
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

88

Manuscript received March 25, 2006.
Manuscript revised March 30 , 2006.

A Fuzzy Algorithm for Scheduling Periodic Tasks on Multiprocessor
Soft Real-Time Systems

Mojtaba Sabeghi1,† and Hossein Deldari2††,

Ferdowsi University of Mashhad, Mashhad, Iran

Summary
In this paper we consider the use of fuzzy logic in the scheduling
of periodic tasks in soft real-time multiprocessor systems. Most
researches concerning real-time system scheduling assumes
scheduling constraint to be precise. However, in many
circumstances the values of these parameters are vague. The
vagueness of parameters suggests that we make use of fuzzy
logic to decide in what order the requests should be executed to
better utilize the system and as a result reduce the chance of a
request being missed. Our main contribution is proposing a fuzzy
approach to multiprocessor real-time scheduling in which the
scheduling parameters are treated as fuzzy variables. A
simulation is also performed and the results are judged against
each other. It is concluded that the proposed fuzzy approach is
very promising and it has the potential to be considered for future
research.
Key words:
Multiprocessor real-time scheduling, FGEDF, FGMLF, FPEDF,
FPMLF.

Introduction

Real-time systems are vital to industrialized infrastructure
such as command and control, process control, flight
control, space shuttle avionics, air traffic control systems
and also mission critical computations [1]. In all cases,
time has an essential role and having the right answer too
late is as bad as not having it at all.
In the literature, these systems have been defined as:
“systems in which the correctness of the system depends
not only on the logical results of computation, but also on
the time at which the results are produced” [1]. Such a
system must react to the requests within a fixed amount of
time which is called deadline.
In general, real-time systems can be categorized into two
important groups: hard real-time systems and soft real-time
systems. In hard real-time systems, meeting all deadlines is
obligatory, while in soft real-time systems missing some
deadlines is tolerable.
In both cases, when a new task arrives, the scheduler is to
schedule it in such a way that guaranties the deadline to be
met. Scheduling involves allocation of resources and time

to tasks in such a way that certain performance
requirements are met.
These tasks can be classified as periodic or aperiodic. A
periodic task is a kind of task that occurs at regular
intervals, and aperiodic task occurs unpredictably. The
length of the time interval between the arrivals of two
consecutive requests in a periodic task is called period.
Another aspect of scheduling theory is to decide whether
the currently executing task should be allowed to continue
or it has had enough CPU time for the moment and should
be suspended. A preemptive scheduler can suspend the
execution of current executing request in favor of a higher
priority request. However, a nonpreemptive scheduler
executes the currently running task to completion before
selecting another request to be executed. A major problem
that arises in preemptive systems is the context-switching
overhead. The higher number of preemptions a system has,
the more context switching needed [2].
Schedulability of periodic, preemptive, soft real-time tasks
on uniprocessor systems is well understood; simple and
efficient algorithms are available and widely used [2, 3, 4,
5].
Nevertheless, for multiple processors these algorithms are
not promising. Meeting the deadlines of real-time tasks in
a multiprocessor system requires a scheduling algorithm
that determines, for each task in the system, in which
processor it must be executed, and in which order with
respect to the other tasks, it must start its execution.
Multiprocessor scheduling techniques in real-time systems
fall into to general categories: partitioning and global
scheduling [11]. Under partitioning, each processor
schedule tasks independently from a local ready queue.
Each task is assigned to a particular processor and is only
scheduled on that processor. In contrast, all ready tasks are
stored in a single queue under global scheduling. A single
system-wide priority space is assumed: the highest priority
task is selected to execute whenever the scheduler is
invoked. Partitioning is the favored approach because it
has been proved to be efficient and reasonably effective
when popular uniprocessor scheduling algorithms such as
EDF and RM are used [7]. But finding an optimal
assignment of tasks to processors is NP-hard.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

89

In the global scheme, processors repeatedly execute the
highest priority tasks available for execution. It has been
shown that using this approach with common priority
assignment schemes such as rate monotonic (RM) and
earliest deadline first (EDF) can give rise to arbitrarily low
processor utilization [7]. In this approach a task can
migrate from one processor to another during execution.
In both cases researchers made some significant
contributions by those results in better multiprocessor
scheduling algorithms.
Although, these algorithms focus on timing constraints but
there are other implicit constraints in the environment,
such as uncertainty and lack of complete knowledge about
the environment, dynamicity in the world, bounded
validity time of information and other resource constraints.
In real world situations, it would often be more realistic to
find viable compromises between these parameters. For
many problems, it makes sense to partially satisfy
objectives. The satisfaction degree can then be used as a
parameter for making a decision. One especially
straightforward method to achieve this is the modeling of
these parameters through fuzzy logic. The same approach
is also applied on uniprocessor real-time scheduling in [12,
13].
The scope of the paper is confined to scheduling of soft
periodic tasks in multiprocessors real-time systems. In
section 2 the fuzzy inference systems are discussed.
Section 3 covers the proposed model and section 4
contains the experimental results. Conclusion and future
works are debated in Sections 5.

2. Fuzzy Inference System

Fuzzy logic is an extension of Boolean logic dealing with
the concept of partial truth which denotes the extent to
which a proposition is true. Whereas classical logic holds
that everything can be expressed in binary terms (0 or 1,
black or white, yes or no), fuzzy logic replaces Boolean
truth values with a degree of truth. Degree of truth is often
employed to capture the imprecise modes of reasoning that
play an essential role in the human ability to make
decisions in an environment of uncertainty and imprecision.
Fuzzy Inference Systems (FIS) are conceptually very
simple. They consist of an input, a processing, and an
output stage. The input stage maps the inputs, such as
frequency of reference, recency of reference, and so on, to
the appropriate membership functions and truth values.
The processing stage invokes each appropriate rule and
generates a corresponding result. It then combines the
results. Finally, the output stage converts the combined
result back into a specific output value [6].

The membership function of a fuzzy set corresponds to the
indicator function of the classical sets. It is a curve that
defines how each point in the input space is mapped to a
membership value or a degree of truth between 0 and 1.
The most common shape of a membership function is
triangular, although trapezoidal and bell curves are also
used. The input space is sometimes referred to as the
universe of discourse [6].
As discussed earlier, the processing stage which is called
inference engine is based on a collection of logic rules in
the form of IF-THEN statements where the IF part is
called the "antecedent" and the THEN part is called the
"consequent". Typical fuzzy inference systems have
dozens of rules. These rules are stored in a knowledgebase.
An example of a fuzzy IF-THEN rule is: IF laxity is
critical then priority is very high, which laxity and priority
are linguistics variables and critical and very high are
linguistics terms. Each linguistic term corresponds to
membership function.
An inference engine tries to process the given inputs and
produce an output by consulting an existing
knowledgebase. The five steps toward a fuzzy inference
are as follows:

• Fuzzifying Inputs
• Applying Fuzzy Operators
• Applying Implication Methods
• Aggregating All Outputs
• Defuzzifying outputs

Bellow is a quick review of these steps but a detailed study
is not in the scope of this paper.
Fuzzifying the inputs is the act of determining the degree
to which they belong to each of the appropriate fuzzy sets
via membership functions. Once the inputs have been
fuzzified, the degree to which each part of the antecedent
has been satisfied for each rule is known. If the antecedent
of a given rule has more than one part, the fuzzy operator
is applied to obtain one value that represents the result of
the antecedent for that rule. The implication function then
modifies that output fuzzy set to the degree specified by
the antecedent. Since decisions are based on the testing of
all of the rules in an FIS, the results from each rule must be
combined in order to make a decision. Aggregation is the
process by which the fuzzy sets that represent the outputs
of each rule are combined into a single fuzzy set. The input
for the defuzzification process is the aggregated output
fuzzy set and the output is a single value. This can be
summarized as follows: mapping input characteristics to
input membership functions, input membership function to
rules, rules to a set of output characteristics, output
characteristics to output membership functions, and the
output membership function to a single-valued output.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006

90

(sugeno)

9 rules

Fuzzy
inference

Engin

Output

EPriority

Deadline

Deadline

There are two common inference processes [6]. First is
called Mamdani's fuzzy inference method proposed in
1975 by Ebrahim Mamdani [8] and the other is Takagi-
Sugeno-Kang, or simply Sugeno, method of fuzzy
inference Introduced in 1985 [9]. These two methods are
the same in many respects, such as the procedure of
fuzzifying the inputs and fuzzy operators.
The main difference between Mamdani and Sugeno is that
the Sugeno output membership functions are either linear
or constant but Mamdani’s inference expects the output
membership functions to be fuzzy sets.
Sugeno’s method has three advantages. First it is
computationally efficient, which is an essential benefit to
real-time systems. Second, it works well with optimization
and adaptive techniques. These adaptive techniques
provide a method for the fuzzy modeling procedure to
extract proper knowledge about a data set, in order to
compute the membership function parameters that best
allow the associated fuzzy inference system to track the
given input/output data. However, in this paper we will not
consider these techniques. The third, advantage of Sugeno
type inference is that it is well-suited to mathematical
analysis.

3. The Proposed Model

The block diagram of our inference system is presented in
Figure 1.

Fig.1. Inference system block diagram.

In the proposed model, the input stage consists of two
linguistic variables. The first one is an external priority
which is the priority assigned to the task from the outside
world. This priority is static. One possible value can be the
tasks interval, as rate monotonic algorithm does. For
Figure 1, the other input variable is the Deadline. This
input can easily be replaced by laxity, wait time, or so on,
for other scheduling algorithms. Each parameter may
cause the system to react in a different way. The only thing
that should be considered is that by changing the input

variables the corresponding membership functions may be
changed accordingly.
For the simulation purposes, as it is discussed later, four
situations are recognized: First, by using laxity as a
secondary parameter and, second, by replacing the laxity
parameter with deadline and both of them are considered
in partitioned and also global scheme. In fact, four
algorithms are suggested: FGEDF1, FGMLF2, FPEDF3,
and FPMLF4.
The output if the system is priority that determines which
is used as a parameter for making a decision.
The input variables mapped into the fuzzy sets as
illustrated in Figures 2, 3 and 4.

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

EPriority

D
eg

re
e

of
 m

em
be

rs
hi

p

5 73 821 94 6

Fig.2. Fuzzy sets corresponding to reference recency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Deadline

D
eg

re
e

of
 m

em
be

rs
hi

p

42 31 5

Fig.3. Fuzzy sets corresponding to deadline

1 Fuzzy Global EDF
2 Fuzzy Global MLF
3 Fuzzy Partitioned EDF
4 Fuzzy Partitioned MLF

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

91

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Laxity

D
eg

re
e

of
 m

em
be

rs
hi

p

1 2 3 4 5

Fig.4. Fuzzy sets corresponding to laxity

The expert determines the shape of the membership
function for each linguistic term. It is very difficult for the
expert to adjust these membership functions in an optimal
way. However, there are some techniques for adjusting
membership functions [10]. In this paper, we will not
consider these techniques. They can be further studied in a
separate paper.
Fuzzy rules try to combine these parameters as they are
connected in real worlds. Some of these rules are
mentioned here:

• If (EPriority is high) and (laxity is critical) then
(Priority is very high)

• If (EPriority is normal) and (laxity is critical) then
(Priority is high)

• If (EPriority is very low) and (laxity is critical)
then (Priority is normal)

• If (EPriority is high) and (laxity is sufficient) then
(Priority is normal)

• If (EPriority is very low) and (laxity is sufficient)
then (Priority is very low)

In fuzzy inference systems, the number of rules has a
direct effect on its time complexity. So, having fewer rules
may result in a better system performance.

3.1 The Proposed Algorithm

The FGEDF algorithm is as follows:

FGMLF is much the same with FGEDF just by replacing
the word deadline by laxity.
The FPEDF algorithm is as follows:

FPMLF is much the same with FPEDF just by replacing
the word deadline by laxity.

4. Performance Evaluation

To evaluate our algorithm and to demonstrate its strength,
1024 test cases with different load factors were generated.
In each test case, the number of tasks and the
corresponding execution time and request interval were
randomly generated. Also, each task has been assigned a
priority according to the rate monotonic principle (tasks
with shorter request interval are given higher priorities) [3].
The behavior of all the four algorithms is compared with
each other. Performance metrics, which are used to
compare different algorithms, must be carefully chosen to
reflect the real characteristics of a system. These metrics
are as follows.
Average Response time, which is defined as the average
amount of time a system takes to react to a given input, is

Algorithm FPEDF for each CPU

Loop
1. For each ready task T (a task which have not
been run on another CPU), feed its external priority
and deadline into the inference engine. Consider the
output of inference module as priority of task T.
2. Execute the task with highest priority until an
scheduling event occurs (a running task finishes, a
new task arrives)

 3. Update the system states (deadline, etc)
End loop

Algorithm FGEDF

Loop // System is running for ever
For each CPU in the system do the followings:

1. for each ready task T (a task which is not
running), feed its external priority and
deadline into the inference engine. Consider
the output of inference module as priority of
task T.
2. Execute the task with highest priority until
an scheduling event occurs (a running task
finishes, a new task arrives)
3. Update the system states (deadline, etc)

 End
End loop

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006

92

one of the most important factors in most scheduling
algorithms.
Number of missed deadlines is an influential metric in
scheduling algorithms for soft real-time systems.
When task preemption is allowed, another prominent
metric comes into existence and that is the number of
preemptions. Each of preemptions requires the system to
perform a context switching which is a time consuming
action.
Yet another metric, which is considered in our study, is the
average CPU utilization. The main goal of a scheduling
algorithm is to assign and manage system resources so that
a good utilization is achieved.
We performed our simulation for systems with different
number of CPUs and judge the algorithms against each
other in these conditions.
Among the four algorithms FGEDF and FGMLF nearly
achieve the same performance in all situations and all
metrics. FPMLF performs poorly in number of misses and
also average response time, but its performance on CPU
utilization and also number of preemption is much better
than the others especially when the number of CPUs
increase.
Now, we will compare the algorithms in each metric.
About number of misses, as Figures 5 to 10 shows,
FPMLF has larger amount of misses and FPEDF seems to
have fewest numbers of misses the other two algorithms
carry out nearly the same. These figures show that
deadline is a better parameter in this case.
Comparing number of preemptions, as Figures 11 to 16
demonstrate, FPMLF outperforms the others. FPEDF
reaches to a higher number of preemptions as the load
factor increases. Numbers of preemptions in FGMLF are a
little more than FGEDF. In this case, deadline is the better
parameter.
Judging against average response time, as stated in Figures
17 to 22, FPMLF presents extremely bad results. The other
three algorithms have almost the same performance.
FPMLF which was the worse algorithm in the other three
metrics, Has the best CPU utilization among the other
algorithms. This algorithm utilizes almost 100 hundred
percent of CPU. As Figures 23 to 28 states, partition
approach achieves better CPU utilization.

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.5. Number of misses for 4 CPUs

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.6. Number of misses for 8 CPUs

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.7. Number of misses for 16 CPUs

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

93

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.8. Number of misses for 32 CPUs

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.9. Number of misses for 64 CPUs

0 20 40 60 80 100 120 140 160
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.10. Number of misses for 128 CPUs

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.11. Number of preemptions for 4 CPUs

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.12. Number of preemptions for 8 CPUs

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor
Fig.13. Number of preemptions for 16 CPUs

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006

94

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.14. Number of preemptions for 32 CPUs

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.15. Number of preemptions for 64 CPUs

0 20 40 60 80 100 120 140 160
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.16. Number of preemptions for 128 CPUs

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.17. Average response time for 4 CPUs

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.18. Average response time for 8 CPUs

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.19. Average response time for 16 CPUs

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

95

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.20. Average response time for 32 CPUs

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14
FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.21. Average response time for 64 CPUs

0 20 40 60 80 100 120 140 160

2

4

6

8

10

12

14

16

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.22. Average response time for 128 CPUs

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.23. Average CPU utilization for 4 CPUs

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.24. Average CPU utilization for 8 CPUs

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.25. Average CPU utilization for 16 CPUs

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No. 3A, March 2006

96

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.26. Average CPU utilization for 32 CPUs

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.27. Average CPU utilization for 64 CPUs

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FGEDF
FGMLF
FPEDF
FPMLF

Load Factor

Fig.28. Average CPU utilization for 128 CPUs

4. Conclusion and Future Works

This paper has described the use of fuzzy logic to
multiprocessor real-time scheduling. As it was shown,
using deadline as a fuzzy parameter in multiprocessor real-
time scheduling is more promising than laxity. Also, it
seems that partitioning approach almost outperforms
global approach in case fuzzy real-time scheduling.
I the future, we will conduct a deeper simulation and
compare the results of fuzzy approach with the other
algorithms.

References
[1] Ramamritham K., Stankovic J. A., Scheduling

algorithms and operating systems support for real-time
systems, Proceedings of the IEEE, Vol. 82(1), pp55-
67, January 1994.

[2] Goossens J., Richard P., Overview of real-time
scheduling problems, Euro Workshop on Project
Management and Scheduling, 2004

[3] Liu C. L., Layland J. W., Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment.
Journal of the ACM, 20(1):46-61, 1973.

[4] Hong J., Tan X., Towsley D., A Performance Analysis
of Minimum Laxity and Earliest Deadline Scheduling
in a Real-Time System, IEEE Trans. on Comp., Vol.
38, No. 12, Dec. 1989

[5] Sha, L. and Goodenough, J. B., Real-Time Scheduling
Theory and Ada, IEEE Computer, Vol. 23, No. 4, pp.
53-62 (April 1990).

[6] Wang Lie-Xin, A course in fuzzy systems and control,
Prentice Hall, Paperback, Published August 1996.

[7] Andersson B., Jonsson J. Fixed-priority preemptive
multiprocessor scheduling: to partition or not to
partition, Seventh International Conference on Real-
Time Computing Systems and Applications
(RTCSA'00), 2000

[8] Mamdani E.H., Assilian S., An experiment in
linguistic synthesis with a fuzzy logic controller,
International Journal of Man-Machine Studies, Vol. 7,
No. 1, pp. 1-13, 1975.

[9] Sugeno, M., Industrial applications of fuzzy control,
Elsevier Science Inc., New York, NY, 1985.

[10] Jang, J.-S. R., ANFIS: Adaptive-Network-based
Fuzzy Inference Systems, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 23, No. 3, pp.
665-685, May 1993.

[11] Lauzac S., Melhem R., Mosse D. Comparison of
Global and Partitioning Schemes for Scheduling Rate
Monotonic Tasks on a Multiprocessor, Euromicro
Workshopon RealTime Systems, 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

97

[12] Sabeghi M., Naghibzadeh M., Taghavi T., A Fuzzy
Algorithm for Scheduling Soft Periodic Tasks in
Preemptive Real-Time Systems, International Joint
Conferences on Computer, Information, and Systems
Sciences, and Engineering (CISSE), 2005

[13] Sabeghi M., Naghibzadeh M., A Fuzzy Algorithm for
Real-Time Scheduling of Soft Periodic Tasks, IJCNS
International Journal of Computer Science and
Network Security, Vol. 6 No.2 February 2006

