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Summary 
This paper proposes multi-layered neural networks with learning 
of output functions like RBF and fuzzy models. Various models 
that differ in the number of trained output functions are compared 
in two types of simulations: XOR problem and functional 
approximation. As a result it is shown that the proposed models 
are faster in learning time than the conventional one. Further, 
based on the simulation results, an effective heuristic model is 
proposed. 
Key words: 
Multi-layered neural networks, backpropagation, output function, 
XOR problem, function approximation 

Introduction 

Multi-layered neural networks perform well pattern 
recognition and nonlinear function by using 
backpropagation (BP) algorithms and have been 
successfully applied to many applications [1-3]. When the 
number of hidden units in the network is not restricted, it 
has been theoretically proven that such a network has an 
ability to approximate any continuous input-output relation 
with any accuracy [1,2]. On the other hand, the BP 
learning is guaranteed to converge to a local minimum but 
not the global minimum. In order to converge to a better 
local minimum, it is important to break the symmetry in the 
network components. From this point of view, we pay 
attention to output functions, that is, the conventional 
model has the same output function for each neuron. This 
paper proposes multi-layered neural networks with not 
only all weights but output functions like RBF and fuzzy 
models as learning parameters. Without loss of generality, 
three-layered neural networks are used. Various models 
that differ in the number of trained output functions are 
compared in two types of simulations: XOR problem and 
functional approximation. As a result it is shown that the 
proposed models are faster in learning time than the 
conventional one. Further, based on the simulation results, 
an effective heuristic model is proposed. 

2. Multi-Layered Neural Networks and the 
Proposed Algorithm 

Let us consider three-layered neural networks each of 
which consists of I , J  and K  neurons for input, hidden 
and output layers, respectively as shown in the  
 

z1

zk

z K

y1

y j

yJ

v1 i

v j i

v J i

w1 j

wk j

wK j

x1

xi

xI

p1

p j

p J

q1

qk

qK

T 1

T k

T K
Input layer Hidden layer Output layer  

Fig. 1. The three layered neural network. 
 

Fig.1, where ix , jy  and kz  are the values of the i -th, j -

th and k -th neurons, jiv  for ix  and jy  and kjw  for jy  

and  are weights and ),,( 1 KTT L=T  is the supervised 
output for input ),,( 1 Ixx L=x . 
Further, jp  and kq  for Jj ,,1L=  and Kk ,,1L=  are 
learning parameters of output functions for hidden and 
output layers. For input data x , jy  and kz  ( Jj ,,1L= , 

Kk ,,1L= ) are obtained as follow: 
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where 0jv  and 0kw  are threshold values. The difference 

E  between the supervised output T  and the output 
),,( 1 Kzz L=z  of the network for input x  is defined as 

follows: 
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Then the BP learning based on the gradient descent method 
is represented as follows [1,2]: 
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  (7) 
where α  is the learning number. In the proposed BP 
learning, parameters kp  and jq  are also updated as 
follows: 
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The proposed algorithm is shown as follows: 
 
[Step 1] Initial Assignment: 

Input and output data: ),( )()( sTx s  for Ss ,,1L=  are 
prepared. 1=t . 1=s . 

[Step 2] 
For )(sxx = , by using Eqs. (1), (2), (3) and (4), the 

output z  is computed as ),,( )()(
1

)( s
N

s zz L=sz . 
[Step 3] 

The error )(tE  at the step t  is computed as follows: 
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[Step 4] 
The parameters kp , kjw , jq  and jiv  are updated based 

on the Eqs. (6), (7), (8) and (9) for Ii ,,1L= , 
Jj ,,1L=  and Kk ,,1L= . 

[Step 5] 
If MAXTt = , then the algorithm is terminated. Otherwise 

go to Step 6. 
[Step 6] 

1+= tt , 1mod)1( +−= Sts  and go to Step 3. 
(End of algorithm) 

 
Remark that the proposed method is different from the 

Boltzmann machine[1]. 

3. Numerical Simulation 

In order to show the effectiveness of the proposed 
algorithm, two types of simulation are performed. 

3.1 XOR Problem 

To implement the XOR function, for each input  
)}1,1(),0,1(),1,0(),0,0{(),( 21 ∈xx  we use the supervised 

data 1T given in Table 1. The number of neurons in the 
hidden layer is 2=M . We compare the following six 
models: 

 Model 1: 1121 === qpp , that is, the conventional 
model. 

 Model 2: parameters 1p , 2p and 1q  are trained. 
 Model 3: 11 =q , and parameters 1p  and 2p  are 

trained. 
 Model 4: 111 == qp , and a parameter 2p  is trained. 
 Model 5: 11 =p , and parameters 2p  and 1q  are 

trained. 
 Model 6: 121 == pp , and a parameter 1q  is trained. 

Fig. 2 shows the learning error for the XOR problem. 
Models 2, 3, 4, 5 and 6 converge faster than the 
conventional one. For example, the proposed models 2 and 
6 reach 001.0=E  in less than half the time of the 
conventional one. 
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Table 1: Supervised data for XOR problem. 

Input 

1x  2x  
Ideal output

Supervised data 

1T  

0 0 0 0.1 

0 1 1 0.9 

1 0 1 0.9 

1 1 0 0.1 
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Fig. 1: Transition of learning error for EXOR problem 

3.2 Function Approximation 

Neural networks are trained so as to approximate the 
following functions: 

 21 xxz ⋅=  (11) 
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In each function, 1x  and 2x  are input variables and z  is 
the output variable. The number of learning data sets is 

200=S , where input data are randomly chosen from 
]1,0[ . The number of test data is 2500, where input data 

are uniformly chosen from ]1,0[ . 
The numbers of neurons for hidden layers are 3=J  for 

Eq.(11) and 10=J  for Eqs.(12) and (13).  
 

 Model 1: 11 === Jpp L  and 11 =q , that is, the 
conventional method. 

 Model 2: all the parameters jp ’s and 1q  are 
trained. 

The comparison between the conventional and the 
proposed models is made. In the proposed models, all the 
parameters jp ’s and 1q  are trained. Figs. 3, 4 and 5 show 
the transitions of learning error for Eqs. (11), (12) and (13). 
In all cases, the proposed model is superior in learning 
time to the conventional one. Table 2 shows the result for 
test data. There is no difference of the generalization 
ability between two models. Though some other models 
with learning a part of parameters jp ’s and 1q  are tested, 
the model 2 is fastest of all. Then can we find all the 
parameters jp ’s and 1q  without learning? We have tried 
some cases such as random selecting and in order. As a 
result, we found an effective rule as follows.
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Table 2: Learning error and test error for function approximation. 

Function MAXT  Model Learning Error Test Error 

1 (Conventional) 0.0376 0.0395 
Eq.(11) 8000 

2 0.0307 0.0321 

1 (Conventional) 0.0349 0.0426 
Eq.(12) 12000 

2 0.0339 0.0433 

1 (Conventional) 0.0360 0.0402 
Eq.(13) 12000 

2 0.0315 0.0397 
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Fig. 2: Transition of learning error for Eq.(11). 

 
 Model A: Parameters jp ’s in hidden layer are 

assigned equally spaced values from a reasonable 
range. 

In the model, the range of jp  should be appropriately 
determined. The lower limit should not be too small and 
the upper limit should not be too large, because of the 
following reasons. 

 Too small jp  such that 0≈⋅ jj gp  converts a 
neuron into a mere bias unit, because 

2
1

)exp(1
1

≈
⋅−+ jj gp

. 

 Too large upper limit produces many large jp ’s. 

For any large jp , 
)exp(1

1

jj gp ⋅−+
 takes a 

similar shape of the Heaviside step function. 

For Eqs. (12) and (13), model A adopts 5.50.1 ≤≤ jp , 

that is, 0.11 =p , 5.12 =p , 0.23 =p , …, 5.510 =p . In 
Figs. 4 and 5, the curves for model A are shown. For these 
cases, we can see that model A is fastest of all. However, it 
is unknown whether model A is effective or not in the 
general case. 

4. Conclusions 

This paper proposed multi-layered neural networks with 
learning parameters for output functions and it was shown 
that the proposed model was faster in learning time than 
the conventional one in compared with two types of 
simulations: XOR problem and functional approximation. 
Further, based on the results, we presented an effective 
heuristic model. The theoretical analysis is the future 
works. 
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Fig. 3: Transition of learning error for Eq.(12). 
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Fig. 4: Transition of learning error for Eq.(13). 
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