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Summary 
A k nearest neighbor (k-NN) query retrieves k objects in a given 
objects set which are closest to the query point q. Processing 
continuous k-nearest neighbor (k-NN) query over moving 
objects in location-dependent application requires that the 
frequent location updates of moving objects and intensive 
continuous k-NN queries must be efficiently processed at the 
same time. In this paper, we propose a grid cell based 
continuous k-NN query processing method (CkNN). It utilizes a 
main memory grid index to store the location of moving objects. 
Efficient k-NN search algorithm and incremental query 
processing algorithm are designed in CkNN. CkNN minimizes 
the cost of continuous k-NN query processing by reducing most 
unnecessary checking on queries / moving objects and reusing 
data obtained during query processing as moor as possible. The 
comprehensive experimental evaluation shows that CkNN 
outperforms state-of-the-art continuous k-NN query processing 
approach in all problem settings. 
Key words: 
Query Processing, Continuous Query, Location-dependent, 
Spatio-temporal 

Introduction 

As the development of positioning technology wireless 
communication, the widely applied location-dependent 
applications require new techniques to manage the 
information of moving objects. Recently, processing 
continuous k-NN queries over moving objects attracts 
considerable attentions. Besides computing the k-NN of 
queries after they are issued, the system needs to maintain 
the results of continuous queries up-to-date at each update 
cycle. The challenge of this problem is to efficiently 
handle frequent location updates as well as process 
intensive continuous k-NN queries. Early research in 
spatial databases focused on processing the k-NN query 
which retrieves k objects from the static dataset that are 
nearest to a static query point according to Euclidean 
distance. The existing algorithms in spatial database 
consider that the data are indexed by a spatial access 
method (e.g. R-Tree) and utilize some branch-and-bound 
approach to restrict the search space. In addition, several 
papers study variations of k-NN problems such as reverse 
k-NN [14] and constrained k-NN query [15]. However, all 
R-Tree based k-NN computing algorithms are designed 
for processing queries over static data, those traditional 
solutions in spatial database can not extend to the highly 

dynamic applications, e.g. frequent location update of 
moving objects.  

Comparing with the traditional secondary memory based 
approaches, main memory based access methods is a 
better choice while processing continuous k-NN queries 
over constantly moving objects. Location-dependent 
application is characterized by a large number of objects 
and a large number of continuous queries (or users). Most 
users require the system answer their queries as soon as 
possible or even process their query in real time. However, 
the load of location-dependent service is heavier as it 
becomes more popular, and the response time increases, 
since more mobile objects are monitored and more 
continuous queries registered in the system. In [3], 
Kalashnikov et al. proposed that main memory grid index 
is an effective structure for processing continuous range 
queries over moving objects. This hash structure can 
efficiently supporting frequent location updates of moving 
objects, and the grid partition is also benefited to query 
processing algorithm. Nowadays, the price of main 
memory is much lower than ten years ago. It is common 
for a computing server which is equipped with several 
gigabyte main memories. Therefore, it is not only 
applicable but also necessary to research an efficient main 
memory continuous k-NN query processing algorithm for 
location-dependent application. 

In the paper, we propose a grid cell level based 
continuous k-NN query processing algorithm, called 
CkNN for short. It utilizes a main memory grid index to 
store the moving objects. CkNN processes new registered 
queries by k-NN search algorithm. It searches the k-NN of 
queries according to the partition of grid cell level. During 
query processing, CkNN tries to minimize the cost of 
checking grid cells and moving objects. While processing 
static continuous k-NN queries, CkNN employ an 
incremental update and query processing algorithm. The 
incremental algorithm makes the most of information 
obtained in last query processing phase, and attempts to 
reuse the data produced in query processing as moor as 
possible. The comprehensive experimental evaluation 
shows that CkNN outperforms state-of-the-art continuous 
k-NN query processing approach in all problem settings. 

The rest of the paper is organized as follows. Section 2 
surveys related work on processing continuous k-NN 
query. Section 3 proposes the grid cell level based 
continuous k-NN query processing method. Section 4 
presents the experimental evaluation of CkNN. Finally, 
section 5 concludes the works in the paper. 
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2. Related Work 

Processing k-NN query over static objects has been well-
studied in spatial database. The most widely applied 
approach is the branch-and-bound algorithm based on R-
tree [8]. The algorithm traverses R-tree through a best-
first search and maintains a priority list of k-NN 
candidates. Since traditional methods in spatial database 
are designed for processing k-NN queries over static data, 
those approaches can not efficiently support the highly 
dynamic location-dependent applications where the 
information of moving objects is updated frequently. 
Song and Roussopoulos [10] studied the problem of 
processing moving query over static data. Their approach 
attempts to reduce the cost of re-computing k-NN for 
moved queries by returning redundant objects with 
current k-NN results. If the moved query can be satisfied 
by recently received objects, k-NN computation is 
avoided. Tao and Papadias proposed a time-parameterized 
query which assumes objects move with linear and known 
velocities, returns validity period and next change of 
current results [11]. Based on the linear movement 
assumption, Kollios et al. [4] designed an algorithm for 
processing k-NN query over 1D (and 1.5D) moving 
objects. For two or higher dimensional, Benetis et al. [1] 
proposed the algorithm for processing predictive k-NN 
and reverse nearest neighbor query by employing TPR-
Tree [9]. Above predictive k-NN processing algorithms 
require the velocity of moving object is available at query 
time. If the linear movement assumption does not hold, 
query results become invalid. CkNN does not make any 
assumption about the movement patterns of moving 
objects. It can process static or moving queries over 
moving objects. 

Processing continuous spatial queries over moving objects 
is first considered in [7], where static range query is 
indexed by an R-Tree based structure called Q-index and 
moving objects probe Q-index to invoke updating of 
influenced queries. Mobieyes [2] monitors continuous 
moving range queries over moving objects in distributed 
environment, while SINA [5] processes continuous range 
queries in a center server. Kalashnikov et al. [3] proposed 
that main memory grid index is more suitable for 
monitoring continues range query over moving objects 
than R-Tree based implementation. All aforementioned 
methods are focus on processing continuous range queries, 
and can not efficiently extend for k-NN query processing. 
Recently, Yu et al. [12], Xiong et al. [12], and Mouratidis 
et al. [6] proposed three approaches for processing 
continuous k-NN query based on grid index, hereafter 
referred to as YPK-CNN, SEA-CNN, and CPM, 
respectively. YPK-CNN and CPM employ main memory 
regular grid index, while SEA-CNN indexes objects in 
secondary memory with regular grid index. SEA-CNN 
only focuses on monitoring the changes in k-NN result of 
continuous queries (It assume the initial k-NN results are 
available). For any k-NN query point q, let q.kNN-dist 
denote the distance between q and its kth nearest neighbor. 
In SEA-CNN, the “influence region” is defined for every 

query q, which is centered at q with radius q.kNN-dist. 
The identifier of q is inserted into all cells overlapping q’s 
influence region. The query q is re-evaluated when any 
location updates of moving objects are related to cells 
which record q’s identifier. If any of the current k-NN of q 
moves out of q’s influence region, the radius of search 
region is enlarged to the distance to the previous k-NN 
which moved furthest from q, otherwise the radius of 
search region keeps q.kNN-dist. After the search region is 
determined, all moving objects in the search region are 
scanned for updating q’s new k-NN. In YPK-CNN, the 
registered continuous queries are re-evaluated every T 
time units (hereafter referred to as result update cycle). 
When a query q is evaluated for the first time, YPK-CNN 
employs a two-phase search to compute k-NN of q. In the 
first phase, the search algorithm start from the cell cq 
containing q, and the square search region centered at cq is 
iteratively enlarged until initial k candidates are found. In 
the second phase, the search region is enlarged to the 
square region centered at cq with side length (2 × d) + δ, 
where d is the distance of furthest candidate object from q, 
and δ is the cell side length. All moving objects in cells 
which overlap with the square region are checked to 
determine the actual k-NN of q. The system architecture 
and index structure of CPM are same as that of YPK-
CNN. When computing the initial k-NN of a query q, 
CPM partitions grid cells around q into conceptual 
rectangles according to their proximity to q. The 
conceptual rectangles are labeled by a direction and a 
level number. The direction is U, D, L, or R, stands for up, 
down, left, and right. The level number indicates how far 
the rectangle is from q. CPM sorts cells and conceptual 
rectangles based on their minimum distance to q. The 
sorted cells and rectangles are accessed in a best-first way 
to obtain the k-NN of q. For continuous query processing, 
CPM employs an incremental approach to monitor the 
changes in results of processed queries. The idea of the 
incremental approach is to book the query q into all cells 
intersecting q’s influence region (which is same as that 
defined in SEA-CNN), and try to compute new result 
based on all moving objects still in q’s influence region. If 
the algorithm fails in getting enough results, k-NN of q is 
recomputed. The aforementioned continuous k-NN 
monitoring method is most related work to this paper. 
Similar to these methods CkNN also assumes continuous 
queries are processed by the centralized server (in main 
memory). Since CPM outperforms YPK-CNN and SEA-
CNN [6], we only compare CkNN with CPM. In the next 
section, we present CkNN in detail. 

3. Continuous K-NN Query Processing in 
Main Memory Grid Index 

The paper focuses on processing continuous k-NN query 
in main memory grid index. We assume objects move in 
2-D space. The space is normalized to [0, 1) × [0, 1). The 
grid index divides the space into n × n non-overlap grid 
cells. The side length of each cell is δ = 1/n. Section 3.1 
gives the overview of system architecture and continuous 
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query processing procedure. Section 3.2 designs a grid 
cell level based k-NN search algorithm. Section 3.3 
proposes an incremental algorithm for continuous query 
processing. 

3.1 System Architecture 

The continuous k-NN query processing system includes 
three parts: 
1. Object table. It is a hash table for storing moving 

objects’ coordinates. The hashed values of objects 
identifiers are used to locate their coordinates. This 
implementation provides the most efficient access to 
coordinates of moving objects. 

2. Query table. It is a hash table for storing the 
information of continuous k-NN queries. Similar to the 
object table, continuous queries are also located by 
their identifiers. The entry of a k-NN query q contains 
the identifier, the coordinate of q, the number of 
required nearest neighbors k, the maximum distance 
between q and its kth nearest neighbors q.kNN-dist, 
and the list of nearest neighbors q.kNN-list. 

3. Grid index. The grid index is composed by grid cells. 
Each cell has two lists, object list and query list. 
Objects list stores the identifiers of objects which 
currently appear in the cell. Query list records the 
identifiers of queries whose influence region overlap 
the cell. The query list is used to support incremental 
query processing. In order to efficiently support 
intensive updates, the two lists are also implemented 
in hash table. 

 

Fig. 1 System Structure 

During each result update cycle, the system first updates 
objects table, query table and grid index, then processes 
registered continuous queries. While updating the 
coordinate of a moving object O in the object table, if O 
moves across the cells of grid index, O’s identifier are 
deleted from the object list of “old” cell and inserted in 
the object list of “new” cell. When a new continuous k-
NN query q is registered in the system, the k-NN search 
algorithm is invoked to search the initial result of q. For 
all unmoved continuous queries, the incremental 
algorithm is applied to monitor the change of the query 
results. For all moved continuous queries, at first, their 
identifiers are removed form query lists in grid index. 
Then, their coordinates are updated in the query table. The 

kNN-dist and kNN-list are cleared as well. Finally, all 
moved queries are reevaluated by k-NN search algorithm. 

3.2 k-NN Search Algorithm 

The k-NN search algorithm is used to compute the query 
results from scratch for new registered queries and moved 
queries. As showed in Fig. 2, the algorithm divides grid 
cells around the query point q into multiple levels, e.g. the 
cell containing q is level 0 denoting as L0; all cells around 
L0 construct level 1 (L1); the cells around L1 is level 2 (L2), 
and so on. When a cell level Li is accessed during k-NN 
search, the full clockwise scan of all cells in Li starts from 
the left bottom cell, i.e. cell c0,0, c1,1 and c2,2. The basic ideal 
of the k-NN search algorithm is to construct initial k-NN 
candidates from cell levels around the query point at first, 
and then use objects in the levels around those k-NN 
candidates to refine the query result until all cells that 
possibly contains k-NN of query point have been checked. 
Meanwhile, the algorithm also tries to obtain the result by 
checking as few objects as possible. 

 

Fig. 2  Partition of Cell Levels 

The k-NN search algorithm includes two phase. In the 
first phase, if the total number of retrieved objects and 
objects in current cell level is not greater than k, the 
algorithm directly retrieves objects from current cell 
levels. These objects (often less than k objects) are used to 
construct initial k-NN candidates. In the second phase, the 
algorithm builds and refines the final k-NN results 
according to objects in the cell levels whose minimum 
distance to the query is less than the kNN-dist of the query. 
In this phase, all cells in a cell level are sorted based on 
their minimum distance to the query. The algorithm visits 
these cells in a best-first manner. For a given query q, let 
mindist(q, c) represent the minimum distance between q 
and cell c, mindist(q, Li) represent the minimum distance 
between q and cell level Li, q.kNN-dist denotes the 
minimum distance between query point q and its kth 
nearest neighbor, and N(Li) denote the total number of 
objects in cell level Li, respectively. In order to save the 
cost of sorting cells, only qualified cells are sorted. A 
qualified cell c must satisfy two criteria, (1) c contains at 
least one object, (2) mindist(q, c) < q.kNN-dist. Moreover, 
once the minimum distance of current sorted cells to q is 
greater than q.kNN-dist, all remaining sorted cells are 
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discarded before sorting cells in next cell level. The 
algorithm is terminated when the minimum distance of 
next cell level to q is not less than q.kNN-dist. 

 

Fig. 3 Example of 2-NN Search in Cell Levels 

We use Fig. 3 as example to explain the idea of cell level 
based k-NN search algorithm. The circle area center at the 
k-NN query q with the radius of q.kNN-dist is the 
influence region of q, such as the circle area enclosed by 
the dashed line or the real line in Fig. 3. The search 
procedure of 2-NN query q starts at L0. Cell level L0 is 
ignored for containing no objects. Then, the search range 
expands to L1. Since N(L1) ≤ 2, all cells in L1 are 
sequentially scanned and objects in them are directly 
retrieved to build the initial 2-NN candidates. While 
obtaining the initial candidates o1 and o2, q.kNN-dist is set 
to the distance between q and o2, dist(q, o2), and the 
influence region of q is also determined (the area enclosed 
by the dashed line). Before accessing cells in L2, the value 
of mindist(q, L2) is computed. The cells in L2 is visited 
only when cell level L2 overlaps current influence region 
of q, i.e. mindist(q, L2) < q.kNN-dist. While accessing L2, 
all cells in it are inserted into a sorted heap SH. 
Accordingly, four cells in L2 are en-heaped into SH, i.e. 
SH = { < c1,3, mindist(q, c1,3) >, < c1,4, mindist(q, c1,4) >,  
< c4,1, mindist(q, c4,1) >, < c5,3, mindist(q, c5,3) >}. 
Although c5,5 is not empty, it is not inserted into SH since 
mindist(q, c5,5) > q.kNN-dist. After c1,3 is de-heaped, a 
better 2-NN o3 is found and influence region is updated 
(the area enclosed by real line). Next, c1,4 is de-heaped 
and o4 is discarded. Since mindist(q, c4,1) is greater than 
current q.kNN-dist, the rest entries in SH does not need to 
be visited and the heap is cleared. When the search range 
expands to L3 and mindist(q, L3) < q.kNN-dist, the 
algorithm terminates and returns o1 and o3 as 2-NN of q. 
In Fig. 3, all grey cells are visited during k-NN search. 
The darker cells contain the initial k-NN candidates and 
the darkest cells are en-heaped in SH. Fig. 4 gives the 
pseudocode of k-NN search algorithm.  

Unlike the algorithm proposed in [6], our k-NN search 
algorithm avoids sorting cells which must be accessed for 
obtaining the initial k-NN candidates. Moreover, the 
criteria for filtering cells effectively reduce the cost of 
sorting cells in heap. This is also confirmed by the 
experimental evaluation. 

 

Fig. 4  k-NN Search Algorithm 

3.3 Incremental k-NN Query Processing 

The result of a new registered continuous k-NN query can 
be computed by the k-NN search algorithm. If the query 
point is static, i.e. it does not move, its k-NN can be 
maintained incrementally. The idea of incremental k-NN 
query processing is to exploit the information obtained 
from last query processing phase to reduce the cost of 
query processing.  

The query lists in grid cells are required to support 
incremental processing. If a cell c overlaps the influence 
region of the query q, the answer of q may be influenced 
by the movement of objects in c. Accordingly, the 
identifier of q is inserted into the query list of c. When 
there is any object in c moves, the incremental k-NN 
update algorithm is triggered to check whether q’s k-NN 
is changed. In Fig. 3, for example, all cells in L0, L1, cell 
c1,2, c1,3, and other three cells in L2 overlap with q’s 

Algorithm: k-NN Search (GI, QT, q) 
Input: Grid Index GI, Query Table QT, k-NN Query q;
Output: q.kNN-list 

1. q.kNN-list = Ø; /*Initialize k-NN*/ 
2. i = 0; /*Initialize cell level*/ 
3. q.kNN-dist = ∞; /*Initialize kNN-dist */ 

/*Construct initial k-NN candidates*/ 
4. While ( q.kNN-list.size() + N(Li) ≤ q.k) do 
5.   Insert all objects in Li into q.kNN-list; 
6.     If (q.kNN-list.size() = = q.k) then 
7.       Update q.kNN-dist; 
8.   i = i + 1; /*Increase cell level*/ 
9. End While 

/*Get mindist between q and current cell level*/ 
10. MinLev-dist = mindist(q, Li);  
11. While ((q.kNN-list.size() < q.k) or 

(MinLev-dist < q.kNN-dist)) do 
12.   For all cells cj ∈ Li do 
13.     If ((cj not empty) and ((q.kNN-list.size() < k)   

or (mindist(q, cj) < q.kNN-dist))) then 
14.      En-heap entry < cj, mindist(q, cj)> in SH; 
15.   While SH is not empty do 
16.     De-heap next entry<c, mindist(q,c)>from SH; 
17.       If (q.kNN-dist < mindist(q, c)) then 
18.         For each object o in cell c do 
19.           If (q.kNN-list.size() < k) then 
20.             Insert o into q.kNN-list; 
21.           Else 
22.             Update q.kNN-list and q.kNN-dist; 
23.         End For 
24.       Else 
25.      Empty SH 
26.   End While 
27.   i = i + 1 /*Increase cell level*/ 
28.   MinLev-dist = mindist(q, Li); 
29. End While 
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influence region. Therefore, the identifier of q is inserted 
into the query lists of these cells. By recording the 
identifiers of queries in the query lists of these cells, 
incremental result update can be invoked when objects in 
those cells change their locations. 

The incremental update algorithm is proposed to maintain 
the locations of moving objects in the grid index and the 
results of k-NN queries. The algorithm is performed while 
updating the locations of objects in the grid index. It 
includes three parts. Firstly, the location of objects in grid 
index is updated. Secondly, if the old position of an object 
is in a query’s influence region, the query is checked for 
result update. Thirdly, if the new position of the object is 
in a query’s influence region, the query is checked for 
result update, too. For example, when a moving object o 
updates its location from position pold ∈ cell cold to pnew ∈ 
cell cnew, all queries recorded in the query lists of these two 
cells are checked and updated as follow:  

(1) For each query q in the query list of cold, if o is 
currently in q.kNN-list, the algorithm removes o from 
q.kNN-list; 

(2) For each query q in the query list of cnew, if o’s new 
position pnew is in q’s influence region, the algorithm 
inserts o into q.tlist. If the number of objects in q.tlist 
is more than k after o is inserted, the object with the 
farthest distance to q is deleted from q.tlist. 

 

Fig. 5  Incremental Update Algorithm 

By applying incremental update algorithm, all moved 
objects in current registered queries’ influence region are 
checked. Meanwhile, if the total number of objects in a 
query’s kNN-list and tlist is more than k, the updated k-
NN of the query can be obtained by merging these two 
lists. The query does not need to be reevaluate after all 
location update messages are processed by the algorithm. 
The correctness of the incremental update algorithm can 
be proved as follow: all moved objects in cold are checked 
against the queries recorded in cold during step 3 ~ 6. If the 

moved objects are the results of the recorded queries at 
latest result update cycle, they are deleted from the 
queries’ kNN-list at step 5. If any of those deleted objects 
still stay in the checked queries’ influence region, it is 
inserted back to the queries’ tlist at step 11. Moreover, for 
all new objects move into cnew, if their coordinates are in 
the influence regions of queries recorded in cnew, they are 
also inserted into those queries’ tlist. If a query’s tlist has 
more than k objects, it is safe to delete the farthest object 
at step 13 since there are at least k candidate objects 
which are not farther to q than the deleted object. Finally, 
since all objects which move into the influence regions of 
registered queries are checked, and the radiuses of the 
influence regions are not change during incremental 
update, objects in the kNN-lists and tlists must be the 
updated results. Fig. 5 presents the incremental update 
algorithm. 

 

Fig. 6  Continuous k-NN Process Algorithm 

After all location update messages are processed by the 
incremental update algorithm, the results of queries are 
maintained by continuous k-NN process algorithm. The 
results of moved queries are cleared. The moved queries 
are reevaluated by the k-NN search algorithm. For each 
unmoved query q, firstly, objects in q.tlist are merged into 
q.kNN-list. If the total number of objects in q.tlist and 
q.kNN-list is more than k, only k nearest objects are kept 
in q.kNN-list, and q.kNN-dist is updated as well. Secondly, 
for those queries with less than k objects in kNN-lists, the 
k-NN re-computation algorithm is invoked to compute the 
results of the queries incrementally. The re-computation is 
based on current kNN-dist and kNN-list of corresponding 
query. Finally, the incremental query process algorithm 
updates the query lists of cells in the grid index according 

Algorithm: Continuous k-NN Process (GI, QT, OT) 
Input: Grid Index GI, Query Table QT,  

Object Table OT; 

1. At each result update cycle do 
2.   Uq = Location updates set of moved queries; 
3.   Uo = Location updates set of moved objects; 
4.   For each query in Uq do 
5.     If q is terminated  
6.       Delete q from Uq and QT; 
7.     Else  /*q is moved or new query*/ 
8.       Update q’s location in QT; 
9.       Delete q from query list of cells in GI; 
10.     For each update message uo in Uo do 
11.       Incremental Update (GI, QT, uo); 
12.     For each query q in Uq do 
13.       k-NN Search (GI, QT, q); 
14.     For each query q in QT do 
15.       Merge objects in q.tlist into q.kNN-list; 
16.        If (q.kNN-list.size() < q.k) then 
17.          k-NN re-computation(GI, QT, q);      
18.    According to the change of q.kNN-dist, update 

 query list of cells in GI 

Algorithm: Incremental Update (GI, QT, uo) 
Input: Grid Index GI, Query Table QT,  
Location update message uo = <o.id, pold, pnew>, 
where pold ∈ cold and pnew ∈ cnew; 
Output: updated QT 

1. If (cold ≠ cnew) then 
2.   Delete o.id from object list of cell cold ; 
3. For each q.id in query list of cold do 
4.   If (o ∈ q.kNN-list) then 
5.     Delete o from q.kNN-list;  
6. If (cold ≠ cnew) then 
7.   Insert o.id into object list of cell cnew ; 
8. For each q.id in query list of cnew do 
9.   If (dist(o, q) ≤ q.kNN-dis) then  
10.     Insert o into q.tlist; 
11.       If (q.tlist.size() > k) then 
12.         Remove the farthest object in q.tlist; 
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to updated results of continuous queries. Fig. 6 presents 
the pseudocode of continuous k-NN process algorithm.  

The main idea of k-NN re-computation algorithm is 
similar to that of k-NN search in Fig. 4, except that it 
utilized current kNN-dist to reduce unnecessary checking 
of objects. For a give query q, it is easy to prove that 
although q.kNN-list currently has less than k objects, all 
these objects must be the part of q’s current k-NN. 
Furthermore, there are no other moved objects in the 
influence region of q, since the value of q.kNN-dist is not 
changed during executing incremental update algorithm. 
Therefore, If a cell or a cell level is fully contained in 
current influence region of q (i.e. the maximum distance 
between them and q is less than current q.kNN-dist), 
objects in them must already contain in q.kNN-list and do 
not need to be checked. The incremental search for query 
q starts from cell level L0 and expand level by level. For a 
cell level Li which is not fully contained in q’s influence 
region, suppose the incompletely covered cells record m 
objects, and q.kNN-list stores l objects. If (m + l) ≤ k, 
those m objects can be directly inserted into q.kNN-list 
and duplicated objects are deleted. The search range 
expands until above condition dose not hold. Then, the 
remaining search procedure is similar to that of k-NN 
search algorithm. Besides the cell filtering criteria in k-
NN search algorithm, if a cell is fully covered by current 
query’s influence region, it is not inserted into the heap, 
too. Fig. 7 presents the pseudocode of k-NN re-
computation. 

 

Fig. 7  k-NN Re-computation Algorithm 

Compare to the k-NN re-computation algorithm of CPM 
proposed in [6], our approach is more efficient. Firstly, 
CPM consumes more memory for query processing. CPM 
assigns each query a visit list and a sorted heap separately, 
but CkNN only use one sorted heap to process all queries. 

For example, if the total memory unit for a visit list and a 
sorted heap is m, CkNN only need m memory unit to 
process 5000 queries, while CPM needs 5000 × m units! 
Secondly, CPM re-computes query results from scratch 
for all moved queries. Although CPM utilizes visit list as 
a cache of visited cells, all objects in those cells still needs 
to be re-checked. This wastes the computation resource, 
since most of those objects are already checked in 
incremental update algorithm. On the contrary, CkNN 
keeps the objects in kNN-list and reuses them. Meanwhile, 
since the k-NN search algorithm of CkNN (invoked form 
step 14) is more efficient, the overall running time of 
CkNN is less than that of CPM. Although CPM uses 
much more memory to build the cache for the query 
processing algorithm, the performance of CkNN still 
outperforms CPM. This is also confirmed by experiment 
evaluation in the next section. 

4．Experimental Evaluation 

In this section, we evaluate the performance of cell level 
based continuous k-NN process algorithm (CkNN). Since 
the CPM outperforms all other existing continuous k-NN 
process methods [6]. We only compare the performance 
of CkNN with CPM.  

Table 1: The settings of parameters in experimental evaluation 

Parameters Default Range 

Population of moving objects No 100k 10, 50, 100(k)

Location update rate of moving 
objects at result update cycle Uo 

50% 10, 30, 50(%)

Speed of objects / query medium Slow, 
medium, fast

Population of continuous k-NN 
queries Nq 

5k 1, 5, 10(k) 

Number of nearest neighbors k 32 1, 16, 32, 64 

Location update rate of queries 
at result update cycle Uq 

30% 10, 30, 50(%)

The data sets in the experiment are generated by the same 
spatio-temporal data generator used in [6]. The spatio-
temporal data is generated in the road map of Oldenburg 
(a city in Germany), which is same as the map used in [6]. 
The output of the generator is a set of mobile objects (e.g., 
cars, trucks, or people) moving on the road map. Moving 
objects are denoted by their coordinates in the map at 
successive time stamps. The trip of each object starts from 
network nodes in the map. After an object reaches a 
random destination through the shortest path, it then 
disappears. The speed of the moving objects is classified 
to three types in the generator, slow, medium, and fast. 
The slow speed equals 1/250 of the sum of the space 
extents per time stamp. Medium and fast speeds are 5 and 
25 times larger of slow speed, respectively. The 
continuous k-NN queries are generated by the same 
pattern as mobile objects. They are also objects moving 

Algorithm: k-NN Re-computation (GI, QT, q) 
Input: Grid Index GI, Query Table QT, k-NN Query 
q; 

1. i = 0; 
2. N(Li)’ = N(Li) - number of objects in cells fully 

covered by current q’s influence region; 
3. While ((q.kNN-list.size() + N(Li)’) ≤ k) do 
4.   For all cell c in Li do 
5.     If (c ∩ q’s influence region ≠ c) then 

/*check cells not fully in q’s influence region*/  
6.       For all object o in c do 
7.         If (o ∉ q.kNN-list) 
8.           Insert o into q.kNN-list 
9.           If (q.kNN-list.size() = = q.k) then 
10.             Update q.kNN-dist; 
11.   i = i + 1; /*Increase cell level*/ 
12.   N(Li)’ = N(Li) - number of objects in cells fully  

covered by current q’s influence region; 
13. End while /*Obtain the initial k-NN objects*/ 
14. Similar to step 10 ~ 29 in algorithm k-NN Search 
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on the same road map, but they will not disappear in the 
space during the simulation. At each result update cycle, 
all queries are evaluated by CkNN and CPM. The length 
of simulation is 100 time stamps. In each experiment, 
only one parameter is changed, while other parameters 
keep their default values. All experiments are performed 
on a Pentium 3.2 GHz CPU with 1GByte memory. Table 
1 lists the ranges and default values of parameters used 
throughout experiments. The location update rate in table 
1 is the percentage of moved objects (or queries) at each 
result update cycle.  

In the experiment, we evaluate the effects of five factors 
on the performance of continuous k-NN query processing 
method. The five factors are the most important issues 
when evaluate the efficiency and effectiveness of the 
algorithm for processing continuous k-NN queries over 
moving objects. They are granularity of grid index, 
number of nearest neighbors, scalability, the location 
update rate of moving objects and queries, and the speed 
of objects and queries. Granularity determines the 
approximation of grid cell. The influence region can be 
better approximate by smaller cells. However, it costs 
query processing algorithm more time to check the grid 
cells. Therefore, continuous query processing algorithm 
can be benefit from appropriate granularity. For a given 
granularity, the more nearest neighbors are required by 
the query, the more objects and cells are needed to be 
checked. A good algorithm must be less sensitive to the 
increase in number of NNs. Generally, the enlarged 
scalability in the workload increases the query processing 
cost. An efficient algorithm should cost less overall 
running time on processing the workload. If the location 
update rate of objects increases, it takes more time for 
grid index to update the location of objects in the index, 
and more objects are checked during incremental update 
of query results. If the location update rate of queries 
increases (i.e. more queries moved), more queries need to 
be reevaluated. As a result, the cost of query processing 
increases. Similarly, if the speed of moving objects/ 
queries increases, it means that the environment becomes 
more dynamic. The performance of an effective algorithm 
must be better under this dynamic situation. 

Effect of Granularity 

 

Fig. 8 Overall CPU time versus various grid granularity 

At first, we generate the workload with default parameters 

in table 1. Fig. 8 presents the overall running time of 
CkNN and CPM under various grid granularity ranging 
between 32 × 32 and 512 × 512. Fig. 8 illustrates that 
CkNN outperforms CPM for all grid sizes. As explained 
in section 3, CPM incurs unnecessary sorting of cells and 
redundant checking of moving objects. It is showed that 
the 128 × 128 grid is benefit to both of the query 
processing algorithms. Therefore, we use this granularity 
to perform all remaining experiments.  

Effects of number of nearest neighbors 

 

Fig. 9 Overall CPU time versus number of NNs 

Fig. 9 measures the overall running time of CkNN and 
CPM on processing continuous k-NN queries which 
require various number of nearest neighbors. It shows that 
the overall running time as a linear function of k (the 
numbers of NNs), with other parameters keep default 
values. CkNN outperforms CPM as k increases. This is 
because: (1) CPM sorts all cells before checking objects 
in them, while CkNN directly retrieves objects from cells 
to build initial k-NN candidate and sorts fewer filtered 
cells to refine the query results; (2) the incremental update 
algorithm of CkNN is more efficient than that of CPM, 
since CPM checks more objects during this procedure; (3) 
the performance of k-NN re-computation algorithm of 
CkNN outperforms that of CPM, since CkNN reuses the 
retrieved objects in kNN-lists of queries. 

Effects of scalability 

 

Fig. 10 Overall CPU time versus number of moving objects No 

Fig. 10 and Fig. 11 illustrate the scalability of the 
proposed method. We set the generator into constant 
mode to produce constant objects population No and Nq in 
the simulation. Fig. 10 and Fig. 11 present the effects of 
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No and Nq on the overall running time, respectively. They 
show that (1) the cost of CkNN and CPM increases 
linearly to both No and Nq; (2) the performance of the two 
methods are more sensitive to the change of Nq; (3) the 
performance of CkNN is better than that of CPM under all 
conditions. 

 

Fig. 11 Overall CPU time versus number of continuous queries Nq 

Effect of location update rate 
Fig. 12 and Fig. 13 compare the overall running time of 
CkNN and CPM in processing continuous queries with 
various location update rate of objects and queries. The 
cost of query processing by CkNN and CPM increases as 
location update rate Uo and Uq increase. This illustrates 
the performance of continuous k-NN query processing 
over moving objects decreases when the agility of objects 
increases. Meanwhile, it is showed that the performance 
of CkNN still outperforms CPM under all settings. 

 

Fig. 12 Overall CPU time versus location update rate of objects 

 

Fig. 13 Overall CPU time versus location update rate of queries 

Effects of object/query speed 

 

Fig. 14 Overall CPU time versus object speed 

Fig. 14 and Fig. 15 compare the overall running time of 
CkNN and CPM with respect to the object or query speed. 
Two query processing methods degenerate when objects 
move fast. The faster objects speed is, the farther they 
move. This makes more k-NN results become invalidate 
during each result update cycle, and more objects are 
checked by incremental update algorithm and k-NN re-
computation algorithm. Therefore, the query processing 
cost increases. On the contrary, as showed in Fig. 15, the 
performance of CkNN and CPM is not influenced by 
query speed, since these two methods compute k-NN of 
moved queries from scratch. The figures illustrate that 
CkNN outperforms CPM under all object/query speed.  

 

Fig. 15 Overall CPU time versus query speed 

5. Conclusions 

The paper studies the problem of processing continuous k-
NN queries in location-dependent application. The 
challenge of this problem is how to efficiently process 
continuous k-NN queries and location update of moving 
objects at the same time. We utilize the main memory grid 
index to store moving objects. Our contribution is an 
efficient cell level based continuous k-NN query 
processing algorithm, CkNN for short. The algorithm 
computes the results of new queries and moved queries 
from scratch by the k-NN search algorithm. For existing 
queries which do not change their locations, CkNN 
employs the incremental update algorithm to keep the 
query results up-to-date. For moved queries, k-NN search 
algorithm is applied to reevaluate them. The experimental 
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evaluation demonstrates that CkNN outperforms the 
current state-of-the-art algorithm CPM in all experiment 
settings. In the future, we plan to extend our approach to 
process variations of continuous k-NN query, such as 
reverse k-NN query [14]. 
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