
the overall running time as a linear function of k (the
numbers of NNs), with other parameters keep default
values. CkNN outperforms CPM as k increases. This is
because: (1) CPM sorts all cells before checking objects
in them, while CkNN directly retrieves objects from cells
to build initial k-NN candidate and sorts fewer filtered
cells to refine the query results; (2) the incremental update
algorithm of CkNN is more efficient than that of CPM,
since CPM checks more objects during this procedure; (3)
the performance of k-NN re-computation algorithm of
CkNN outperforms that of CPM, since CkNN reuses the
retrieved objects in kNN-lists of queries.

Effects of scalability

Fig. 10 Overall CPU time versus number of moving objects No

Fig. 10 and Fig. 11 illustrate the scalability of the
proposed method. We set the generator into constant
mode to produce constant objects population No and Nq in
the simulation. Fig. 10 and Fig. 11 present the effects of

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

8

No and Nq on the overall running time, respectively. They
show that (1) the cost of CkNN and CPM increases
linearly to both No and Nq; (2) the performance of the two
methods are more sensitive to the change of Nq; (3) the
performance of CkNN is better than that of CPM under all
conditions.

Fig. 11 Overall CPU time versus number of continuous queries Nq

Effect of location update rate
Fig. 12 and Fig. 13 compare the overall running time of
CkNN and CPM in processing continuous queries with
various location update rate of objects and queries. The
cost of query processing by CkNN and CPM increases as
location update rate Uo and Uq increase. This illustrates
the performance of continuous k-NN query processing
over moving objects decreases when the agility of objects
increases. Meanwhile, it is showed that the performance
of CkNN still outperforms CPM under all settings.

Fig. 12 Overall CPU time versus location update rate of objects

Fig. 13 Overall CPU time versus location update rate of queries

Effects of object/query speed

Fig. 14 Overall CPU time versus object speed

Fig. 14 and Fig. 15 compare the overall running time of
CkNN and CPM with respect to the object or query speed.
Two query processing methods degenerate when objects
move fast. The faster objects speed is, the farther they
move. This makes more k-NN results become invalidate
during each result update cycle, and more objects are
checked by incremental update algorithm and k-NN re-
computation algorithm. Therefore, the query processing
cost increases. On the contrary, as showed in Fig. 15, the
performance of CkNN and CPM is not influenced by
query speed, since these two methods compute k-NN of
moved queries from scratch. The figures illustrate that
CkNN outperforms CPM under all object/query speed.

Fig. 15 Overall CPU time versus query speed

5. Conclusions

The paper studies the problem of processing continuous k-
NN queries in location-dependent application. The
challenge of this problem is how to efficiently process
continuous k-NN queries and location update of moving
objects at the same time. We utilize the main memory grid
index to store moving objects. Our contribution is an
efficient cell level based continuous k-NN query
processing algorithm, CkNN for short. The algorithm
computes the results of new queries and moved queries
from scratch by the k-NN search algorithm. For existing
queries which do not change their locations, CkNN
employs the incremental update algorithm to keep the
query results up-to-date. For moved queries, k-NN search
algorithm is applied to reevaluate them. The experimental

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

9

evaluation demonstrates that CkNN outperforms the
current state-of-the-art algorithm CPM in all experiment
settings. In the future, we plan to extend our approach to
process variations of continuous k-NN query, such as
reverse k-NN query [14].

Acknowledgments

The research was supported in part by the National
Natural Science Foundation of China under Grant
No.60473075, the Key Project of the Natural Science
Foundation of Heilongjiang Province under Grant
No.ZJG03-05.

References
[1] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas,

and Simonas Saltenis. Nearest neighbor and reverse nearest
neighbor queries for moving objects. In IDEAS, pages 44-
53, 2002.

[2] Bugra Gedik and Ling Liu. Mobieyes: Distributed
processing of continuously moving queries on moving
objects in a mobile system. In EDBT, pages 67-87, 2004.

[3] Dmitri V. Kalashnikov, Sunil Prabhakar, and Susanne E.
Hambrusch. Main memory evaluation of monitoring
queries over moving objects. Distributed and Parallel
Databases, 15(2):117-135, 2004.

[4] George Kollios, Dimitrios Gunopulos, and Vassilis J.
Tsotras. Nearest neighbor queries in a mobile environment.
In STDBM, pages 119-134. Springer, 1999.

[5] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref.
Sina: Scalable incremental processing of continuous queries
in spatio-temporal databases. In SIGMOD Conference,
pages 623-634, 2004.

[6] Kyriakos Mouratidis, Dimitris Papadias, and Marios
Hadjieleftheriou. Conceptual partitioning: An efficient
method for continuous nearest neighbor monitoring. In
SIGMOD Conference, pages 634-645, 2005.

[7] Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid
G. Aref, and Susanne E. Hambrusch. Query indexing and
velocity constrained indexing: Scalable techniques for
continuous queries on moving objects. IEEE Transaction
on Computers, 51(10):1124-1140, 2002.

[8] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent.
Nearest neighbor queries. In SIGMOD Conference, pages
71-79, 1995.

[9] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger,
and Mario A. Lopez. Indexing the positions of continuously
moving objects. In SIGMOD, pages 331-342, 2000.

[10] Zhexuan Song and Nick Roussopoulos. K-nearest neighbor
search for moving query point. In SSTD, pages 79-96, 2001.

[11] Yufei Tao and Dimitris Papadias. Time-parameterized
queries in spatio-temporal databases. In SIGMOD
Conference, pages 334-345, 2002.

[12] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref.
Sea-cnn: Scalable processing of continuous k-nearest
neighbor queries in spatio-temporal databases. In ICDE,
pages 643-654, 2005.

[13] Xiaohui Yu, Ken Q. Pu, and Nick Koudas. Monitoring k-
nearest neighbor queries over moving objects. In ICDE,
pages 631-642. IEEE Computer Society, 2005.

[14] Stanoi, I., Riedewald, M., Agrawal, D., Abbadi, A.
Discovery of Influence Sets in Frequently Updated
Databases. VLDB, 2001.

[15] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.
Constrained Nearest Neighbor Queries. SSTD, 2001.

Wei Zhang received the BS degree
in computer science, and MS degree in
aerospace engineering from Harbin Institute
of Technology, China. Currently, he is a
PhD candidate in the school of computer
science and Technology at Harbin Institute
of Technology. His research interests
include spatio-temporal databases and
mobile computing.

Jianzhong Li is a professor in the
school of computer science and technology
at Harbin Institute of Technology. His
research interests include database, data
mining, data warehouse, parallel computing,
spatio-temporal databases and mobile
computing.

Haiwei Pan received my B.S. and
M.S. degrees from Heilongjiang University
in 1997 and 2000, respectively. Currently,
he is a Ph.D. candidate in school of
computer science and technology at Harbin
Institute of Technology. His research
interests include data mining, medical
image mining and text mining.

