
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

71

Leaner Object-Oriented Slicing

Rob Law

School of Hotel and Tourism Management, The Hong Kong Polytechnic University, Hong Kong

Summary
This paper introduces the concept of Leaner Object-Oriented
Slicing, an extension of Object-Oriented Program Slicing [4].
Leaner Object-Oriented Slicing can perform extra code reduction
from an object-oriented slice, reducing the amount of
information that a programmer must examine. This paper also
provides a discussion on the implementation issues of a Leaner
Object-Oriented Slicing based debugging tool.
Key words:
Software Engineering, Object-Oriented Programs, Debugging

Introduction

An object-oriented slice of an object-oriented program
with respect to a class c is defined to consist of c and all
base classes of c that could affect (either directly or
transitively) the operation of an instance of c [4]. In other
words, the bug which causes the incorrect operation of an
instance of c is in the object-oriented slice with respect to c.
Object-Oriented Program Slicing is further defined as the
procedure used to compute an object-oriented slice.
The following example demonstrates how a complex
debugging process can be simplified by applying Object-
Oriented Program Slicing.

#include <iostream.h>
#include <string.h>
class BillingItem {
protected:
 char name[25];
 int cost;
public:
 virtual void display() = 0;
};
class Product : public BillingItem {
 int qty_sold;
public:
 Product(char *nm, int qty)
 { qty_sold = qty; strcpy(name, nm); }
 void display() {cout << cost << ' ' << name << "s were
sold ";}
};

class Service : public BillingItem {
 int manhours;
public:
 Service(char *nm, int mh, int cst)
 { manhours = mh; strcpy(name, nm); cost = cst; }
 void display() { cout << manhours; }
};
class Installation : public Service {
public:
 Installation(char *nm, int hrs, int cst) :
Service(nm,hrs,cst) {}
 void display ()
 {cout << "Installed Item: " << name;
 cout << "\nLabour: ";
 Service::display();
 cout << " hours";
 cout << "\nCost: $" << cost << "\n\n"; }
};
main() {
 Product pdsold("toaster", 4);
 pdsold.display();
}

Figure 1 - A C++ Program

Question: Where is the bug in the program shown in
Figure 1?
The solution drawing of the problem in Figure 1 is surely
beyond the ability of most existing computer debugging
tools, intelligent tutoring systems, and programming
environments. However, the debugging process can be
simplified by applying the Object-Oriented Program
Slicing technique to generate an object-oriented slice with
respect to class Product. The C++ code of the object-
oriented slice is shown in Figure 2.

#include <iostream.h>
#include <string.h>
class BillingItem {
protected:
 char name[25];
 int cost;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

72

public:
 virtual void display() = 0;
};
class Product : public BillingItem {
 int qty_sold;
public:
 Product(char *nm, int qty)
 { qty_sold = qty; strcpy(name, nm); }
 void display() {cout << cost << ' ' << name << "s were
sold";}
};
main() {
 Product pdsold("toaster", 4);
 pdsold.display();
}

Figure 2 - An Object-Oriented Slice

The C++ program in Figure 2 returns the same
computation as the C++ program in Figure 1 with respect
to class Product. However, there is 50% reduction in the
number of C++ statements that a programmer needs to
examine for fault. In other words, a programmer only
needs to scrutinize the class definitions of BillingItem and
Product instead of definitions of all classes. This
information reduction provides a solid advantage for a
programmer to locate bugs. The code reduction percentage
would be more significant for large real life object-
oriented systems. From their experiments with human
subjects, Lyle, Weiser, as well as Law and Maguire have
obtained significant statistical evidence that programmers
can locate bugs faster with less amount of code to examine
[3,4,5,8].

2. Leaner Object-Oriented Slicing

An object-oriented slice contains a subset of code from the
original program. The concept of Leaner Object-Oriented
Slicing is an extension of Object-Oriented Program Slicing.
A leaner object-oriented slice [LOOS] of an object-
oriented slice with respect to a class c is defined as a
program segment which consists of c and all derived
classes of c. We also define Leaner Object-Oriented
Slicing as the procedure to compute a LOOS. The
operation of instances of classes in a LOOS can all be
affected by c. The most feasible application of Leaner
Object-Oriented Slicing is the further reduction of
irrelevant information from an object-oriented slice.
To formally define the concept of Leaner Object-Oriented
Slicing, the following four sets of classes are required:

ISS - An inheritance slicing set which consists of a class
and its base classes. That is, an ISS is the original object-
oriented slice.
CC - A set of classes which forms an inheritance net. The
bottom class of this inheritance net produces a correct
response.
IC - A set of classes which contain the classes with
incorrectly defined data members and/or function members.
NISS - The relative complement of CC with respect to ISS.
That is, NISS=ISS-CC. NISS is the LOOS to be returned.
In other words, no class in NISS generates a correct
response.

Theorem: An element ICi of IC in ISS is also in NISS, for
i = 1,2,...n where n is the index of the last element in IC.
Proof:
Suppose there is an element ICi in ISS but not in NISS.
This implies that ICi can only be found in CC. If ICi is in
CC, then ICi and all its derived classes respond incorrectly.
However, this contradicts the definition of CC which states
that the bottom class in the hierarchy net does respond
correctly. Thus, the theorem is proved.
To explain the concept of Leaner Object-Oriented Slicing
further, consider the object-oriented slice in Figure 3
pictured next.

Figure 3 - Pictorial View of An Object-Oriented Slice

Figure 3 consists of an object-oriented slice with respect to
class N. Classes K-1 and K are intermediate classes in the
inheritance hierarchy and class A is the pure base class.
Having received an object-oriented slice, a user can
perform a bottom-up search to look for the occurrence of
the first class definition which produces the first incorrect
response. That is, it is known that class N in Figure 3 does
not generate a correct response. This incorrect response
could be from the incorrect definition of class N and/or
one or more of N's base classes. Suppose class K is the

 A

 K-1

 K

 N

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

73

first class in the hierarchy to incorrectly respond, (or class
K-1 is the first one to produce a correct response), the
search will stop at class K.
A LOOS with respect to class K is thus obtained,
consisting of classes from K to N. This is, the incorrect
data member and/or function member definitions which
cause the incorrect output of the object of class N should
be in this LOOS. In other words, no class in this LOOS
responds correctly. The incorrect response of a class could
be inherited from its superclass(es) in this LOOS and/or
from a bad definition within the class. Of paramount
importance, this LOOS further reduces the amount of
information that a programmer must examine.
Figure 4 shown next demonstrates the code of a LOOS of
class Product in Figure 2.

#include <iostream.h>
#include <string.h>
class Product : public BillingItem {
 int qty_sold;
public:
 Product(char *nm, int qty)
 { qty_sold = qty; strcpy(name,nm); }
 void display() { cout << cost << ' ' << name << "s were
sold"; }
};
main() {
 Product pdsold("toaster",4);
 pdsold.display();
};

Figure 4 - A Leaner Object-Oriented Slice

. A Leaner Object-Oriented Slicing System

C++_LOOS [C++ Leaner Object Oriented Slicer] was
implemented to compute and return leaner object-oriented
slices from C++ programs. C++_LOOS adopts a fast and
direct approach to generate output to aid programmers in
diagnosing faults in C++ programs. This will allow
programmers to locate bugs more rapidly. C++ is selected
because of its growing popularity in the past few years.
The main reason for C++’s growing acceptance is the
compatibility of C and C++. In a recent study, Hashemi
and Leach found that C programmers could easily adapt to
the C++ environment [1].
We should mention that C++_LOOS is not intended to act
as a conventional debugger. In order to use a conventional
debugger, a user needs to know the syntax of the debugger
commands and the entities on which the debugger operates.
Additionally, the user must be able to determine the
detailed steps or operations which will provide a

meaningful insight into the rationale for the failure of the
underlying program. This is a non-trivial task.
4. Computing Leaner Object-Oriented Slices
C++_LOOS deals with single-file C++ programs. To
handle C++ programs in multiple files, a user needs to
merge these files into a single file by executing a
preprocessor command. The computation of an object-
oriented slice can be summarized in the following three
stages.

Stage I
1. Read in each line of a source program.
2. Each line is stored as an instance of an object of type

“source_line”.
3. The constructor function of the source_line object uses

two static members (head, tail) and a non-static
member (next) to implement a singly linked list. This
list is the only link between source lines in the code.

4. The source_line constructor classifies each line into
one of the following five types:
(i) Preprocessor Directive
(ii) Class Definition
(iii) Structure Definition
(iv) Class Extension
(v) Others (default if none of the above)

Stage II
1. Having read and represented all lines as source_line

objects, the list is broken into sections of text via a
class of object “tsl” which stands for Typed Source
Lines.

2. The tsl is a container class implementing a linked list
of text sections (segments). There is another container
class of objects named “section” which is required in
text section recognition. The section class is explained
in point 5.

3. The tsl container has a default constructor that creates
a null object. All elements of this object are going to
be placed in the container by the function member
“append”. The list of elements thus formed is
constructed by a source line test function “sltest”.

4. To perform the actual appending, the program
attempts to append a given source_line object to the
current text section (each section of text is contained
in an instance of an abstract class “section”). A
function member of each section determines if the
given line may be appended to the current section or
not. If the appending is legal (the given line belongs to
the current section), the function member of the
section returns a pointer to itself. Otherwise, a NULL
pointer will be returned. A NULL pointer indicates
that the given line cannot be appended to the current
section. Upon receiving a NULL pointer, the source
line testing function “sltest” of the tsl class invokes
another function member “get_new_section” to

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

74

determine the type of the next code section and
construct a new instance of the class “section” which
will contain the first line of this new section. A section
contains the information of the first source_line object
and the class source_line object.

5. The class “section” is an abstract class with a pure
virtual function “append”. This pure virtual function
allows a derived class to encapsulate the logic that it
uses to determine when the end of its section occurs.
A new type of text section may be added by creating
another object which is derived from “section”.

6. Upon completion of the “sltest” function, the source
code is represented as a two-dimensional singly linked
list with one dimension being the sections and the
other one being the individual lines.

7. A many-to-many relation dimension is constructed for
all Class Definition source_line objects to hold the
inheritance hierarchy.

8. The list of sections is searched to find any Class
Extension types. The Class Extension type sections
are then appended to the section of text where the
class definition is contained. This searching is
accomplished by going through the many-to-many
relation dimension to find a node by node_name. Each
class derived from “section” has an overloaded
operator “+=“ to perform the appending.

Stage III
1. All section pointers are stored in an array.
2. There is a function member of each node in the many-

to-many relation dimension called “get_relation” that
returns a pointer to a list of all the nodes that are
related to a given node. This list is then used to
generate an array of section pointers (text sections).

3. The section file_scope_list is then read and its
contents are appended to the array of section pointers.

4. The section pointer array list is then sorted according
to the order in the original text file and duplicates are
removed. This array will then contain (in sorted order)
pointers to “section” objects.

5. To generate a LOOS, a “print” function member of the
“section” object is invoked to print the node’s children.

To find a LOOS, C++_LOOS reads in a file which
contains an object-oriented slice. A user is then required to
enter a class name. A LOOS is then computed and
returned to an output file specified by the user.
In a LOOS, C++_LOOS keeps all function definitions that
are not members of any inheritance hierarchy. It is safer to
retain these separate functions than to remove them
completely. Additionally, in the presence of multiple
inheritance hierarchies, C++_LOOS removes all
hierarchies except the one which contains a class to be
sliced. Real-life C++ systems always consist of multiple
inheritance hierarchies. Therefore, C++_LOOS will have a
larger code reduction for larger C++ systems.

C++_LOOS does not check for C++ syntax errors. Most
available C++ compilers can provide useful information to
help a programmer remove syntax errors.

5. Conclusion

The reduction in debugging time provided by C++_LOOS
will be of great interest to most C++ programmers. Recent
studies indicate that the time programmers spend on
debugging is 50% of the time that they spend on program
development [7]. By utilizing C++_LOOS to debug a
computer program, especially a program written by others,
the C++ programmers, regardless of his/her computer
background and programming habits, can directly use an
isolation debugging approach to locate a bug. In other
words, a novice programmer, as well as an experienced
programmer, can perform a simple mapping by using
C++_LOOS to point directly to the specific program
entities which are incorrect. The programmer’s difficulty is
not correcting the bug itself but in finding it [2,6]. In other
words, fault localization is more beneficial than correction
in the context of debugging. C++_LOOS fits itself exactly
in this important but currently unfulfilled debugging area
for C++ object-oriented programs. With the increasing
popularity of object-oriented programming, C++_LOOS
has the potential to be a useful debugging tool.

References
[1] R. Hashemi and R. Leach, Issues in Porting Software from

C to C++, Software-Practice and Experience 22(7) (1992)
599-602.

[2] I.R. Katz and J.R. Anderson, Debugging: An Analysis of
Bug-Location Strategies, Human-Computer Interaction 3
(1987-1988) 351-399.

[3] R.C.H. Law, Evaluating the Program Slicing Technique,
SIAST TODAY 4(6) (1993) 6.

[4] R.C.H. Law and R.B. Maguire, Debugging of Object-
Oriented Software, in: Proceedings of 1996 Conference on
Software Engineering & Knowledge Engineering, Lake
Tahoe, Nevada (1996), 77-84.

[5] J.R. Lyle, Evaluating Variations on Program Slicing for
Debugging (U.M.I. Dissertation Information Service, Ann
Arbor, Michigan, 1992).

[6] P.W. Oman, C.R. Cook, and M. Nanja, Effects of
Programming Experience in Debugging Semantic Errors,
The Journal of Systems and Software 9 (1989) 197-207.

[7] R. Ward, Beyond Design: The Discipline of Debugging,
Computer Language 5(4) (1988) 37-39.

[8] M. Weiser, Programmers Use Slices When Debugging,
Communications of ACM 25(7) (1982) 446-452.

 Rob Law received his PhD (1994), MSc
(1990), and BASc (1988) in Computing

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

75

Science from universities in Canada. He is presently an
Associate Professor of Information Technology at the Hong
Kong Polytechnic University’s School of Hotel & Tourism
Management.

