
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

35

Manuscript revised January 2006.
Corresponding author: Keqiu Li (keqiu_01@163.com).

Dynamically Selecting Distribution Strategies for Web
Documents According to Access Pattern

Wenyu Qu†, Keqiu Li††, Bo Jiang††, Hong Shen†, and Di Wu†††

†Graduate School of Information Science
 Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
††College of Computer Science and Technology

Dalian Maritime University
No 1, Linghai Road, Dalian, 116026, China

†††Department of Computer Science and Engineering
Dalian University of Technology

No 2, Linggong Road, Dalian, 116024, China

Summary
Web caching and replication are efficient techniques for reducing
Web traffic, user access latency, and server load. In this paper, we
first propose an improved GreedyDual* (GD*) cache
replacement algorithm, which considers update frequency as a
factor in its utility function. Second, we present a group-based
method for dynamically selecting distribution strategies for web
documents according to access patterns. The documents are
divided into groups according to access patterns and the
documents in each group are assigned to the same distribution
strategy. Our group-based model combines performance metrics
with the different weights assigned to each of them. Finally, we
use both trace data and statistical data to simulate our methods.
The experimental results show that our improved GD*algorithm
can outperform the existing GD* algorithm over the performance
metrics considered, and our group-based method for document
distribution strategy selection can improve several performance
metrics, while keeping others almost the same.
Key words:
Web caching and replication, distribution strategy, cache
replacement algorithm, simulation, trace data, autonomous
system (AS)

1. Introduction

In recent years, the effective distribution and maintenance
of stored information has become a major concern for
Internet users, as the Internet becomes increasingly
congested and popular web sites suffer from overloaded
conditions caused by large numbers of simultaneous
accesses. When users retrieve web documents from the
Internet, they often experience considerable latency.

Web caching and replication are two important approaches
for enhancing the efficient delivery of web contents,
reducing latencies experienced by users. A user's request
for a document is directed to a nearby copy, not to the
original server; thus, reducing access time, average server
load, and overall network traffic. Caching [8] was

originally applied to distributed file systems. Although it
has been well studied, its application on the Internet gave
rise to new problems, such as where to place a cache, how
to make sure that cached contents are valid, how to solve
replacement problems, how to handle dynamic web
documents, etc. Replication was commonly applied to
distributed file systems to increase availability and fault
tolerance [18]. Both techniques have complementary roles
in the web environment. Caching attempts to store the
most commonly accessed objects as close to the clients as
possible, while replication distributes a site's contents
across multiple replica servers. Caching directly targets
minimizing download delays, by assuming that retrieving
the required object from the cache incurs less latency than
getting it from the web server. Replication, on the other
hand, accounts for improved end-to-end responsiveness by
allowing clients to perform downloads from their closest
replica server.

Although web caching and replication can enhance the
delivery efficiency of web contents and reduce response
time, they also bring some problems, such as maintaining
consistency of documents, propagating content updates to
replica servers and caches, and so on. There are many
ways to distribute copies of a web document across
multiple servers. One has to decide how many copies are
needed, where and when to create them, and how to keep
them consistent. A good distribution strategy would be an
algorithm that makes these decisions. We argue that there
is no distribution strategy that is optimal for all
performance metrics; in most cases, we have to pay the
cost of making some performance metrics worse if we
hope to make one or more of the others better. For cache
replacement problems, there are numerous algorithms
available. The GD* algorithm is one of the most efficient
[13, 16, 17]. It considers both popularity and correlation,
but it does not consider update frequency in its utility
function. In this paper, we first propose an improved GD*

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

36

cache replacement algorithm based on the existing GD*
algorithm. Second, we present a group-based method for
dynamically selecting distribution strategies for web
documents according to access patterns. We divide the
documents into groups according to access patterns and
assign the same distribution strategy to the documents in
each group. Further, we present a group-based model that
combines performance metrics with the different weights
assigned to each of them. Therefore, our method can
generate a family of strategy arrangements that can be
adapted to different network characteristics. To realize our
method, we use a system model in which documents can
be placed on multiple Internet hosts. Clients are grouped
based on the autonomous systems (ASs) that host them.
ASs are used to achieve efficient world-wide routing of IP
Packets [6]. The model of an autonomous system is
depicted in Fig. 1. In this model, each AS groups a set of
clients that are relatively close to each other in a
network-topological sense. In this paper, we consider a
more general system model, in which an intermediate
server is configured either as a replica server, or a cache,
or neither. Finally, we use both trace data and statistical
data to simulate our methods. The experimental results
show that our improved GD* algorithm can outperform
the existing GD* algorithm over several performance
metrics, and our group-based method for document
distribution strategy selection can outperform the global
strategy and improve several performance metrics
compared to the document-based method, while keeping
the others almost the same.

Our contributions in this paper are summarized as follows.
(1) We propose an improved GD* cache replacement
algorithm, which exhibits experimentally better
performance than the existing GD* algorithm. (2) We
present a group-based method for dynamically selecting
distribution strategies for web documents according to
access patterns, which can reduce network traffic and
improve system performance. (3) We use trace data and
statistical data to simulate our methods, and compare our
results with existing methods.

The rest of the paper is organized as follows. Section 2
discusses some related work. Section 3 presents our
improved GD* cache replacement algorithm. Section 4
focuses on our group-based method for dynamically
selecting distribution strategies for web documents
according to access patterns. The simulation experiments
are described in Section 5. Finally, we conclude our paper
in Section 6.

2. Related Work

A number of proposals have been made to improve the
service quality of the Internet by means of caching and
replication, since these are efficient ways to reduce access
latency and network bandwidth. For an overview of
caching and replication on the Internet, see [18,26].
Document placement and replacement are two important
issues for web caching. Document placement decides
where to place a new document, while document
replacement concentrates on which document should be
removed to make room for a new document. Removing
suitable documents can improve cache hit ratio and reduce
web traffic. There are many cache replacement algorithms
in the literature [1, 15, 23, 24]. The demand for dynamic
replication comes from the continuous increase in the
large-scale web hosting market; it is evident that manual
manipulation of a huge number of replicas is not feasible.
There are three main challenges involved in implementing
a replicated service on the Internet [18]. The first is how to
assign requests to servers according to some performance
criteria, in a way that is transparent to the end user. This, in
turn, gives rise to two new problems: who should decide
about the request redirection (location) and where the
request should be directed (server selection). The second
challenge is how to decide the number and placement of
replica servers. The last is how to maintain content
consistency. Depending upon where the redirection occurs,
the various schemes for maintaining content consistency
can be grouped in several main categories, such as client
side redirection [4, 27], DNS redirection [7], server side
direction [4], etc. Various methods for selecting among
replicated servers have been extensively discussed (for an
overview, see [2, 11]). Little attention has been paid to the
question of where to place the replica servers in order to
increase overall system performance. Research efforts in
this area can be classified as follows, depending on their
similarity to well known theoretical problems. (1)
k-median [14, 25]: The k-median problem consists of
placing k servers on the nodes in order to minimize total
network cost, given that each node can hold at most one
server. It has been shown that this problem is NP-hard. (2)
Bin Packing [19]: Bin packing is commonly used to model
load balancing problems. (3) File Allocation [3, 12]: File
allocation is used to allocate the objects to sites to

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

37

optimize a performance parameter. Regarding content
consistency issues, an overview of various algorithms can
be found in [22].

Most researchers have concentrated on supporting a single
family of strategies. For example, the TACT tool kit [28]
provides support for replication based on anti-entropy
schemes for a range of consistency models. The method
presented in [21], which is similar to our method to some
extent, allows each distributed document to have its own
associated strategy. However it has the following
deficiencies: (1) It applies only LRU for replacement
problems. Although LRU has been widely adopted for
cache replacement problems, its disadvantage is that it
does not consider variable size or variable cost documents.
(2) The total performance results are calculated by
summing the performance results of each document. In
fact there are a number of performance metrics, such as hit
ratio and byte hit ratio, which cannot be managed in this
way. Our method corrects these deficiencies. Furthermore,
we apply our improved GD* algorithm to deal with
document replacement problems.

3. An Improved GD* Cache Replacement
Algorithm

In this section we introduce an improved GD* cache
replacement algorithm based on the existing GD*
algorithm [15]. Document placement and replacement are
two important issues for web caching. Document
placement decides where to place
a new document; since the cache size is limited, document
replacement concentrates on which document should be
removed to make room for the new document. Removing
suitable documents can improve cache hit ratio and reduce
web traffic. Therefore, replacement algorithms can have a
great effect on system performance. There are many cache
replacement algorithms such as LRU, LNC-W3, GD*, etc.
As mentioned before, the GD* algorithm is one of the
most efficient cache replacement algorithms. It considers
both popularity and correlation. However it doesn't
consider document update frequency as a factor in the
utility function that is used to decide which document
should be replaced. The GD* algorithm subsumes a family
of algorithms, each with a different level of dependency on
long-term document popularity and short-term reference
correlations.

Modification to resources greatly affects the
performance of web caching [17]. Knowing that certain
kind of resources change more often than others can guide
the caching policies of browsers and proxies. For example,
resources that change less often may be given preference
in caching, or revalidated with the origin server less
frequently; therefore, document update frequency should
be an important factor in deciding which document should

be replaced. In this paper we propose an improved GD*
cache replacement algorithm that considers document
update frequency as a factor in its utility function, and our
simulation results show that our improved algorithm
exhibits an experimentally better performance than the
existing GD* algorithm. Our improved algorithm is shown
as follows:

where)(df refers to the request frequency of document
d ,)(dc is the cost of fetching document d from the
server,)(ds is the size of document d , and)(du is
the update frequency of document d .
In our algorithm, the utility value)(dH for document
d reflects the normalized expected cost saving if that
document d stays in the cache. Obviously)(dH is

proportional to)(/1 du . We use an inflation value 0H

to age the documents in the cache. When the value 0H

catches up with)(dH , document d will be the
candidate for eviction. On each hit or when fetching from
the server, our algorithm resets the value)(dH for
document d . Our algorithm captures both popularity and
temporal correlation.)]()(/[)]()([dudsdcdf ⋅⋅
captures long-term popularity, while β control the rate
of aging.

4. Document Distribution Strategy Selection

In this section, we first briefly outline the
distributionstrategies used in this paper, and then we
present a group-based method for dynamically selecting
distribution strategies for web documents according to
access patterns.

4.1 Distribution Strategies

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

38

We considered the following document distribution
strategies.
1. No Replication (NoRepl): This is a basic strategy that
does not use any replication at all. All clients connect to
the primary server directly.
2. Verification (CV): When a cache hit occurs, the cache
systematically checks the copy's consistency by sending an
If-Modified-Since request to the primary server before
sending the document to the client. After the primary
server revalidates the request, the intermediate decides
how to get the document for the client.
3. Limited verification (CLV): When a copy is created, it is
given a time-to-live (TTL) that is proportional to the time
elapsed since its last modification. Before the expiration of
the TTL, the cache manages requests without any
consistency checks and sends the copies directly to the
client. After the TTL expires, the copies are removed from
the cache.

In our experiments, we used the following formula to
decide the TTL. 2.0=α is the default in the Squid
cache [4].

lcr TTT −+=)1(α

where rT is the expiration time, cT is the cached time,

and lT is the last modified time. α is a parameter
which can be selected by the user.

4. Delayed verification (CDV): This policy is almost
identical to the CLV strategy. When a copy is created, it is
also given a TTL. When t the TTL expires, the copies are
not removed from the cache immediately; the cache sends
an If-Modified-Since request to the primary server before
sending the copies to the client. After the primary server
revalidates the request, the intermediate decides how to
fetch the document for the client.

From an ideal point of view, we put as many replica
servers as ASes, so every client can fetch the document he
needs from the replica server, which, in turn, leads to good
results on some performance metrics such as hit ratio and
byte hit ratio. But on the other hand, it also will make
some performance metrics, such as consumed bandwidth
and server load, worse.

5. SU50 (Server Update): The primary server
maintains the copies at the 50 most relevant intermediate
servers.

6. SU50+CLV: The primary server maintains the
copies at the 50 most relevant intermediate servers; the
other intermediate servers follow the CLV strategy.

Ideally, we would have as many replica servers as ASs, so
every client could fetch the needed document from the
replica server; this, in turn, would produce good results on
some performance metrics such as hit ratio and byte hit
ratio. However, on the other hand, it also would make

other performance metrics, such as consumed bandwidth
and server load, worse.
5. SU50 (Server Update): The primary server maintains
copies at the 50 most relevant intermediate servers.
6. SU50+CLV: The primary server maintains copies at the
50 most relevant intermediate servers; the other
intermediate servers follow the CLV strategy.

4.2 A Group-Based Method for Selection of
Document Distribution Strategies

First we introduce a method to group the documents

into P groups according to their access patterns. The
main factors that influence the access pattern are web
resource and user behavior. According to [17], we group
the documents according to the value of dv , which is

defined as ddddd sufcv /)/(+= , where dc denotes

the cost of fetching document d from the primary
server , df denotes the access frequency of document

d , du denotes the update frequency of document d ,

and ds denotes the size of document d . We can see

that when P is equal to the number of the documents,
i.e., there is only one document in each group, our method
is the same as the method in [21]. Therefore, the method
proposed in [21] can be viewed as a special case of our
method. For the case of 1=P , our method can be
viewed as a global strategy method since all the documents
are assigned to the same strategy.
Now we present our group-based model considering the
total effect of the performance metrics from a general
point of view, e.g. we define the total function for each
performance metric according to its characteristics. The
existing method in [21] defines the total function for each
performance metric by summing the performance metrics
of each document. We argue that this method does not
always work well for some performance metrics such as
total hit ratio.

Let { }SjsS j ,,2,1, L== be the set of

distribution strategies, { }GjGG j ,,2,1, L== be

the set of the groups, { }MjmM j ,,2,1, L== be
the set of performance metrics such as total turnaround
time, hit ratio, total consumed bandwidth, etc. A pair of
arrangement (strategy, group) means that a strategy is
assigned to the documents in a group. We denote the set of
all the possible arrangements as A. We can define a
function kf for each metric km on a pair Aa∈ by

∑∑
==

==
G

j
jk

G

j
kajka GafrR

11
),(,where kaR is the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

39

aggregated performance result on metric km and kajr

is the performance result on metric km for jG .

Let),,,(21 Mωωωω L= be the weight vector

which satisfies Mkk

M

k
k ,,2,1,0,1

1

L=≥=∑
−

ωω . We

can get the following general model defined as

∑
=

=
M

k
kakka RR

1

* min ω , where *
aR is the total cost

function for different weight vector ω for an
arrangement a .

 Since there are total of
GS different arrangements,

therefore it is not computationally feasible to achieve the
optimal arrangements by the brute-force assignment
method. The following result shows that it requires at most

SG ⋅ computations to obtain an optimal strategy
arrangement for the documents in each group.

∑ ∑

∑∑

∑∑

∑ ∑

∑

= =
∈

= =
∈

= =
∈

= =
∈

=
∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≥

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=

G

j

M

k
kakjAa

G

j

M

k
kajkAa

M

k

G

j
kajkAa

M

k

G

j
kajkAa

M

k
kakAa

R

r

r

r

RR

1 1

1 1

1 1

1 1

1

*

minmin

min

min

min

min

ω

ω

ω

ω

ω

 From the above reasoning, we can obtain the total
optimal arrangement by computing the optimal
arrangement for each group. Therefore, the computation is
the sum of that for obtaining the optimal arrangement for
the documents in each group, whereas the computation
workload for the method in [21] is about SD ⋅ .
Therefore, our method requires less computation than the
method in [21] by SGD ⋅−)(. Suppose that there are
100 documents and we divide the documents into 10
groups, we can see that the computation can be reduced by
90%.
In the experiments we mainly considered the following
performance metrics: (1) Average Response Time per
request (ART): the average time for satisfying a request.
(2) Total Network Bandwidth (TNB): the total additional

time it takes to transfer actual content, expressed in bytes
per milli-second. (3) Hit Ratio (HR): the ratio of the
requests satisfied from the caches over the total requests.
(4) Byte Hit Ratio (BTR): the ratio of the number of bytes
satisfied from the caches over the total number of bytes.
For the case of 2,1=k , suppose kjj

Rmax=α

and kjj
Rmin=β before defining the function

for calculating the total performance result for
these two cases, we should apply a
transformation)/()()(βαβ −−= kjkj RRf such
that]1,0[)(∈kjRf . Therefore all the
performance results are in the interval of]1,0[.
Otherwise it is not feasible to the weights for the
performance metrics. For example, in the case of
ART=150, TNB=200, HR=0.9, and NHR=0.9,
and)05.0,05.0,45.0,45.0(=ω , we can see that
HR and THR play little role on the total cost
although their weights are very large. For the

case of 4,3=k , we define DRfR
D

j
kjk /)(

1
∑
=

= .

5. Simulation

In this section we use trace data and statistical data to
simulate the methods proposed in previous sections. In the
simulation model, we assume that the primary server has
the privilege of updating the documents whose copies are
distributed or stored in the replica servers and the caches.
A replica server always holds the document; a cache may
or may not hold it. In the following figures, “I-GD*” and
“GD*” represent the performance results of our improved
GD* algorithm and the existing GD* algorithm,
respectively. “Per-Group” and “Per-Document” represent
the performance results of our group-based method and the
existing document-based method.

5.1 Simulation with Trace Data

In this section we apply trace data to simulate our results.
The trace-based simulation method is similar to that
introduced in [20]. In our experiments, we collected traces
from two web servers created by the Vrije Universiteit
Amsterdam in the Netherlands (VUA) and the National
Laboratory for Applied Network Research (NLANR).
Table ¥ref{statistics} shows the general statistical data for
the traces.
 Table 1: Statistics of Trace Data

Issue VU Amstetdam VU Amstetdam
Start Date Sept 19, 1999 March 27, 2001

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

40

End date Dec 24, 1999 April 11, 2001
Durations (days) 96 16
of Documents 26556 187,356
of Requests 1,484,356 3,037,625
of Creates 26556 187,356
of Updates 85,327 703,845
of Ases 7563 90

5.1.1 Experiment for Improved Replacement Algorithm

In this section, we simulate our improved GD* cache
replacement algorithm across a wide range of cache sizes,
from 0.04 percent to 12.0 percent. Here, the cache size is
the percent of the total unique file size. In our experiments,
we considered the following performance metrics: average
response time, request response ratio, which is defined as
the ratio of the access latency of the target object to its
size; hit ratio and byte hit ratio. From figs 2-5, we can
easily see that our algorithm achieved improved results for
all the performance metrics considered. Specifically, the
mean improvements of the average response time over
GD* for VAU and NLANR are 8.1 percent and 6.2 percent,
respectively.

 5.1.2 Experiment for A Global Strategy

In this experiment we assigned the same distribution
strategy to each document. The results of this experiment
are shown in Table 2. Note that when NoRepl is used,
there is a higher average response time and a higher
consumption of total network bandwidth, since the
strategy does not consider caching and replication, but
both byte hit ratio and hit ratio are 100% since it accesses
the primary server directly. Distribution strategies for the
replica servers can bring down the average response time,
but they also lead to an increased consumption of total
network bandwidth. It is difficult to develop a distribution
strategy that can optimize all the performance metrics.
Generally, you can make one or more of the performance
metrics better, but at the cost of making some others worse
(see Table 2). Most strategies are relatively good with
respect to one or more metrics, but no strategy is optimal
for all.

¥begin{table}[htbp]¥caption{Performance Results
for Global Strategies} ¥label{t2}
 ¥begin{center}
{¥footnotesize
 ¥begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}

 5.1.3 Experiment for Per-Group Strategy

In this section we describe our experiment for assigning
the same distribution strategy to the documents in each
group. The simulation results shown in Table 3 were
obtained when the number of groups was 100 and
200 for VUA and NLANR, respectively. We simulated a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

41

case in which there are two performance metrics, ART and
TNB.

From Figure 6 we can see that the results of our method
approximate those of the existing method when we group
the documents into 117 and 211 groups for VUA and
NLANR, respectively. From our experiments, we conclude
that there is almost no improvement in result as the
number of groups increases. However, our method can
significantly improve both the procedure execution time
and the memory management cost, as can be seen in figs 7
and 8.

5.2 Simulation with Statistical Data

In this section we use statistical data to simulate our
methods. The parameters shown in Table ¥ref{parameter}
are chosen from the open literature and are considered to
be reasonable [1,5, 9, 10]. We have conducted experiments
for many topologies with different parameters and the
performance of our results was found to be insensitive to
topology changes. Here, we list only the experimental
results for one topology, due to space limitations.

5.2.1 Improved Replacement Algorithm Performance
Results

In Fig. 9, we can easily see that our improved GD*
algorithm outperform the existing GD* algorithm over all
the performance metrics considered.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

42

5.2.2 Per-Group Strategy

From Fig. 10 we can see that the results of our method
approximate those of the existing method when we group
the documents into 89 groups. However, our method can
improve both the procedure execution time and the
memory management cost.

6. Concluding Remarks

Since web caching and replication are efficient ways
to reduce web traffic and latency for users, more and more
researchers have been paying a lot of attention to this topic.
In this paper, we proposed an improved GD* cache
replacement algorithm and resented a method for
dynamically selecting web replication strategies according
to the access patterns. We also used both web race and
statistical data to simulate our method and our algorithm.
However, we can see that there will be performance
problems when more strategies are considered. In the
future, this work should be extended to the replication of
other types of objects, since we considered only static
objects in this paper. The application of our method to
dynamical web documents also should be studied. Such
studies should lead to a more general solution to web
caching and replication problems.

References

1. Y. Amir, A. Peterson and D. Shaw. Seamlessly selecting
the best copy from Internet-wide replicated web servers.
Proc. Of the 12th Int. Symposium on Distributed
Computing, 1998.
2. B. Awerbuch, Y. Bartal and A. Fiat.
Optimally-competitive distributed file allocation. Proc. Of
the 25th Annual ACM STOC, pp. 164-173, 1993.
3. M. Baentsch, L. Baum, G. Molter, S. Rothkugel and P.
Sturm. Enhancing the web infrastructure-from caching to
replication. IEEE Internet Computing, pp. 18-27, 1997.
4. T. Bates, E. Gerich, L. Joncheray, J. M. Jouanigot, D.
Karrenberg, M. Terpstra and J. Yu. Representation of IP
routing policies in a routing registry. RFC 1786, 1995.
5. M. Beck and T. Moore. The Internet-2 distributed
storage infrastructure project: an architecture for Internet
content channels. Proc. Of the 3rd Int. WWW caching
Workshop, June, 1998.
6. A. Bestavros. WWW traffic reduction and load
balancing through server-based caching. IEEE
Concurrency: Special Issue on Parallel and Distributed
Technology. Vol. 15, pp. 56-67, 1997.
7. A. Bestavros, M. Crovilla, J. Liu and D. Martin.
Distributed packet rewriting and its application to scalable
server architectures. Proc. Of the 6th Int. Conference on
Network Protocols (ICNP’98), 1998.
8. M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K.
Ramamritham and P. Shenoy. Adaptive push-pull:
disseminating dynamic web data. IEEE Transactions on
Computers, pp. 652-667, Vol 51, No. 6, June 2002.
9. V. Cardellini, M.Colajanni and P. Yu. High performance
web-server systems. Proc. Of the 13th Int. Symposium on
Computer and Information Sciences (ISCI’1998), pp.
288-293, 1998.
10. A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

43

Schwartz and K. J. Worrell. A hierarchical Internet object
cache. Proceedings of the 1996 Usenix Technical
Conference (San Diego, CA), pp.153-163, 1996.
11. P. Deolasee, A. Katkar, A. Panchbudhe, K.
Ramamritham and P. Shenoy. “Adaptive push-pull:
disseminating dynamic web data”. Proc. 10th Int’l WWW
Conf., pp 265-274, May 2001.
12. L. W. Dowdy and D. v. Foster. Comparative models of
the file assignment problem. ACM Computing Surveys,
Vol. 14 (2), 1982.
13. S. Irani. A competitive analysis of paging. Available at:
http://www.ics.uci.edu/~irani/.
14. S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt.
Constrained mirror placement on the Internet. Proc. Of the
IEEE INFOCOM 2001 Conference, 2001.
15. S. Jin and A. Bestavros. Greeddual* web caching
algorithm exploiting the two sources of temporal locality
in web request streams. Computer Comm. Vol. 4, No. 2, pp.
174-183, 2001.
16. S. Jin and A. Bestavros. Sources and characteristics of
web temporal locality. Proc. of IEEE/ACM Symp.
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, San Francisco, CA, 29
August - 1 September.17.
17. B. Krishnamurthy and J. Rexford. Web Protocols And
Practice. 2001.
18. T. Loukopoulos, I. Ahmad and D. Papadias. An
overview of data replication on the Internet. Proceedings
of the International Symposium on Parallel Architectures,
Algorithms and Networks. pp, 31-37, 2002.
19. B. Narengran, S. Rangarajan and S. Yajnik. Data
distribution algorithms for load balanced fault-tolerant
web access. Proc. Of the 16th Symposium on Reliable
Distributed Systems (SRDS’97), pp. 22-24, 1997.
20. G. Pierre and M. Makpangou. Saperlipopette!: a
distributed web caching systems evaluation tool. Proc.
1998 Middleware Conf., pp. 389-405, Setp. 1998.
21. G. Pierre and M. Steen. Dynamically selecting optimal
distribution strategies for web documents. IEEE
Transactions on Computers, pp. 637-651, Vol. 51, No. 6,
June 2002.
22. Y. Saito. Optimistic replication algorithms. Technical
23. P. Scheuermann, J. Shim, R. and Vingralek. A case for
delay-conscious caching of web documents. Computer
Network and ISDN Systems, Vol. 29, pp.997-1005, 1997.
24. J. Shim, P. Scheuermann, and R. Vingralek. Proxy
cache algorithms: design, implementation, and
performance. IEEE Transaction on Knowledge and Data
Engineering, Vol. 11, pp. 549-562, 1999.
25. A. Vigneron, L.Gao, M.Golin, G. Italiano and B. Li. An
algorithm for finding a k-median in a directed tree.
Information processing letters, pp. 81-88, 2000.
27. J. Wang. A survey of web caching schemes for the
Internet. ACM SIGCOMM Computer Comm. Rev., Vol.

29, pp. 36-46, 2000.
27. C. Yoshikawa, B.Chun, P. Eastham, A. Vahdat, T.
Anderson and D.Culler. Using smart clients to build
scalable services. Proc. Of the 1997 USENIX Annual
Techinical Conference, pp. 6-10, 1997.
28. H. Yu and A. Vahdat. Design and evaluation of a
Continuous consistency model for replicated services. Proc.
Fourth Symposium Operating System Design and
Implementation, 2000.

Dr. Wenyu Qu received his Bachelor degree and Master
degree in the Department of Applied Mathematics and the
Department of , Dalian University of Technology, Dalian,
China in 1994 and 1997 respectively, and obtained the
doctor degree from the Graduate School of Information
Science, Japan Advanced Institute of Science and
Technology, Japan. She is currently a Postdoctoral
Researcher in the Graduate School of Information Science,
Japan Advanced Institute of Science and Technology,
Japan. His research interests include mobile agent-based
technology, network routing and resource management,
and fault-tolerant computing.

Dr. Keqiu Li received his Bachelor degree and Master
degree in the Department of Applied Mathematics, Dalian
University of Technology, Dalian, China in 1994 and 1997
respectively. He obtained the doctor degree from the
Graduate School of Information Science, Japan Advanced
Institute of Science and Technology, Japan. He is currently
a professor in the College of Computer Science and
Technology, Dalian Maritime University, China. His
research interests include Internet technology, distributed
computing, multimedia application, and network security.

Dr. Bo Jiang is currently a professor in the College of
Computer Science and Technology, Dalian maritime
University, China. His research interests include software
engineering and networking.

Dr. Hong Shen is currently a full Professor in the
Graduate
School of Information Science, Japan Advanced Institute
of Science and Technology, Ishikawa. He has published
over 140 technical papers on algorithms, parallel and
distributed computing, interconnection networks, parallel
databases and data mining, multimedia systems, and
networking.

Dr. Di Wu is currently a associate professor in the
Department of Computer Science and engineering, Dalian
University of Technology, China. His research interests
include software engineering and networking.

