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Summary 
In simple flow shop problems, each machine operation center 
includes just one machine. If at least one machine center includes 
more than one machine, the scheduling problem becomes a 
flexible flow-shop problem. Recently, group scheduling has also 
been proposed and discussed. In the group scheduling, each job 
belongs to a specific group and all the jobs are processed group 
by group. In this paper, we propose a heuristic algorithm to solve 
group flexible flow-shop problems with more than two machine 
centers, which have the same number of machines. It first 
determines the job sequencing in each group by combining both 
the LPT and the Palmer approaches to solve the flexible flow-
shop problems of more than two machine centers. It then 
determines group sequence by the Palmer approach. Experiments 
are also made to compare the performance of the proposed 
algorithm. 
Key words: 
Group Scheduling, Flexible Flow Shop, Dynamic Programming, 
Palmer Algorithm. 

1. Introduction 

Scheduling is an important process widely used in 
manufacturing, production, management, computer science, 
and so on. Appropriate scheduling not only reduces 
manufacturing costs but also reduces possibilities for 
violating due dates. Finding good schedules for given sets 
of jobs can thus help factory supervisors effectively 
control job flows and provide solutions for job sequencing. 
In simple flow-shop problems, each machine center has 
just one machine. If at least one machine center has more 
than one machine, the problem is called a flexible flow-
shop problem [2]. Flexible flow shops are thus 
generalization of simple flow shops. Scheduling jobs in 
flexible flow shops is considered an NP-complete problem 
[1][4][5]. Recently, group scheduling has also been 
proposed and discussed. For group scheduling, each job 
belongs to a specific group and all the jobs are processed 
group by group [7][8][10]. 

The LPT and the Palmer algorithms are two simple 
approaches commonly used in scheduling. The LPT 
algorithm is used for scheduling a set of independent tasks 

with arbitrary execution time on an arbitrary number of 
processors. The Palmer algorithm is used to schedule jobs 
in a simple flow-shop with more than two machines to 
achieve a nearly minimum completion time. Both the LPT 
and the Palmer algorithms have the advantage of low 
computational time complexity. In this paper, we thus 
propose an algorithm based on LPT and Palmer to solve 
group flexible flow-shop problems with more than two 
machine centers. We assume all machine centers have the 
same number of machines. The proposed one is a heuristic 
algorithm. It determines the job sequencing in each group 
by combining both the LPT [3] and the Palmer approaches 
to solve flexible flow-shop problems of more than two 
machine centers. It then determines the group sequencing 
by the Palmer approach. Experimental results show that 
the proposed algorithm only got a little larger makespans 
than the optimal one, which is based on the dynamic 
programming technique. A trade-off can thus be achieved 
between accuracy and time complexity. 

The remainder of this paper is organized as follows. 
Related scheduling algorithms are reviewed in Section 2. 
The assumptions and notation used in this paper are 
described in Section 3. The proposed algorithm for 
heuristically scheduling on a group flexible flow shop with 
more than two machine centers is proposed in Section 4. 
An example to illustrate the proposed heuristic scheduling 
algorithm is given in Section 5. Experiments for 
comparing the makespans and execution times of the 
proposed algorithm with the optimal one are described in 
Section 6. Finally, conclusions are given in Section 7. 

2. Review of Related Scheduling Algorithms 

As mentioned above, flexible flow-shop problems are NP-
complete. The group flexible flow-shop problems are also 
NP-complete. No algorithms except exhaustive search can 
find optimal solutions. In the paper, we thus propose a 
heuristic algorithm based on the LPT, the Palmer, and 
Sriskandarajah and Sethi’s approaches to solve the group 
flexible flow-shop problems of more than two machine 
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centers. These related scheduling algorithms are first 
introduced as follows. 

2.1 Review of the LPT Scheduling Algorithm 

The discovery of scheduling algorithms for a set of 
independent tasks with arbitrary execution time and an 
arbitrary number of processors is a classic sequencing 
problem of wide interest and application. Among the 
scheduling algorithms proposed, the LPT (Longest-
Processing-Time-first) scheduling algorithm is the simplest 
one and is widely used in many real-world situations. 

Given a set of n independent tasks (T1 to Tn), each with 
arbitrary execution time (t1 to tn), and a set of m 
homogeneous processors or machines (P1 to Pm), the LPT 
scheduling algorithm assigns the task with the longest 
execution time (among those not yet assigned) to a free 
processor whenever this processor becomes free. For cases 
when there is a tie, an arbitrary tie-breaking rule can be 
assumed. The algorithm is described as follows. 

The LPT Scheduling Algorithm: 
Input: A set of n tasks, each with arbitrary processing time, 

and a set of m processors. 
Output: A schedule and the final finishing time of all the 

tasks. 
Step 1: Sort the tasks in a descending order according to 

the processing time. 
Step 2: Initialize the current finishing time of each 

processor to zero. 
Step 3: Assign the first task in the task list to the 

processor with the minimum finishing time. 
Step 4: Set the new finishing time of the processor = the 

old finishing time of the processor + the execution 
time of the task. 

Step 5: Remove the task from the task list. 
Step 6: Repeat Steps 3 to 5 until the task list is empty. 
Step 7: Among the finishing time of the processors, 

choose the longest as the final finishing time. 

The finishing time by the LPT scheduling algorithm is in 
general not minimal. The computational time spent by the 
LPT scheduling algorithm is however much lower than 
that by an optimal scheduling algorithm. 

2.2 Review of the Palmer Scheduling Algorithm 

The Palmer algorithm [6] was proposed to schedule job 
sequencing for a flow shop with more than two machines. 
Given a set of n independent jobs, each having m (m>2) 
tasks (T11 , T21, … , Tm1, T12, T22, …, T(m-1)n, Tmn) that must 
be executed in the same sequence on m machines (P1, P2, 
…, Pm), the Palmer scheduling algorithm seeks a nearly 

minimum completion time of the last job. This algorithm is 
stated as follows. 
 

The Palmer Scheduling Algorithm: 
Input: A set of n jobs, each having m (m > 2) tasks 

executed respectively on each of m machines. 
Output: A schedule with a nearly minimum completion 

time of the last job. 
Step 1: Find the valueπj for each job Jj as follows: 
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where tij represents the execution time of the i-th 
task Tij in job Jj. 

Step 2: Sort the jobs in descending order of πj's; if two 
or more jobs have the same value of πj, sort them 
in an arbitrary order. 

Step 3: Schedule the jobs on the machines in the sorted 
order. 

After Step 3, scheduling is finished and a completion time 
has been found. 

2.3 Review of the Sriskandarajah and Sethi’s 
Scheduling Algorithm 

Sriskandarajah and Sethi proposed a heuristic algorithm 
[9] for solving the flexible flow-shop problem of two 
machine centers and the completion time of the derived 
schedules was close to the optimum. Sriskandarajah and 
Sethi decomposed the problem into the following three 
sub-problems and solved each heuristically: 

Part 1: Form the machine groups, each of which contains 
a machine from each center. 

Part 2: Use the LPT method to assign jobs to each 
machine group (flow shop). 

Part 3: Deal with job sequencing and timing using the 
Johnson algorithm.  

In this paper, we will extend the above three approaches to 
solve the group flexible flow-shop problems of more than 
two machine centers. 

3. Assumptions and Notation 

Assumptions and notation used in this paper are described 
in this section. 

Assumptions: 
‧ Jobs are not preemptive. 
‧ Each job has m (m > 2) tasks with processing times, 

executed respectively on each of m machine centers. 
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‧ All the machine centers have the same number of 
homogeneous machines. 

Notation: 
l: The number of groups. 
n: The number of jobs in a certain group. 
m: The number of tasks in each job. 
p: The number of machines in each machine center. 

Fi: The i-th allocated machine group (flow shop), i = 1 
to p. 

Fji: The j-th machine of the flowshop Fi , j = 1 to m. 
fi: The completion time of the i-th flowshop. 
fji: The completion time of the j-th machine in the i-th 

flowshop. 
tijk: The execution time for i-task of j-job in the k-th 

group. 
ttik: The total execution time of the i-th job in the k-th 

group. 
mcjk: The processing time at the j-th machine center for 

the k-th group. 
ff: The final completion time of the whole schedule. 

4. A heuristic algorithm for group flexible 
flow-shop scheduling with more than two 
machine centers 

The proposed group flexible flow-shop algorithm first 
determines the job sequencing in each group by combining 
both LPT and Palmer approaches to solve flexible flow-
shop problems of more than two machine centers. It then 
determines the group sequencing by the Palmer algorithm. 
The proposed algorithm is stated below. 

The proposed heuristic group flexible flow-shop 
algorithm: 
Input: l groups, each of which has a set of jobs, each 

having m (m > 2) tasks, to be executed respectively 
on each of m machine centers with p homogenous 
machines. 

Output: A schedule with a completion time. 

Level 1: Determining job sequence in each group 
Step 1: Set variable k to one, where k represents the 

number of the current group to be processed. 
Step 2: Repeat Steps 3 to 15 until k > l. 

Part 1: Forming the machine groups. 
Step 3: Form p machine groups, each of which contains 

one machine from each machine center. Each 
machine group can be thought of as a simple flow 
shop F1, F2, …, Fp. 

Step 4: Initialize the completion time f1, f2, …, fp of each 
flow shop F1, F2, …, Fp to zero. 

Part 2: Assigning jobs to machine groups. 
Step 5: For each job Jjk, find its total execution time ttjk = 

t1jk + t2jk +…+ tmjk (j = 1 to n, k = 1 to l). 
Step 6: Sort the jobs in descending order of processing 

time ttjk; if any two jobs have the same ttjk values, 
sort them in an arbitrary order. 

Step 7: Find the flow shop Fi with the minimum 
processing time fi among all the flow shops; if 
two flowshops have the same minimum fi value, 
choose one arbitrarily. 

Step 8: Assign the first job Jjk in the sorted list to the 
chosen flow shop Fi which has the minimum 
completion time fi among all p flow shops. 

Step 9: Add the total time ttjk of job Jjk to the needed total 
time of the chosen flow shop, Fi; that is: 

fi = fi + ttjk. 
Step 10: Remove job Jjk from the job list. 
Step 11: Repeat Steps 7 to 10 until the job list is empty. 

After Step 11, jobs are clustered into p groups and are 
allocated to the p machine flow shops. 

Part 3: Dealing with job sequencing in each flow shop 
Step 12: For each flow shop Fi, set the initial completion 

time of the machines fji (j = 1 to m, i =1 to p) to 
zero. 

Step 13: Find the completion time of each flow shop if  
by the Palmer algorithm stated in Section 2. 

Step 14: Find the final completion time )(max
1 i

p

i
fff

=
=  

among the completion time of all the flow shops 
and save the corresponding job sequence. 

Step 15: Set k = k + 1. 

After Step 15, the individual job sequence for each group 
has been found. 

Level 2: Determining group sequence in the whole 
schedule 
Step 16: Set the processing time mcjk needed for the n jobs 

in group k on machine center j ( j = 1 to m, k = 1 
to l) as: 

)(min)(max )1(11 ikj

p

iijk

p

ijk cfmc −==
−= , 

where fjik is the completion time in each flow-
shop i at machine center j for group k and c(j-1)ik is 
the completion time of the first job in each flow-
shop i at machine center j-1 for group k. 

Step 17: Find the group sequence by the Palmer algorithm 
stated in Section 2. 

Step 18: Schedule the groups based on the above group 
sequence and with the job sequence of each flow-
shop in each group to find the final completion 
time. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006 
 
 

 

101

After Step 18, scheduling is finished and a total 
completion time has been found. 

5. An Example for the Proposed Heuristic 
Algorithm 

Assume there are three groups and each of them has five 
jobs, J1i to J5i (i = 1 to 3). Also assume each job has three 
tasks to be scheduled via three operations. Each operation 
is executed by a machine at the corresponding machine 
center. Each machine center includes two homogeneous 
machines. Assume the execution times of these jobs are 
listed in Table 1. The algorithm proceeds as follows.  

Table 1: Processing times for the three groups of jobs 

G1 G2 G3  
J11 J21 J31 J41 J51 J12 J22 J32 J42 J52 J13 J23 J33 J43 J53

t1j 9 4 7 6 9 6 4 7 2 5 8 2 8 5 9
t2j 7 8 3 2 9 3 2 6 7 3 7 5 2 7 3
t3j 8 7 3 4 6 3 2 5 9 4 3 2 6 3 3

The steps in level 1 of the proposed algorithm determine 
the job sequence in each of the three groups. They are 
decomposed into three parts. Part 1 first forms two 
machine groups, F1, F2, each of which is thought of as a 
three-machine flow-shop. Part 2 then, for each job group, 
assigns the jobs to the machine groups. Results for this 
example are shown in Table 2. 

Table 2. The jobs allocated to each flow shop for each job group 

 G1 G2 G3 
Flowshopi Jobs allocated 

F1 J51, J31, J41 J42, J52 J33, J43, J23 
F2 J11, J21 J32, J12, J22 J13, J53 

Part 3 then deals with job sequencing in each flow shop in 
each group. The results are shown in Table 3. 

Table 3. The job sequence in each flow shop in each group  

  G1 G2 G3 
F1 J41, J51, 

J31 
J42, J52 J23, J43, J33Job sequence 

F2 J21, J11 J32, J22, J12 J13, J53 

The steps in level 2 are then executed to determine the 
group sequence in the whole schedule. The processing 
time for each group of jobs at each machine center is first 
calculated and shown in Table 4.  

In Table 4, the processing time for processing the first 
tasks of all the jobs in Group 1 at machine center 1 is 22, 
for processing the second tasks at machine center 2 is 23, 
and for processing the third tasks at machine center 3 is 25. 

Similarly, the processing time evaluated for Group 2 is 17, 
18, and 14, respectively, and for Group 3 is 17, 18, and 16, 
respectively. The Palmer procedure is then used to 
schedule the three groups according to the processing time 
at each machine center. The obtained group sequence for 
this example is G1, G3, G2. All the groups of jobs are then 
scheduled according to the above group sequence together 
with its job sequence in each flow shop. The final 
completion time is 62. 

Table 4. The processing time of each group of jobs at each machine 
center 

G1 G2 G3 
Machine Center Processing Time 

Machine Center 1 22 17 17 

Machine Center 2 23 18 18 

Machine Center 3 25 14 16 

6. Experiments 

This section reports on experiments made to show the 
performance of the proposed scheduling algorithms. They 
were implemented by Visual C++ at an Intel Pentium 4 
CPU 2.40GHz. Two parameters are considered, the group 
number l and the job number of each group n. In the first 
case, the group number l is fixed at 3 and the job number 
of each group varies from 3 to 7. In the second case, the 
group number l varies from 3 to 8 and the job number n of 
each group is fixed at 6. Each job has three tasks and each 
machine center has two homogeneous machines. The 
execution time of each task was randomly generated in the 
range of 5 to 50. Each set of problems was executed for 20 
tests and the makespans and computation times were 
measured. The optimal approach did not work for more 
than three groups with seven jobs for the first case and for 
more than eight groups with six jobs for the second case in 
our environments due to the large amount of computation 
time. 

The optimal approach considered all possible permutations 
and combinations and used pruning techniques to increase 
its efficiency. The makespans obtained in this way were 
optimal. As for the first case, the group number is 3. The 
average makespans for problems of three to seven jobs in 
each group by the proposed method and the optimal one 
are shown in Figure 1. 

The deviation rates of the proposed heuristic algorithm 
over the optimal algorithm for different numbers of jobs in 
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each group when the group number l is 3 are shown in 
Table 5. 

When the group number l is 3, the average CPU times for 
problems of three to seven jobs in each group are shown in 
Figure 2. The algorithm for optimal solutions cannot run 
over three groups of seven jobs in each due to the high 
time complexity. 
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Fig. 1  Average makespans for the group number l = 3 with n = 3 to 7. 

Table 5. The deviation rates for different numbers of jobs when the group 
number is 3 

Group number l = 3 
 The Heuristic Algorithm 

Job number Deviation rate (%) 
3 1.38 
4 2.07 
5 6.65 
6 3.06 
7 6.65 

When the group number l is 3, the average CPU times for 
problems of three to seven jobs in each group are shown in 
Figure 2. The algorithm for optimal solutions cannot run 
over three groups of seven jobs in each due to the high 
time complexity. 
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Fig. 2  The average CPU times for different numbers of jobs with l = 3. 

Next, in the second set of experiments, the job number n of 
each group is 6. The average makespans for problems of 
three to eight groups by the proposed method and the 
optimal one are shown in Figure 3. 
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Fig. 3  The average makespans for the job number n = 6 with l = 3 to 8. 

The deviation rates of the proposed heuristic algorithm 
over the optimal algorithm for different numbers of groups 
with n = 6 are shown in Table 6. 

Table 6. The deviation rates for different numbers of groups with n = 6 

Job number of each group n = 6 
 The Heuristic Algorithm 

Group number Deviation rate (%) 
3 3.05760709 
4 3.669097539 
5 3.590184283 
6 4.408751946 
7 3.115549617 
8 4.459434139 

When the job number n of each group is 6, the average 
CPU times for problems of three to eight groups are shown 
in Figure 4. The optimal algorithm cannot run over eight 
groups in this case due to its high time complexity. 
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Fig. 4  Average CPU times for different numbers of groups with n = 6. 
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From the above figures and tables, it is easily seen that the 
proposed algorithm got only a little larger makespans than 
the optimal one did. The computational time needed by the 
optimal algorithm was, however, much larger than that 
needed by the proposed approach, especially when the job 
number is large. Actually, since the group flexible flow-
shop problem is an NP-hard problem, the optimal approach 
can work only for a small number of jobs. The proposed 
approach can solve this problem. 

Furthermore, experiments for large job numbers and group 
numbers were also made to show the performance of the 
heuristic algorithm. Experiments were made respectively 
for n from 1000 to 9000 with the group number l being 10, 
n from 1000 to 9000 with l being 100, n being 10 with l 
from 1000 to 9000, and n being 100 with l from 1000 to 
9000. The average CPU times for the above cases are 
shown respectively in Figure 5 to 8, all being solved 
within a minute. Hence, the proposed approach is feasible 
even for a large number of jobs. 
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Fig. 5  The average CPU times for l = 10 and n = 1000 to 9000. 
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Fig. 6  The average CPU times for l = 100 and n = 1000 to 9000. 
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Fig. 7  The average CPU times for n = 10 and l = 1000 to 9000. 
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Fig. 8  The average CPU times for n = 100 and l = 1000 to 9000. 

7. Conclusion 

Appropriate scheduling cannot only reduce manufacturing 
costs but also reduce the possibility of violating due dates. 
Finding good schedules for given sets of jobs can thus help 
factory supervisors control job flows and provide for good 
job sequencing. 

Scheduling jobs in the group flexible flow shops is an NP-
complete problem. In this paper, we propose one algorithm 
to solve group flexible flow-shop problems with more than 
two machine centers, which have the same number of 
machines. The proposed one is a heuristic algorithm. It 
first determines the job sequencing in each group by 
combining both LPT and Palmer approaches to solve 
flexible flow-shop problems of more than two machine 
centers. It then determines group sequencing in the entire 
schedule by the Palmer algorithm. It is compared with the 
optimal one, which entirely uses the dynamic 
programming technique. The optimal algorithm works only 
when the job number is small. Experimental results show 
that the proposed algorithm can save much computational 
time than the optimal one although the obtained makespans 
by the former may be a little larger than the latter. A trade-
off can thus be achieved between accuracy and time 
complexity. In the future, we will consider other task 
constraints, such as setup times, due dates, and priorities. 
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