
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

122

Manuscript received March 25, 2006.
Manuscript revised March 30 , 2006.

A Log-based and Traceability-Oriented Business Object Association
Model for Code Generation

Zhongjie Wang, Dechen Zhan, Xiaofei Xu

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

Summary
Building well-designed business models is a key step to
implement agilely reconfigurable enterprise software and
applications (ESA) to adapt to rapid changes in business
environments. Traditional business modeling methods can
not effectively deal with complex association relationships
between business objects; therefore it has great influences
on extendibility, adaptability, second-round development
efficiency and traceability of ESA. To solve this limitation,
in this paper we present a log-based and traceability-
oriented business object association model, in which
complex and volatile associations between objects are
clearly separated from the inner structure of objects and
three numerical association styles, i.e., 1 to 1, 1 to n and n
to 1, are emphatically discussed. Business logics on
objects are classified into two types of operations, i.e.,
simple operations that deal with inner logics in a simple
object, and complex operations which deal with numerical
associations between objects. Run-time states of business
objects and association information between objects are
separated as logs for further traceability.
Key words:
Business models, business objects, association, logs

1. Introduction

Modern enterprises are in a rapidly and violently changing
business environment, which leads to frequent changes on
management patterns and business processes of enterprises.
To support such changes, broadly applied enterprise

software and applications (ESA) must have the capacity of
agile reconfiguration [1] .

Building well-designed business models are considered as
a key and prior activity to support agility of ESA.
Although core of business models is the process view,
each business process may be elaborately decomposed into
three parts, i.e., a set of business objects to be manipulated
(e.g., bills, resources, humans, reports, etc), a set of
operations that take effects on these business objects, and
then, a set of rules that describes the execution or
triggering sequences of these operations. Therefore we
may draw a conclusion that only if business object and the
corresponding operation models are flexible enough, may
the agility of ESA be ensured.

Traditional ESA business models are usually constructed
with process-oriented way, i.e., modeling each business as
a process and a set of activities. This approach has some
obvious shortcomings, e.g., (1) if a modeler has not yet
found all the business process in an enterprise, then the
process models would be incomplete; (2) structures of
some processes are comparatively complicated, therefore
the quality and soundness of the model will be determined
to a large extend by the ability and experience of the
modeler, etc. If we start with another view, i.e., business
object modeling, above limitations will be eliminated. This
is because number of business objects in an enterprise is
determinate and numerable, therefore if all the business
objects are identified and their attributes, states, operations
are obtained, and then completeness and soundness of
business models are easily ensured.

Req. Bill

Plan Bill

SC Bill

Order

Req. Bill

Plan Bill

SC Bill

Order

(a) Normative process (b) Accidental situation
I

Req. Bill

Plan Bill

SC Bill

Order

(c) Accidental situation
II

Req. Bill

Plan Bill

SC Bill

Order

(d) Integrated process

Fig. 1 An example of associations between different business objects

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

123

Business objects do not isolatedly exist, and there are
various associations between objects. Fig. 1 shows a
simple example in Procurement domain of enterprises,
e.g., Fig. 1 (a) describes the business “Gather/decompose a
set of procurement requirement bills (Req. Bill) to draw
the procurement plans (Plan Bill), then select proper
suppliers according to the results of comparison on quality
and price (SC bill), finally create the procurement orders
(Order) with the chosen providers.” There are four
business objects and three associations between them.

In object models, elements that usually change are mainly
the associations, and the inner attributes of a business
objects seldom changes. For example, in routine situations,
an enterprise may do its procurement process with the
style of Fig. 1(a), however in some exceptive
circumstances (e.g., urgent procurement requirements), the
final procurement orders may directly created from req.
bills without planning, just as shown in Fig. 1(b)(c).
Therefore, an ESA must have the ability to simultaneously
support all possible situations (e.g., Fig. 1(d)).

In order to produce the final executing source codes
according to business models, besides basic business
logics in each object, those associations between objects
must also be elaborately coded. One of the most familiar
strategies is to design an association as one or several
attributes in related objects, and when relationships
between object instances occur at run-time, values of these
attributes are written in. In such situation, the attribute set
of each object will contain a mass of redundant association
attributes (e.g., the attribute “quantity of planed
procurement requirements” in req. bill expresses the
association with plan bill) besides self-related information.

This way has very little to be recommended with the
reasons that:

(1) Cannot support “n to n” associations, e.g., a req. bill
may be planed in multiple plan bills, while a plan bill may
inversely satisfy multiple req. bill, therefore it will not
realize good traceability.

(2) Increase the complexity of programming and
deteriorate agility, e.g., in design phase of ESA, it is
impossible to clearly know all the possible associations,
therefore it is not possible to design the complete
association attribute set for each object, and when the
product is applied in practice, when such associations
change, a mass of database schemas (e.g., tables, views,
foreign keys, index, triggers, etc) and source codes must
be modified.

(3) Increase the chaos of object structure, e.g., with the
increasing of variable associations, the number of
association attributes in an object will possibly increase
linearly, therefore increase the difficulty to effective
maintenance.

Consider from the structure of business object models,
there are two possible parts, i.e., elements that seldom
change and elements that frequently change. The former
mainly point at those basic operations on an independent
object (e.g., Create, Delete, Update, Query, etc) and have
no effects on other objects. Every object contains such
operations which are stable enough that seldom change
along with changing management patterns. The latter
mainly refers to associations between objects, which
express the relationships and data flows between different
business, and by which traceability between business data
may be accomplished.

Business Object
Models (stable)

Object Association
Models (instable)

Stable and
Universal codes

Changing and
Specific codes

Final
ESA

ESA
design
phase

ESA
implementation

phase

Source Code
Generator

Business
modeling

tool

Fig. 2 Development process based on business object association models

If we consider the principle “Separation of Concerns”, i.e.,
clearly separating stable business objects from unstable
associations, then the two parts may be modeled and
coded independently (e.g., the former is mainly done
during design phase and the latter is mainly dealt with

during implementation phase according to specific
requirements) and are then composed together to form the
integrated ESA. This way is briefly shown in Fig. 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

124

The main purpose of this paper is to present an
association/state log based business object association
model. Under the help of a code generation tool, this kind
of models may be automatically transformed into
executable source codes, and during run-time, association
and traceability between object instances will be flexibly
and rapidly supported.

Rest of this paper is organized as follows. In section 2 we
put forward some related works in literatures. In section 3,
the log-based object association model are presented in
details. In section 4, the detailed development pattern and
process based on our model is briefly discussed. Finally is
the conclusion.

2 Related works

Association is an important aspect in Object-Oriented
modeling, and because of the characteristics of frequent
changing[2], it is also considered as a puzzle in OO
researches [3][4][5].

One of a key principles in software engineering domain is
“Separation of Concerns”[6][7] with the purpose of
improving flexibility of models and systems. This
principle is initially derived from the idea of “separate
data structure from program”, and in business process
modeling there also appear some similar principles, e.g.,
“separate business process from program”, “separate
business rules from business process”, etc[1][6][8]. In a word,
“separate those unstable elements from those stable
ones”[9][10]. For example in [11], aiming at business
variations, a model-driven and process-configuration
based ESA development style is presented. The author of
[2] also considered that associations between business are
easy to change, therefore he separated these associations
out and presented the definition of “Rule Object” with 22
typical patterns (i.e., how to compose business objects and
related rule objects). In [12], a new modeling approach of
how to separating business object models from business
process models is elaborately discussed.

However, these methods mainly focus on associations
between macro, process-centered business elements (e.g.,
activities), and there lacks of enough guidance for
applying them to business object associations.

Since association is a key factor to deteriorate flexibility of
ESA, “Simplify associations between elements” is an
obvious approach in ESA modeling [6][7]. However,
associations cannot be completely eliminated whatever
happens, and for this reason, in literatures there are a lot of
methods on how to design good associations, such as
Open-Close Principle (OCP), Acyclic Dependence

Principle (ADP), Stability Dependence Principle (SDP),
etc[13]. Other approaches conclude extended Entity-
Relation diagram[14], complex association approach [15],
etc. One of the common features of these methods is: first
defining object interfaces, then manually coding objects
and their interfaces, finally control association behaviors
between objects by complex calling methods [5].

Further, there appeared a classical solution for object
association in [16], namely, Object Association Pattern, in
which each association is considered as an independent
class and this class is uniformly treated as general objects.
In [17], based on the analysis of association’s three forms
(i.e., 1 to 1, 1 to n and n to 1), the author presented three
methods to implement associations (i.e., pointer-based,
matrix-based and association class based approaches),
and association class was also regarded as the best one.

Following list some other typical strategies in literatures
on this problem.

In [18], Ontology is imported to build Business Object
Model (BOMs), and associations are also expressed as
ontology. However it is only conceptual modeling and is
too coarse to be applied in ESA design.

In [5], object hook/flange and object assembling were
presented. The former implements a dynamic, direct and
rapid mechanism for object behavior associations, i.e., all
the “flanges” are realized in run-time instead of build-time.
The latter is based on object hook interfaces (rather than
the ordinary object interfaces) to achieve domain-oriented
dynamic manipulation of object association and automatic
maintenance of association semantics.

In [19] the authors presented an Agent–Object-
Relationship (AOR) modeling approach, in which E-R
diagram and UML are extended to express some special
association types. But AOR did not mention how to
implement these associations.

In [20], Active Business Objects (ABOs) are used to depict
the constraints, trigger relations and association operations
between objects, with the purpose of message
transformation between objects (which is a type of
association, too).

In [3], aiming at the uncertainty of business object
attributes and associations, the authors transformed the
persistent business objects into the generalized table
structure and generalized recursion structure, and variable
business associations are designed from these abstract data
models, i.e., an abstract business object is firstly
constructed and bound dynamically with the concrete
physical storage structure lately in the deployment phase.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

125

3 Log-based business object association model

3.1 Elements in the model

First we present the basic structure of our model, as shown
in Fig. 3. Our main contribution is to extend the traditional
business object model [7], i.e., adding Association, State
Logs, and Association Log into it, and classifying business
operations into simple and complex operations.

Business
Object

Attribute State Simple
Operation

State
Transition

Association Complex
Operation

1

1…n
1

1..n1..n

1

2

1

0,1

1
11

State Log

2
1

1
1

Association
Log

1
1..n

Business
Object Class

1

2

Fig. 3 Basic elements in business object association models

3.2 Business object

Various bills, reports, resources (humans, equipments,
fields) in enterprises are jointly called Business Objects in
ESA, and may be denoted as:

BO := <ID, name, Category, Attribute_set, State_set,
StateTransition_set, SubBO_set>

In which,

• ID and Name are the unique identifier and name of
the object;

• Category refers to the object class that this object
belongs to;

• Attribute_set is the attribute set contained in the object,
and each attribute is defined as Attribute :=
<attribute_id, attribute_name, data_type> with
specific ID, name and data type;

• State_set is the state set of the object, and each state is
defined as State :=<state_id, state_name, state_logic>

with specific ID and name. State_logic is a condition
expression composed of attributes in Attribute_set to
show when the object is in the state.

• StateTransition_set is the state transition set of the
object, and each transition is defined as
StateTransition := <from_state, to_state> to describe
that the transform from from_state to to_state is
allowed.

• SubBO_set is the child object set contained in the
object. Generally speaking, each object may have
zone, one or multiple child objects. ∀BO, ∃BO1 makes
BO∈SubBO_set(BO1), then State_set(BO)=∅,
StateTransition_set(BO)=∅.

3.3 Business object class

Those business objects that have the same goals and
similar attributes/states together constitute a business
object class. For instance, a “req. bill” may be classified
into “material req. bill”, “labor insurance article req. bill”,
“equipment accessory req. bill”, etc. The reason to present
this concept is that, objects belonging to the same class
may have a majority of similar features, and we may use
the class to depict these similarities without modeling
them repeatedly.

3.4 Business object state log

During the run-time of ESA, state of each object instance
must be efficiently maintained. According to query the
state information, operations that may be executed in next
step on this object instance will be determined. Current
approaches usually add an attribute in the Attribute_set of
each object to save its state information.

The deficiency of this approach is obvious, i.e., the state
of an object at one time is not unique (e.g., “req. bill”
object may be in “part planned” and “part ordered”
simultaneously) due to concurrent associations with two or
more other objects, and one attribute cannot save multiple
state information at the same time; if multiple state
attributes are adopted, it will then result in redundancy.

For this reason, in our model we separate the state
information from a business object itself. State log is
adopted to save the state of all the business object
instances and states are not related to the attributes any
longer.

During run-time, after each operation, the state of each
impacted object instance will be written into the state log.
By querying this log we may obtain current state of each
object instance. Table 1 shows a segment of the log.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

126

Table 1 A segment of state log
Object Object Instance Operation State Date

Req. Bill SO0201P001 Create New 06-02-01
Order PO0201P023 Audit Auditing 06-02-01

… … … … …
Req. Bill SO0201P001 Audit Auditing 06-02-02
Req. Bill SO0201P001 Audit Audited 06-02-05

Req. Bill SO0201P001 Planning Part
planned 06-02-05

Req. Bill SO0201P001 Planning Total planned 06-02-08
Req. Bill SO0201P001 Payment Part paid 06-03-11
Req. Bill SO0201P001 Payment Total paid 06-03-14

… … … … …

3.5 Business object association

In ESA, associations between business objects are briefly
classified into two types, i.e.,

• Key association, which is the most familiar
association in OO, e.g., the object “order” is key
associated with object “customer” by the foreign key
“CustomerID” (in “order”) and the primary key
“CustomerID” (in “customer”).

• Numerical association, which describes the “Create
from…” relationship between objects, e.g., “req. bill”
is numerical associated with “plan bill” by the
numerical attribute “req. quantity” (in req. bill) and
“planned quantity” (in plan bill); or, the “Allocated
to…” relationship between objects, e.g., “customer
Payment Bill” is numerical associated with “Sale
Order” to describe one payment bill is paid for what
set of orders.

Traditional object modeling technique, e.g., OO, E-R
diagram, IDEF, usually emphasize on the former
associations but ignore the latter ones (they model such
associations in process models by arrows between two
activities), and programmers have to manually control
such numerical associations in source code.

As mentioned above, numerical associations are frequently
changing, just like Fig. 1(d), there may exist various
numerical associations between two objects.

According to the number of object instances of the two
parties in one numerical association, it may be further
classified into three forms, i.e., 1 to 1, 1 to n and n to 1 (n
to n may be considered as the combination of 1 to n and n
to 1). Fig. 4 shows a simple example, in which one “plan
bill” may be simultaneously satisfy multiple “req. bill”,
and vise versa.

Plan Bill

A req. bill is
satisfied by

which plan bills

A plan bill satisfies
which req. bills

Req. Bill

300

180

500

75

120 100 175 25360 275

120

100
60

300

175 25

200

75

Fig. 4 n to n numerical associations between objects

Besides the numerical attributes, a numerical association
should have some other information, just as shown in Fig.
5(a), and Fig. 5(b) gives a simple example.

Upriver
Object

Downriver
Object

Association
condition

association
attribute

Association
direction

association
value

association
attribute

Req. Bill Plan Bill

ReqBill.ProductID
=

PlanBill.ProductID

Req.
Quantity

Planned
Quantity

Quantity that
a plan bill satisfies

a req. bill

(a) (b)

Fig. 5 Numerical association model between objects

3.6 Association log

In order to separate variable parts (associations) from
object itself, in our model, we would not save the
association information in the attribute set of each object
any longer, but distill them to form an independent
association log.

Association log actually is a representation of object
association model at run-time and records the association
between object instances. As long as one complex
operation (will be defined in next sub-section) finishes, the
concrete association information will be written into the
log. By querying the log, flexible traceability between
different object instances may be implemented. Table 2
shows a segment of this log (corresponding to the n to n
associations in Fig. 4).

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

127

Table 2 A segment of association log

Upriver
Object

Upriver Obj.
Instance

Upriver Asso. Attr./
Quantity

Asso.
Value

Downriver. Asso. Attr./
Quantity

Downriver Obj.
Instance

Downriver
Object

Req. Bill R001 Req.Quantity/300 100 Planned Quantity/100 P002 Plan Bill
Req. Bill R001 Req.Quantity/300 175 Planned Quantity/175 P004 Plan Bill
Req. Bill R001 Req.Quantity/300 25 Planned Quantity/25 P005 Plan Bill
Req. Bill R002 Req.Quantity/180 120 Planned Quantity/120 P001 Plan Bill
Req. Bill R002 Req.Quantity/180 60 Planned Quantity/360 P003 Plan Bill
Req. Bill R003 Req.Quantity/500 300 Planned Quantity/360 P003 Plan Bill
Req. Bill R003 Req.Quantity/500 200 Planned Quantity/275 P006 Plan Bill
Req. Bill R004 Req.Quantity/75 75 Planned Quantity/275 P006 Plan Bill

… … … … … …

3.7 Simple operation

In our model, operations on business objects are classified
into Simple Operation (SOP) and Complex Operation
(COP).

A SOP is defined as an atomic operation on a single object,
e.g., Create, Read, Update, Delete (CRUD), etc, and does
not related to any other objects. It is also the finest action
in business process (cannot be further decomposed) and is
considered as the most stable business logic (this is
because SOP are consequentially existing and does not
need to change along with other logics). SOP has the
following characteristics:

(1) Related to one object;

(2) Make the object occur 0 or 1 state transitions;

(3) May be related to state, i.e., only when the object is in
some specific state can it be executed; or may be unrelated
to states, i.e., it may be executed at any states;

(4) Objects belonging to the same class may possibly have
different SOP sets, e.g., “Oversea Order” has a SOP
“Check current exchange rate”, while “Home Order” does
not have such SOP.

A SOP is formally defined as SOP :=<op_id, op_name,
BO, state_related_flag, initial_state_set, final_state_set>,
in which BO is the business object that the SOP operates
on, state_related_flag is a flag to show whether SOP is
related to states, i.e., state_related_flag=1 means that only
when BO is in one of the states in initial_state_set can
SOP be allowed to execute (e.g., the SOP “Req. Bill
Planning” may only be allowed to execute when the BO
“Order” is in the state “Audited”), and after the execution
of SOP, BO should reach the states of final_state_set;
state_related_flag=0 means that SOP is not related to
states and may be executed at any states (e.g., “Create
New Order”, “Query Order Information”, etc).

A SOP should complete the following tasks:

(1) Business logics (e.g., CRUD) on BO;

(2) Write BO’s state information (after execution of SOP)
into the state log.

3.8 Complex operation

A complex operation (COP) is an operation dealing with
an association between objects and come down to two
objects in the association (called Upriver and Downriver
objects), denoted as COP := <op_id, op_name,
association_id, type>, in which association_id refers to
the association that COP operates on, type represents one
of the following:

(1) Push: SOP is triggered/executed by the upriver object;

(2) Pull: SOP is triggered/executed by the downriver
object;

(3) Push/Pull: SOP may be triggered/executed by the
upriver or downriver objects arbitrarily.

For example, a COP related to the association between
“req. bill” and “plan bill” is “Generating procurement
plans from requirements”, which is a pull SOP, i.e., this
operation should be called in the interface of “plan bill” to
generate new plan bills according to the data of selected
req. bill.

The codes of a COP should complete the following tasks:

(1) Query upriver objects instances;

(2) Generate new downriver objects according to the
association value (by user’s input), e.g., the planned
quantity in Fig. 5(b);

(3) Write the association information into association log;

(4) Write the state information of related object instances
into state log.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

128

4 ESA development pattern based on business
object association model

One of the primary goals of our model is to improve the
agility of ESA, i.e., when associations between objects

change frequently, ESA may adapt to such changes with
high efficiency and low scales of code modifications.

In Fig. 2 we have presented the basic idea of our
development process based on our model, and Fig. 6
shows the detailed process.

Interfaces of COP

Generating basic
interface of

business object

Basic Interface
(JSP files)

Generating
business logics

of SOPs

Query current state
and find allowed SOP
of an object instance

State Log

Add a button for each
SOP in the basic

interface of the object

Query current state
and find allowed COP
of an object instance

Add a button for each
COP in the basic

Interface of the object

Association
Log

Basic Interface
(Add buttons

of SOP)

Basic Interface
(Add buttons

of COP)

Business Object
Modeling

Object Operation
Modeling

Business Object
Association
Modeling

Generating
Interfaces and
logics of SOP

Business Modeling
Phase Design Phase Implementation

Phase Run-time

Fig. 6 ESA development process based on business object association model (refined)

Based on the model and process, we have designed a code
generation tool to support automatic code generation. The
input of this tool is the association model, and the output is
executable source codes (we adopt J2EE-based software
architecture, in which user interfaces are JSP files,
background business logic are EJB files, and MVC
structure is used to compose these files together. The final
system is running on Weblogic application server
platform).

5 Conclusions

Our approach (model and tool) has been applied in several
Enterprise Resource Planning (ERP) projects and has
gained significant results, which is mainly reflected on the
improvement of developing efficiency and code quality.
According to the statistical data, the average second-round
developing period of each sub-system (average 10-15
business objects) of ERP is reduced from 1 month to 12
days, i.e., the developing efficiency increased by 60%.

Our approach still has some insufficiencies that need
further researches, e.g.,

(1) Because of complexity of enterprise business, state
logic and operation’s business logic should be formally
defined in models, therefore the code generation tool make
directly transform them into source codes;

(2) Our approach could only deal with bill and resource
objects; for report objects, because their data are from
multiple data sources and the relationships between these
data are comparatively complex, therefore we temporarily
cannot treat with such objects;

(3) Our approach only aims at numerical association, but
for other types of associations we have not considered
them yet.

Acknowledgments

Research works in this paper are partial supported by the
Specialized Research Fund for the Doctoral Program of
Higher Education (SRFDP) in China (Grant No.
20030213027) and the National Natural Science
Foundation (NSF) of China (Grant No. 60573086).

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

129

References
[1] BAJEC M, KRISPER M. A methodology and tool support

for managing business rules in organisations. Information
Systems, 2005, 30(6): 243~443.

[2] ARSANJANI A. Rule Object 2001: A pattern language for
pluggable and adaptive business rule construction.
Proceedings of 8th Conference on Pattern Languages of
Programs (PLoP2001). Monticello, Illinois, USA, 2001.
1~33.

[3] BIAN S H, XUE J S, SONG X Y. Dynamic persistent
object in ERP System. Computer Integrated Manufacturing
Systems, 2003, 9(5): 378~383.

[4] LIANG Y. Establishing the framework for business object
analysis and design models. Proceedings of the 6th
International Conference on Object Oriented Information
Systems. 2000. 155~162.

[5] WAN J C, LIU S. Object assembling and automatic
maintenance of its association semantics. Journal of
Software, 2002, 13(5): 1013~1017.

[6] WANG Z J, XU X F, ZHAN D C. Reconfiguration
oriented business models for enterprise information system.
Computer Applications, 2005, 25(8): 1861~1864.

[7] WANG Z J, XU X F, ZHAN D C. RO- BPM: A
reconfiguration-oriented business process model. Computer
Integrated Manufacturing Systems, 2004, 11(11):
1349~1355.

[8] HARMON P. Managing business processes. Business
Process Trends, 2003, 1(8): 1~16.

[9] HAMZA H S. SODA: A stability-oriented domain analysis
method. Proceedings of the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications. Vancouver, Canada: ACM
Press, 2004. 220~221.

[10] WANG Z J, XU X F, ZHAN D C. Component Granularity
Optimization Design Based on Business Model Stability
Evaluation . Chinese Journal of Computers. 2006, 29(2):
239-248.

[11] JIN J W, JIN Ye. Research on key technologies of ERP
based on model-driven & process-configuration. Computer
Integrated Manufacturing Systems, 2005, 11(7): 986~995.

[12] SNOECK M. Separating business process aspects from
business object behaviour. New Directions in Software
Engineering. Leuven University Press, 2001.

[13] MARTIN R C. Agile software development: principles,
patterns, and practices . New York: Prentice Hall, 2002.

[14] SAIEDIAN H. An evaluation of extended entity-
relationship model. Information and Software Technology.
1997,39(7):449~462.

[15] KRISTENSEN B B. Complex associations : abstractions in
object-oriented modeling. Proceedings of the 9th Annual
Conference on Object-Oriented Systems, Languages &
Applications(OOPSLA’94). Portland, Oregon: ACM, 1994.
272~286.

[16] BOYD L. Business patterns of association objects. In
Martin, R.C.; Riehle, D.; Buschmann, F. (eds) Pattern
Languages of Program Design 3, Addison-Wesley, 1998,
395~408.

[17] LIU Z Z. Implementation of association in OO modeling.
Computer Engineering, 1997, 23(6): 38~40 +52.

[18] HAMZA H S. Developing business object models with
patterns and ontologies. Proceedings of 20th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. 2005. 106~107.

[19] WAGNER G. The Agent–Object-Relationship metamodel:
towards a unified view of state and behavior. Information
Systems. 2003, 28(5): 475~504.

[20] Li H F, SU Y W. Business object modeling, validation, and
mediation for integrating heterogeneous application
systems. Journal of Systems Integration. 2001, 10(4):
307~328.

Zhongjie Wang received his B.S., M.S.
and Ph.D. degrees in computer science
from Harbin Institute of Technology in
2000, 2002 and 2005 respectively. He is
now a lecture in computer science in
School of Computer Science and
Technology at Harbin Institute of
Technology (HIT), PRC. He His research
interest includes software engineering,
software reuse, software reconfiguration,
software component related techniques.

