
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

98

Manuscript received March 25, 2006.
Manuscript revised March 30 , 2006.

Using the LPT and the Palmer Approaches to Solve Group Flexible
Flow-shop Problems

Tzung-Pei Hong,† Pei-Ying Huang††, and Gwoboa Horng†††,

 †National University of Kaohsiung, Kaohsiung, Taiwan
 ††National Taiwan University, Taipei, Taiwan

 †††National Chung-Hsing University, Taichung, Taiwan

Summary
In simple flow shop problems, each machine operation center
includes just one machine. If at least one machine center includes
more than one machine, the scheduling problem becomes a
flexible flow-shop problem. Recently, group scheduling has also
been proposed and discussed. In the group scheduling, each job
belongs to a specific group and all the jobs are processed group
by group. In this paper, we propose a heuristic algorithm to solve
group flexible flow-shop problems with more than two machine
centers, which have the same number of machines. It first
determines the job sequencing in each group by combining both
the LPT and the Palmer approaches to solve the flexible flow-
shop problems of more than two machine centers. It then
determines group sequence by the Palmer approach. Experiments
are also made to compare the performance of the proposed
algorithm.
Key words:
Group Scheduling, Flexible Flow Shop, Dynamic Programming,
Palmer Algorithm.

1. Introduction

Scheduling is an important process widely used in
manufacturing, production, management, computer science,
and so on. Appropriate scheduling not only reduces
manufacturing costs but also reduces possibilities for
violating due dates. Finding good schedules for given sets
of jobs can thus help factory supervisors effectively
control job flows and provide solutions for job sequencing.
In simple flow-shop problems, each machine center has
just one machine. If at least one machine center has more
than one machine, the problem is called a flexible flow-
shop problem [2]. Flexible flow shops are thus
generalization of simple flow shops. Scheduling jobs in
flexible flow shops is considered an NP-complete problem
[1][4][5]. Recently, group scheduling has also been
proposed and discussed. For group scheduling, each job
belongs to a specific group and all the jobs are processed
group by group [7][8][10].

The LPT and the Palmer algorithms are two simple
approaches commonly used in scheduling. The LPT
algorithm is used for scheduling a set of independent tasks

with arbitrary execution time on an arbitrary number of
processors. The Palmer algorithm is used to schedule jobs
in a simple flow-shop with more than two machines to
achieve a nearly minimum completion time. Both the LPT
and the Palmer algorithms have the advantage of low
computational time complexity. In this paper, we thus
propose an algorithm based on LPT and Palmer to solve
group flexible flow-shop problems with more than two
machine centers. We assume all machine centers have the
same number of machines. The proposed one is a heuristic
algorithm. It determines the job sequencing in each group
by combining both the LPT [3] and the Palmer approaches
to solve flexible flow-shop problems of more than two
machine centers. It then determines the group sequencing
by the Palmer approach. Experimental results show that
the proposed algorithm only got a little larger makespans
than the optimal one, which is based on the dynamic
programming technique. A trade-off can thus be achieved
between accuracy and time complexity.

The remainder of this paper is organized as follows.
Related scheduling algorithms are reviewed in Section 2.
The assumptions and notation used in this paper are
described in Section 3. The proposed algorithm for
heuristically scheduling on a group flexible flow shop with
more than two machine centers is proposed in Section 4.
An example to illustrate the proposed heuristic scheduling
algorithm is given in Section 5. Experiments for
comparing the makespans and execution times of the
proposed algorithm with the optimal one are described in
Section 6. Finally, conclusions are given in Section 7.

2. Review of Related Scheduling Algorithms

As mentioned above, flexible flow-shop problems are NP-
complete. The group flexible flow-shop problems are also
NP-complete. No algorithms except exhaustive search can
find optimal solutions. In the paper, we thus propose a
heuristic algorithm based on the LPT, the Palmer, and
Sriskandarajah and Sethi’s approaches to solve the group
flexible flow-shop problems of more than two machine

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

99

centers. These related scheduling algorithms are first
introduced as follows.

2.1 Review of the LPT Scheduling Algorithm

The discovery of scheduling algorithms for a set of
independent tasks with arbitrary execution time and an
arbitrary number of processors is a classic sequencing
problem of wide interest and application. Among the
scheduling algorithms proposed, the LPT (Longest-
Processing-Time-first) scheduling algorithm is the simplest
one and is widely used in many real-world situations.

Given a set of n independent tasks (T1 to Tn), each with
arbitrary execution time (t1 to tn), and a set of m
homogeneous processors or machines (P1 to Pm), the LPT
scheduling algorithm assigns the task with the longest
execution time (among those not yet assigned) to a free
processor whenever this processor becomes free. For cases
when there is a tie, an arbitrary tie-breaking rule can be
assumed. The algorithm is described as follows.

The LPT Scheduling Algorithm:
Input: A set of n tasks, each with arbitrary processing time,

and a set of m processors.
Output: A schedule and the final finishing time of all the

tasks.
Step 1: Sort the tasks in a descending order according to

the processing time.
Step 2: Initialize the current finishing time of each

processor to zero.
Step 3: Assign the first task in the task list to the

processor with the minimum finishing time.
Step 4: Set the new finishing time of the processor = the

old finishing time of the processor + the execution
time of the task.

Step 5: Remove the task from the task list.
Step 6: Repeat Steps 3 to 5 until the task list is empty.
Step 7: Among the finishing time of the processors,

choose the longest as the final finishing time.

The finishing time by the LPT scheduling algorithm is in
general not minimal. The computational time spent by the
LPT scheduling algorithm is however much lower than
that by an optimal scheduling algorithm.

2.2 Review of the Palmer Scheduling Algorithm

The Palmer algorithm [6] was proposed to schedule job
sequencing for a flow shop with more than two machines.
Given a set of n independent jobs, each having m (m>2)
tasks (T11 , T21, … , Tm1, T12, T22, …, T(m-1)n, Tmn) that must
be executed in the same sequence on m machines (P1, P2,
…, Pm), the Palmer scheduling algorithm seeks a nearly

minimum completion time of the last job. This algorithm is
stated as follows.

The Palmer Scheduling Algorithm:
Input: A set of n jobs, each having m (m > 2) tasks

executed respectively on each of m machines.
Output: A schedule with a nearly minimum completion

time of the last job.
Step 1: Find the valueπj for each job Jj as follows:

⎡ ⎤

∑
=

−++−++−−=
2

1
11212

/

)()()(
m

i
jimijj timtimπ ,

where tij represents the execution time of the i-th
task Tij in job Jj.

Step 2: Sort the jobs in descending order of πj's; if two
or more jobs have the same value of πj, sort them
in an arbitrary order.

Step 3: Schedule the jobs on the machines in the sorted
order.

After Step 3, scheduling is finished and a completion time
has been found.

2.3 Review of the Sriskandarajah and Sethi’s
Scheduling Algorithm

Sriskandarajah and Sethi proposed a heuristic algorithm
[9] for solving the flexible flow-shop problem of two
machine centers and the completion time of the derived
schedules was close to the optimum. Sriskandarajah and
Sethi decomposed the problem into the following three
sub-problems and solved each heuristically:

Part 1: Form the machine groups, each of which contains
a machine from each center.

Part 2: Use the LPT method to assign jobs to each
machine group (flow shop).

Part 3: Deal with job sequencing and timing using the
Johnson algorithm.

In this paper, we will extend the above three approaches to
solve the group flexible flow-shop problems of more than
two machine centers.

3. Assumptions and Notation

Assumptions and notation used in this paper are described
in this section.

Assumptions:
‧ Jobs are not preemptive.
‧ Each job has m (m > 2) tasks with processing times,

executed respectively on each of m machine centers.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

100

‧ All the machine centers have the same number of
homogeneous machines.

Notation:
l: The number of groups.
n: The number of jobs in a certain group.
m: The number of tasks in each job.
p: The number of machines in each machine center.

Fi: The i-th allocated machine group (flow shop), i = 1
to p.

Fji: The j-th machine of the flowshop Fi , j = 1 to m.
fi: The completion time of the i-th flowshop.
fji: The completion time of the j-th machine in the i-th

flowshop.
tijk: The execution time for i-task of j-job in the k-th

group.
ttik: The total execution time of the i-th job in the k-th

group.
mcjk: The processing time at the j-th machine center for

the k-th group.
ff: The final completion time of the whole schedule.

4. A heuristic algorithm for group flexible
flow-shop scheduling with more than two
machine centers

The proposed group flexible flow-shop algorithm first
determines the job sequencing in each group by combining
both LPT and Palmer approaches to solve flexible flow-
shop problems of more than two machine centers. It then
determines the group sequencing by the Palmer algorithm.
The proposed algorithm is stated below.

The proposed heuristic group flexible flow-shop
algorithm:
Input: l groups, each of which has a set of jobs, each

having m (m > 2) tasks, to be executed respectively
on each of m machine centers with p homogenous
machines.

Output: A schedule with a completion time.

Level 1: Determining job sequence in each group
Step 1: Set variable k to one, where k represents the

number of the current group to be processed.
Step 2: Repeat Steps 3 to 15 until k > l.

Part 1: Forming the machine groups.
Step 3: Form p machine groups, each of which contains

one machine from each machine center. Each
machine group can be thought of as a simple flow
shop F1, F2, …, Fp.

Step 4: Initialize the completion time f1, f2, …, fp of each
flow shop F1, F2, …, Fp to zero.

Part 2: Assigning jobs to machine groups.
Step 5: For each job Jjk, find its total execution time ttjk =

t1jk + t2jk +…+ tmjk (j = 1 to n, k = 1 to l).
Step 6: Sort the jobs in descending order of processing

time ttjk; if any two jobs have the same ttjk values,
sort them in an arbitrary order.

Step 7: Find the flow shop Fi with the minimum
processing time fi among all the flow shops; if
two flowshops have the same minimum fi value,
choose one arbitrarily.

Step 8: Assign the first job Jjk in the sorted list to the
chosen flow shop Fi which has the minimum
completion time fi among all p flow shops.

Step 9: Add the total time ttjk of job Jjk to the needed total
time of the chosen flow shop, Fi; that is:

fi = fi + ttjk.
Step 10: Remove job Jjk from the job list.
Step 11: Repeat Steps 7 to 10 until the job list is empty.

After Step 11, jobs are clustered into p groups and are
allocated to the p machine flow shops.

Part 3: Dealing with job sequencing in each flow shop
Step 12: For each flow shop Fi, set the initial completion

time of the machines fji (j = 1 to m, i =1 to p) to
zero.

Step 13: Find the completion time of each flow shop if
by the Palmer algorithm stated in Section 2.

Step 14: Find the final completion time)(max
1 i

p

i
fff

=
=

among the completion time of all the flow shops
and save the corresponding job sequence.

Step 15: Set k = k + 1.

After Step 15, the individual job sequence for each group
has been found.

Level 2: Determining group sequence in the whole
schedule
Step 16: Set the processing time mcjk needed for the n jobs

in group k on machine center j (j = 1 to m, k = 1
to l) as:

)(min)(max)1(11 ikj

p

iijk

p

ijk cfmc −==
−= ,

where fjik is the completion time in each flow-
shop i at machine center j for group k and c(j-1)ik is
the completion time of the first job in each flow-
shop i at machine center j-1 for group k.

Step 17: Find the group sequence by the Palmer algorithm
stated in Section 2.

Step 18: Schedule the groups based on the above group
sequence and with the job sequence of each flow-
shop in each group to find the final completion
time.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

101

After Step 18, scheduling is finished and a total
completion time has been found.

5. An Example for the Proposed Heuristic
Algorithm

Assume there are three groups and each of them has five
jobs, J1i to J5i (i = 1 to 3). Also assume each job has three
tasks to be scheduled via three operations. Each operation
is executed by a machine at the corresponding machine
center. Each machine center includes two homogeneous
machines. Assume the execution times of these jobs are
listed in Table 1. The algorithm proceeds as follows.

Table 1: Processing times for the three groups of jobs

G1 G2 G3
J11 J21 J31 J41 J51 J12 J22 J32 J42 J52 J13 J23 J33 J43 J53

t1j 9 4 7 6 9 6 4 7 2 5 8 2 8 5 9
t2j 7 8 3 2 9 3 2 6 7 3 7 5 2 7 3
t3j 8 7 3 4 6 3 2 5 9 4 3 2 6 3 3

The steps in level 1 of the proposed algorithm determine
the job sequence in each of the three groups. They are
decomposed into three parts. Part 1 first forms two
machine groups, F1, F2, each of which is thought of as a
three-machine flow-shop. Part 2 then, for each job group,
assigns the jobs to the machine groups. Results for this
example are shown in Table 2.

Table 2. The jobs allocated to each flow shop for each job group

 G1 G2 G3
Flowshopi Jobs allocated

F1 J51, J31, J41 J42, J52 J33, J43, J23
F2 J11, J21 J32, J12, J22 J13, J53

Part 3 then deals with job sequencing in each flow shop in
each group. The results are shown in Table 3.

Table 3. The job sequence in each flow shop in each group

 G1 G2 G3
F1 J41, J51,

J31
J42, J52 J23, J43, J33Job sequence

F2 J21, J11 J32, J22, J12 J13, J53

The steps in level 2 are then executed to determine the
group sequence in the whole schedule. The processing
time for each group of jobs at each machine center is first
calculated and shown in Table 4.

In Table 4, the processing time for processing the first
tasks of all the jobs in Group 1 at machine center 1 is 22,
for processing the second tasks at machine center 2 is 23,
and for processing the third tasks at machine center 3 is 25.

Similarly, the processing time evaluated for Group 2 is 17,
18, and 14, respectively, and for Group 3 is 17, 18, and 16,
respectively. The Palmer procedure is then used to
schedule the three groups according to the processing time
at each machine center. The obtained group sequence for
this example is G1, G3, G2. All the groups of jobs are then
scheduled according to the above group sequence together
with its job sequence in each flow shop. The final
completion time is 62.

Table 4. The processing time of each group of jobs at each machine
center

G1 G2 G3
Machine Center Processing Time

Machine Center 1 22 17 17

Machine Center 2 23 18 18

Machine Center 3 25 14 16

6. Experiments

This section reports on experiments made to show the
performance of the proposed scheduling algorithms. They
were implemented by Visual C++ at an Intel Pentium 4
CPU 2.40GHz. Two parameters are considered, the group
number l and the job number of each group n. In the first
case, the group number l is fixed at 3 and the job number
of each group varies from 3 to 7. In the second case, the
group number l varies from 3 to 8 and the job number n of
each group is fixed at 6. Each job has three tasks and each
machine center has two homogeneous machines. The
execution time of each task was randomly generated in the
range of 5 to 50. Each set of problems was executed for 20
tests and the makespans and computation times were
measured. The optimal approach did not work for more
than three groups with seven jobs for the first case and for
more than eight groups with six jobs for the second case in
our environments due to the large amount of computation
time.

The optimal approach considered all possible permutations
and combinations and used pruning techniques to increase
its efficiency. The makespans obtained in this way were
optimal. As for the first case, the group number is 3. The
average makespans for problems of three to seven jobs in
each group by the proposed method and the optimal one
are shown in Figure 1.

The deviation rates of the proposed heuristic algorithm
over the optimal algorithm for different numbers of jobs in

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

102

each group when the group number l is 3 are shown in
Table 5.

When the group number l is 3, the average CPU times for
problems of three to seven jobs in each group are shown in
Figure 2. The algorithm for optimal solutions cannot run
over three groups of seven jobs in each due to the high
time complexity.

0
50

100
150
200
250
300
350
400
450

3 4 5 6 7

Job number

A
ve

ra
ge

 m
ak

es
pa

n

The Optimal Algorithm The Heuristic Algorithm

Fig. 1 Average makespans for the group number l = 3 with n = 3 to 7.

Table 5. The deviation rates for different numbers of jobs when the group
number is 3

Group number l = 3
 The Heuristic Algorithm

Job number Deviation rate (%)
3 1.38
4 2.07
5 6.65
6 3.06
7 6.65

When the group number l is 3, the average CPU times for
problems of three to seven jobs in each group are shown in
Figure 2. The algorithm for optimal solutions cannot run
over three groups of seven jobs in each due to the high
time complexity.

0

200

400

600

800

1000

1200

3 4 5 6 7

Job number

C
PU

 ti
m

e
(m

in
)

The Optimal Algorithm The Heuristic Algorithm

Fig. 2 The average CPU times for different numbers of jobs with l = 3.

Next, in the second set of experiments, the job number n of
each group is 6. The average makespans for problems of
three to eight groups by the proposed method and the
optimal one are shown in Figure 3.

0
100
200
300
400
500
600
700
800
900

3 4 5 6 7 8

Group number

A
ve

ra
ge

 m
ak

es
pa

n

The Optimal Algorithm The Heuristic Algorithm

Fig. 3 The average makespans for the job number n = 6 with l = 3 to 8.

The deviation rates of the proposed heuristic algorithm
over the optimal algorithm for different numbers of groups
with n = 6 are shown in Table 6.

Table 6. The deviation rates for different numbers of groups with n = 6

Job number of each group n = 6
 The Heuristic Algorithm

Group number Deviation rate (%)
3 3.05760709
4 3.669097539
5 3.590184283
6 4.408751946
7 3.115549617
8 4.459434139

When the job number n of each group is 6, the average
CPU times for problems of three to eight groups are shown
in Figure 4. The optimal algorithm cannot run over eight
groups in this case due to its high time complexity.

0
100
200
300
400
500
600
700

3 4 5 6 7 8

Group number

C
PU

 ti
m

e
(m

in
)

The Optimal Algorithm The Heuristic Algorithm

Fig. 4 Average CPU times for different numbers of groups with n = 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

103

From the above figures and tables, it is easily seen that the
proposed algorithm got only a little larger makespans than
the optimal one did. The computational time needed by the
optimal algorithm was, however, much larger than that
needed by the proposed approach, especially when the job
number is large. Actually, since the group flexible flow-
shop problem is an NP-hard problem, the optimal approach
can work only for a small number of jobs. The proposed
approach can solve this problem.

Furthermore, experiments for large job numbers and group
numbers were also made to show the performance of the
heuristic algorithm. Experiments were made respectively
for n from 1000 to 9000 with the group number l being 10,
n from 1000 to 9000 with l being 100, n being 10 with l
from 1000 to 9000, and n being 100 with l from 1000 to
9000. The average CPU times for the above cases are
shown respectively in Figure 5 to 8, all being solved
within a minute. Hence, the proposed approach is feasible
even for a large number of jobs.

0

1

2

3

4

5

6

1000 2000 3000 4000 5000 6000 7000 8000 9000

Job number

C
PU

 ti
m

e
(s

ec
)

The Heuristic Algorithm

Fig. 5 The average CPU times for l = 10 and n = 1000 to 9000.

0

10

20

30

40

50

60

1000 2000 3000 4000 5000 6000 7000 8000 9000

Job number

C
PU

 ti
m

e
(s

ec
)

The Heuristic Algorithm

Fig. 6 The average CPU times for l = 100 and n = 1000 to 9000.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1000 2000 3000 4000 5000 6000 7000 8000 9000

Group number

C
PU

 ti
m

e
(s

ec
)

The Heuristic Algorithm

Fig. 7 The average CPU times for n = 10 and l = 1000 to 9000.

0
1
2
3
4
5
6
7
8

1000 2000 3000 4000 5000 6000 7000 8000 9000

Group number

C
PU

 ti
m

e
(s

ec
)

The Heuristic Algorithm

Fig. 8 The average CPU times for n = 100 and l = 1000 to 9000.

7. Conclusion

Appropriate scheduling cannot only reduce manufacturing
costs but also reduce the possibility of violating due dates.
Finding good schedules for given sets of jobs can thus help
factory supervisors control job flows and provide for good
job sequencing.

Scheduling jobs in the group flexible flow shops is an NP-
complete problem. In this paper, we propose one algorithm
to solve group flexible flow-shop problems with more than
two machine centers, which have the same number of
machines. The proposed one is a heuristic algorithm. It
first determines the job sequencing in each group by
combining both LPT and Palmer approaches to solve
flexible flow-shop problems of more than two machine
centers. It then determines group sequencing in the entire
schedule by the Palmer algorithm. It is compared with the
optimal one, which entirely uses the dynamic
programming technique. The optimal algorithm works only
when the job number is small. Experimental results show
that the proposed algorithm can save much computational
time than the optimal one although the obtained makespans
by the former may be a little larger than the latter. A trade-
off can thus be achieved between accuracy and time
complexity. In the future, we will consider other task
constraints, such as setup times, due dates, and priorities.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

104

Acknowledgments

This research was supported by the National Science
Council of the Republic of China under contract NSC 94-
2213-E-390-005.

References
[1] S. C. Chung and D. Y. Liao, "Scheduling flexible flow

shops with no setup effects," The 1992 IEEE International.
Conference on Robotics and Automation, pp. 1179-1184,
1992.

[2] R. A. Dudek, S. S. Panwalkar and M. L. Smith, "The
lessons of flowshop scheduling research," Operations
Research, Vol. 40, pp. 7-13, 1992.

[3] T. P. Hong, C. M Huang and K. M. Yu, "LPT scheduling
for fuzzy tasks," Fuzzy Sets and Systems, Vol. 97, pp. 277-
286, 1998.

[4] R. Logendran and N. Nudtasomboon, "Minimizing the
makespan of a group scheduling problem: a new heuristic,"
International Journal of Production Economics, Vol. 22,
pp. 217-230, 1991.

[5] T. E. Morton and D. W. Pentico, Heuristic Scheduling
Systems with Applications to Production Systems and
Project Management, John Wiley & Sons Inc., New York,
1993.

[6] D. S. Palmer, "Sequencing Jobs Through a Multi-Stage
Process in the Minimum Total Time- A Quick Method of
Obtaining a Near Optimum," Operational Research
Quarterly, Vol. 16, pp. 101-107, 1965.

[7] V. A. Petrov, "Flow line group production planning,"
Business Publications, London, 1966.

[8] J. Schaller, "A new lower bound for the flow shop group
scheduling problem," Computers and Industrial
Engineering, Vol. 41, No. 2, pp. 151-161, 2001.

[9] C. Sriskandarajah and S. P. Sethi, "Scheduling algorithms
for flexible flow shops: worst and average case
performance," European Journal of Operational Research,
Vol. 43, pp. 143-160, 1989.

[10] D. L. Yang, M. S. Chern, "Two-machine flowshop group
scheduling problem," Computers & Operations Research,
Vol. 27, No. 10, pp. 975-985, 2000.

