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Summary 
In this paper we consider the use of fuzzy logic in the scheduling 
of periodic tasks in soft real-time multiprocessor systems. Most 
researches concerning real-time system scheduling assumes 
scheduling constraint to be precise. However, in many 
circumstances the values of these parameters are vague. The 
vagueness of parameters suggests that we make use of fuzzy 
logic to decide in what order the requests should be executed to 
better utilize the system and as a result reduce the chance of a 
request being missed. Our main contribution is proposing a fuzzy 
approach to multiprocessor real-time scheduling in which the 
scheduling parameters are treated as fuzzy variables. A 
simulation is also performed and the results are judged against 
each other. It is concluded that the proposed fuzzy approach is 
very promising and it has the potential to be considered for future 
research. 
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Introduction 

Real-time systems are vital to industrialized infrastructure 
such as command and control, process control, flight 
control, space shuttle avionics, air traffic control systems 
and also mission critical computations [1]. In all cases, 
time has an essential role and having the right answer too 
late is as bad as not having it at all. 
In the literature, these systems have been defined as: 
“systems in which the correctness of the system depends 
not only on the logical results of computation, but also on 
the time at which the results are produced” [1]. Such a 
system must react to the requests within a fixed amount of 
time which is called deadline.  
In general, real-time systems can be categorized into two 
important groups: hard real-time systems and soft real-time 
systems. In hard real-time systems, meeting all deadlines is 
obligatory, while in soft real-time systems missing some 
deadlines is tolerable. 
In both cases, when a new task arrives, the scheduler is to 
schedule it in such a way that guaranties the deadline to be 
met. Scheduling involves allocation of resources and time 

to tasks in such a way that certain performance 
requirements are met. 
These tasks can be classified as periodic or aperiodic. A 
periodic task is a kind of task that occurs at regular 
intervals, and aperiodic task occurs unpredictably. The 
length of the time interval between the arrivals of two 
consecutive requests in a periodic task is called period. 
Another aspect of scheduling theory is to decide whether 
the currently executing task should be allowed to continue 
or it has had enough CPU time for the moment and should 
be suspended. A preemptive scheduler can suspend the 
execution of current executing request in favor of a higher 
priority request. However, a nonpreemptive scheduler 
executes the currently running task to completion before 
selecting another request to be executed. A major problem 
that arises in preemptive systems is the context-switching 
overhead. The higher number of preemptions a system has, 
the more context switching needed [2]. 
Schedulability of periodic, preemptive, soft real-time tasks 
on uniprocessor systems is well understood; simple and 
efficient algorithms are available and widely used [2, 3, 4, 
5].  
Nevertheless, for multiple processors these algorithms are 
not promising. Meeting the deadlines of real-time tasks in 
a multiprocessor system requires a scheduling algorithm 
that determines, for each task in the system, in which 
processor it must be executed, and in which order with 
respect to the other tasks, it must start its execution.  
Multiprocessor scheduling techniques in real-time systems 
fall into to general categories: partitioning and global 
scheduling [11]. Under partitioning, each processor 
schedule tasks independently from a local ready queue. 
Each task is assigned to a particular processor and is only 
scheduled on that processor. In contrast, all ready tasks are 
stored in a single queue under global scheduling. A single 
system-wide priority space is assumed: the highest priority 
task is selected to execute whenever the scheduler is 
invoked. Partitioning is the favored approach because it 
has been proved to be efficient and reasonably effective 
when popular uniprocessor scheduling algorithms such as 
EDF and RM are used [7]. But finding an optimal 
assignment of tasks to processors is NP-hard. 
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In the global scheme, processors repeatedly execute the 
highest priority tasks available for execution. It has been 
shown that using this approach with common priority 
assignment schemes such as rate monotonic (RM) and 
earliest deadline first (EDF) can give rise to arbitrarily low 
processor utilization [7]. In this approach a task can 
migrate from one processor to another during execution. 
In both cases researchers made some significant 
contributions by those results in better multiprocessor 
scheduling algorithms. 
Although, these algorithms focus on timing constraints but 
there are other implicit constraints in the environment, 
such as uncertainty and lack of complete knowledge about 
the environment, dynamicity in the world, bounded 
validity time of information and other resource constraints. 
In real world situations, it would often be more realistic to 
find viable compromises between these parameters. For 
many problems, it makes sense to partially satisfy 
objectives. The satisfaction degree can then be used as a 
parameter for making a decision. One especially 
straightforward method to achieve this is the modeling of 
these parameters through fuzzy logic. The same approach 
is also applied on uniprocessor real-time scheduling in [12, 
13].  
The scope of the paper is confined to scheduling of soft 
periodic tasks in multiprocessors real-time systems. In 
section 2 the fuzzy inference systems are discussed. 
Section 3 covers the proposed model and section 4 
contains the experimental results. Conclusion and future 
works are debated in Sections 5. 

2. Fuzzy Inference System 

Fuzzy logic is an extension of Boolean logic dealing with 
the concept of partial truth which denotes the extent to 
which a proposition is true. Whereas classical logic holds 
that everything can be expressed in binary terms (0 or 1, 
black or white, yes or no), fuzzy logic replaces Boolean 
truth values with a degree of truth. Degree of truth is often 
employed to capture the imprecise modes of reasoning that 
play an essential role in the human ability to make 
decisions in an environment of uncertainty and imprecision. 
Fuzzy Inference Systems (FIS) are conceptually very 
simple. They consist of an input, a processing, and an 
output stage. The input stage maps the inputs, such as 
frequency of reference, recency of reference, and so on, to 
the appropriate membership functions and truth values. 
The processing stage invokes each appropriate rule and 
generates a corresponding result. It then combines the 
results. Finally, the output stage converts the combined 
result back into a specific output value [6]. 

The membership function of a fuzzy set corresponds to the 
indicator function of the classical sets. It is a curve that 
defines how each point in the input space is mapped to a 
membership value or a degree of truth between 0 and 1. 
The most common shape of a membership function is 
triangular, although trapezoidal and bell curves are also 
used. The input space is sometimes referred to as the 
universe of discourse [6]. 
As discussed earlier, the processing stage which is called 
inference engine is based on a collection of logic rules in 
the form of IF-THEN statements where the IF part is 
called the "antecedent" and the THEN part is called the 
"consequent". Typical fuzzy inference systems have 
dozens of rules. These rules are stored in a knowledgebase. 
An example of a fuzzy IF-THEN rule is: IF laxity is 
critical then priority is very high, which laxity and priority 
are linguistics variables and critical and very high are 
linguistics terms. Each linguistic term corresponds to 
membership function. 
An inference engine tries to process the given inputs and 
produce an output by consulting an existing 
knowledgebase. The five steps toward a fuzzy inference 
are as follows: 

• Fuzzifying Inputs 
• Applying Fuzzy Operators 
• Applying Implication Methods 
• Aggregating All Outputs 
• Defuzzifying outputs 

Bellow is a quick review of these steps but a detailed study 
is not in the scope of this paper. 
Fuzzifying the inputs is the act of determining the degree 
to which they belong to each of the appropriate fuzzy sets 
via membership functions. Once the inputs have been 
fuzzified, the degree to which each part of the antecedent 
has been satisfied for each rule is known. If the antecedent 
of a given rule has more than one part, the fuzzy operator 
is applied to obtain one value that represents the result of 
the antecedent for that rule. The implication function then 
modifies that output fuzzy set to the degree specified by 
the antecedent. Since decisions are based on the testing of 
all of the rules in an FIS, the results from each rule must be 
combined in order to make a decision. Aggregation is the 
process by which the fuzzy sets that represent the outputs 
of each rule are combined into a single fuzzy set. The input 
for the defuzzification process is the aggregated output 
fuzzy set and the output is a single value. This can be 
summarized as follows: mapping input characteristics to 
input membership functions, input membership function to 
rules, rules to a set of output characteristics, output 
characteristics to output membership functions, and the 
output membership function to a single-valued output. 
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There are two common inference processes [6]. First is 
called Mamdani's fuzzy inference method proposed in 
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy 
inference Introduced in 1985 [9]. These two methods are 
the same in many respects, such as the procedure of 
fuzzifying the inputs and fuzzy operators.  
The main difference between Mamdani and Sugeno is that 
the Sugeno output membership functions are either linear 
or constant but Mamdani’s inference expects the output 
membership functions to be fuzzy sets. 
Sugeno’s method has three advantages. First it is 
computationally efficient, which is an essential benefit to 
real-time systems. Second, it works well with optimization 
and adaptive techniques. These adaptive techniques 
provide a method for the fuzzy modeling procedure to 
extract proper knowledge about a data set, in order to 
compute the membership function parameters that best 
allow the associated fuzzy inference system to track the 
given input/output data. However, in this paper we will not 
consider these techniques. The third, advantage of Sugeno 
type inference is that it is well-suited to mathematical 
analysis. 

3. The Proposed Model 

The block diagram of our inference system is presented in 
Figure 1.  
 

  
 
 
 
 
 
 
 
 
 

Fig.1. Inference system block diagram. 
 

In the proposed model, the input stage consists of two 
linguistic variables. The first one is an external priority 
which is the priority assigned to the task from the outside 
world. This priority is static. One possible value can be the 
tasks interval, as rate monotonic algorithm does. For 
Figure 1, the other input variable is the Deadline. This 
input can easily be replaced by laxity, wait time, or so on, 
for other scheduling algorithms. Each parameter may 
cause the system to react in a different way. The only thing 
that should be considered is that by changing the input 

variables the corresponding membership functions may be 
changed accordingly.  
For the simulation purposes, as it is discussed later, four 
situations are recognized: First, by using laxity as a 
secondary parameter and, second, by replacing the laxity 
parameter with deadline and both of them are considered 
in partitioned and also global scheme. In fact, four 
algorithms are suggested: FGEDF1, FGMLF2, FPEDF3, 
and FPMLF4. 
The output if the system is priority that determines which 
is used as a parameter for making a decision. 
The input variables mapped into the fuzzy sets as 
illustrated in Figures 2, 3 and 4. 
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Fig.2. Fuzzy sets corresponding to reference recency 
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Fig.3. Fuzzy sets corresponding to deadline 

                                                           
1 Fuzzy Global EDF 
2 Fuzzy Global MLF 
3 Fuzzy Partitioned EDF 
4 Fuzzy Partitioned MLF 
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Fig.4. Fuzzy sets corresponding to laxity 

 
The expert determines the shape of the membership 
function for each linguistic term. It is very difficult for the 
expert to adjust these membership functions in an optimal 
way. However, there are some techniques for adjusting 
membership functions [10]. In this paper, we will not 
consider these techniques. They can be further studied in a 
separate paper. 
Fuzzy rules try to combine these parameters as they are 
connected in real worlds. Some of these rules are 
mentioned here: 
 

• If (EPriority is high) and (laxity is critical) then 
(Priority is very high) 

• If (EPriority is normal) and (laxity is critical) then 
(Priority is high) 

• If (EPriority is very low) and (laxity is critical) 
then (Priority is normal) 

• If (EPriority is high) and (laxity is sufficient) then 
(Priority is normal) 

• If (EPriority is very low) and (laxity is sufficient) 
then (Priority is very low) 

 
In fuzzy inference systems, the number of rules has a 
direct effect on its time complexity. So, having fewer rules 
may result in a better system performance.  

3.1 The Proposed Algorithm 

The FGEDF algorithm is as follows: 

 
 
FGMLF is much the same with FGEDF just by replacing 
the word deadline by laxity. 
The FPEDF algorithm is as follows: 

 
FPMLF is much the same with FPEDF just by replacing 
the word deadline by laxity. 

4. Performance Evaluation 

To evaluate our algorithm and to demonstrate its strength, 
1024 test cases with different load factors were generated. 
In each test case, the number of tasks and the 
corresponding execution time and request interval were 
randomly generated. Also, each task has been assigned a 
priority according to the rate monotonic principle (tasks 
with shorter request interval are given higher priorities) [3]. 
The behavior of all the four algorithms is compared with 
each other. Performance metrics, which are used to 
compare different algorithms, must be carefully chosen to 
reflect the real characteristics of a system. These metrics 
are as follows. 
Average Response time, which is defined as the average 
amount of time a system takes to react to a given input, is 

Algorithm FPEDF for each CPU 

Loop 
1. For each ready task T (a task which have not 
been run on another CPU), feed its external priority 
and deadline into the inference engine. Consider the 
output of inference module as priority of task T. 
2. Execute the task with highest priority until an 
scheduling event occurs (a running task finishes, a 
new task arrives) 

    3. Update the system states (deadline, etc) 
End loop

Algorithm FGEDF 

Loop              // System is running for ever 
For each CPU in the system do the followings: 

1. for each ready task T (a task which is not 
running), feed its external priority and 
deadline into the inference engine. Consider 
the output of inference module as priority of 
task T. 
2. Execute the task with highest priority until 
an scheduling event occurs (a running task 
finishes, a new task arrives) 
3. Update the system states (deadline, etc) 

      End 
End loop
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one of the most important factors in most scheduling 
algorithms.  
Number of missed deadlines is an influential metric in 
scheduling algorithms for soft real-time systems. 
When task preemption is allowed, another prominent 
metric comes into existence and that is the number of 
preemptions. Each of preemptions requires the system to 
perform a context switching which is a time consuming 
action. 
Yet another metric, which is considered in our study, is the 
average CPU utilization. The main goal of a scheduling 
algorithm is to assign and manage system resources so that 
a good utilization is achieved. 
We performed our simulation for systems with different 
number of CPUs and judge the algorithms against each 
other in these conditions. 
Among the four algorithms FGEDF and FGMLF nearly 
achieve the same performance in all situations and all 
metrics. FPMLF performs poorly in number of misses and 
also average response time, but its performance on CPU 
utilization and also number of preemption is much better 
than the others especially when the number of CPUs 
increase. 
Now, we will compare the algorithms in each metric. 
About number of misses, as Figures 5 to 10 shows, 
FPMLF has larger amount of misses and FPEDF seems to 
have fewest numbers of misses the other two algorithms 
carry out nearly the same. These figures show that 
deadline is a better parameter in this case. 
Comparing number of preemptions, as Figures 11 to 16 
demonstrate, FPMLF outperforms the others. FPEDF 
reaches to a higher number of preemptions as the load 
factor increases. Numbers of preemptions in FGMLF are a 
little more than FGEDF. In this case, deadline is the better 
parameter. 
Judging against average response time, as stated in Figures 
17 to 22, FPMLF presents extremely bad results. The other 
three algorithms have almost the same performance. 
FPMLF which was the worse algorithm in the other three 
metrics, Has the best CPU utilization among the other 
algorithms. This algorithm utilizes almost 100 hundred 
percent of CPU. As Figures 23 to 28 states, partition 
approach achieves better CPU utilization. 

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor  
Fig.5. Number of misses for 4 CPUs 
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Fig.6. Number of misses for 8 CPUs 
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Fig.7. Number of misses for 16 CPUs  
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Fig.8. Number of misses for 32 CPUs 
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Fig.9. Number of misses for 64 CPUs 
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Fig.10. Number of misses for 128 CPUs 
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Fig.11. Number of preemptions for 4 CPUs 
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Fig.12. Number of preemptions for 8 CPUs 
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Fig.13. Number of preemptions for 16 CPUs 
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Fig.14. Number of preemptions for 32 CPUs 
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Fig.15. Number of preemptions for 64 CPUs 
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Fig.16. Number of preemptions for 128 CPUs 
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Fig.17. Average response time for 4 CPUs 
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Fig.18. Average response time for 8 CPUs 

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
 

Fig.19. Average response time for 16 CPUs 
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Fig.20. Average response time for 32 CPUs 
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Fig.21. Average response time for 64 CPUs 

0 20 40 60 80 100 120 140 160

2

4

6

8

10

12

14

16

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
 

Fig.22. Average response time for 128 CPUs 

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
 

Fig.23. Average CPU utilization for 4 CPUs 
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Fig.24. Average CPU utilization for 8 CPUs 
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Fig.25. Average CPU utilization for 16 CPUs 
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Fig.26. Average CPU utilization for 32 CPUs 

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
 

Fig.27. Average CPU utilization for 64 CPUs 
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Fig.28. Average CPU utilization for 128 CPUs 
 

4. Conclusion and Future Works 

This paper has described the use of fuzzy logic to 
multiprocessor real-time scheduling. As it was shown, 
using deadline as a fuzzy parameter in multiprocessor real-
time scheduling is more promising than laxity. Also, it 
seems that partitioning approach almost outperforms 
global approach in case fuzzy real-time scheduling. 
I the future, we will conduct a deeper simulation and 
compare the results of fuzzy approach with the other 
algorithms. 
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