
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

154

Manuscript reviced March 19, 2006.

On Developing Privacy-Preserving Compilers

Yu Yu, and Jussipekka Leiwo, and Benjamin Premkumar

Nanyang Technological University, School of Computer Engineering, Nanyang Avenue, Singapore

Summary
In this paper, we discuss whether or not it is possible to execute a
program on an untrustworthy computer without revealing
anything substantial. We simulate this task by developing a
compiler that transforms a program p to an equivalent circuit
format GC, which can be executed remotely on an untrustworthy
computer by taking as argument encrypted input and producing
encrypted output. The whole computation is totally hidden from
the computer. The design of the compiler is detailed. With our
compiler, polynomial-time programs can be efficiently converted
to polynomial-size Boolean circuits.

Key words:
Compiler design, private computation, Boolean circuit,
information hiding.

Introduction

1.1 Problem Formalization

Alice has a private program p and she wants to compute p
with some private input x but lacks resources to do it. Bob
is a powerful computer and is willing to help Alice. Alice
hopes that p can be executed by Bob in such an oblivious
way that nothing substantial about p, x and p(x) is
disclosed to Bob.

1.2 Related Work

Abadi, Feigenbaum, and Kilian [2] described computing
with encrypted data (CED) as follows: Alice wishes to
know f (x) for some x but lacks power to compute it. Bob
has the power to compute f and is willing to send f (y) to
Alice if she sends him y, for any y. Alice transforms x into
an encrypted instance y, obtains f (y) from Bob and infers f
(x) from f (y) in such a way that B cannot infer x from y.

If such an encryption scheme exists, f is considered
encryptable. They found that problems such as Discrete
Logarithm and Primitive Root are encryptable. However,
they did not propose any encryption scheme for general
function f. Abadi and Feigenbaum [1] proposed a circuit
evaluation protocol for CED. However, their method
cannot evaluate AND gates non-interactively. Sander et al.

[9] presented an AND-PH to solve this problem, but their
method only allows evaluation of log- depth circuits.

Sander and Tschudin [8] proposed a solution to compute
with encrypted functions (CEF): Alice has a private
function f. Bob has an input x. Alice wants Bob to compute
f (x) without revealing anything substantial about f. Their
scheme only allows encryption of polynomials. Loureiro
[6] presented another scheme which allows encryption of a
general function f with small inputs. This approach, how-
ever, fails to meet our goal since a non-trivial program
usually has an input of at least hundreds of bits.

Above approaches attempt to find universal encryption
schemes, either for function f or for input x, that can be
used repeatedly with provable privacy. Nevertheless, none
of them seems to provide a satisfactory solution for our
scenario due to the lack of generality.

In software industry, a lot of commercial software (i.e.
shareware) will be packed (compressed or encrypted) to
prevent reverse engineering and cracking. Figure 1 shows
how an executable is packed. The main body of the code
segment is encrypted and thus cannot be analyzed by static
dis-assemblers. However, when it is executed, the whole
image of the executable file will be loaded into memory
and the encrypted code will be decrypted by the decryption
routine (located at the end of the image) prior to the
execution. Therefore, we can use a debugger to dump
these codes (in plain text) to a new executable right after
the decryption is done. These tricks are also used by some
viruses to hide themselves from detection of anti-virus
software. However, since these tricks have no
cryptographic foundations, they are used to prevent
reverse engineering only for a limited period of time.
Another related technique is program obfuscation, namely,
a program is rendered unintelligent to reverse engineers
but still remain its original functionality. Unfortunately, it
has been proved that universal obfuscators do not exist [4].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

155

Fig. 1 A packed executable file.

1.3 Our Solution

We develop a compiler that on input a user-written C-style
source code p, produces as output the encoding of a
garbled circuit GC. We also develop a virtual machine on
which GC can be run obliviously.

2. Solution Overview

The compiler can be viewed as two subroutines, a
program-circuit transformer and a circuit-encryptor, where
the former transforms p into a Boolean circuit C and the
latter encrypts C to produce GC, which can be executed
obliviously by an untrustworthy party.

2.1 Boolean Circuits

Informally, a Boolean circuit is a directed acyclic graph
with internal nodes characterized by Boolean gates (e.g.,
gates numbered 4 through 6 in Fig. 2). Nodes with no
incoming edges are called circuit-inputs (e.g., gates
numbered 0 through 3 in Fig. 2) and those with no
outgoing edges are circuit-outputs. The size of a Boolean
circuit is the number of its gates. The functionality of a
gate can be expressed with truth tables, e.g., for gate of
fan-in 2, its functionality g(a, b) whose inputs are a and b
can be represented using truth table [g(0,0), g(0,1), g(1,0),
g(1,1)].

2.2 Possibility of Transforming Polynomial-Time
Programs to Polynomial-Size Circuits

Since the von Neumann architecture is the most prevailing
computer architecture, we assume that programs
correspond to micro-instructions that can be executed on a

von Neumann computer. Such a computing device has a
counter,

Fig. 2 An example of Boolean circuit.

a memory, and a CPU that can perform the following
micro-instructions [3]: Load (from a memory location to a
register), Store (from a register to a memory location), Add,
Complement, Jump, JumpZ (for conditional branching)
and Terminating. Informally, a family of programs
{pn:{0,1}n →{0,1}m }n∈N is polynomial- time computable
if there exists a polynomial poly such that the number of
micro-instructions processed by the CPU before pn
terminates is at most poly(n).

We can establish the possibility of converting polynomial-
time programs to polynomial-size Boolean circuits with
the following steps. First, it is well-known (see e.g. [3,
Theorem 1.3]) that each of the above micro-instructions
can be simulated by a Turing machine in polynomial time
and consequently problems solvable by a von Neumann
computer in polynomial time can also be solved by a
Turing machine in polynomial time. Second, Goldreich
[5] constructed a Boolean circuit that simulates the run of a
Turing machine M on input x∈{0, 1}n with a circuit size
quadratic in TM (n) (the running time of M on input of
length n), namely, problems solvable by Turing machine in
polynomial-time can be solved using polynomial-size
Boolean circuits.

2.3 Program-Circuit Transformer

Although it is theoretically possible to convert polynomial-
time programs to polynomial-size circuits, the approach in
Sect. 2.2 is inefficient in that the conversion cannot be
done directly. Malkhi et al. [7] implemented a compiler

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

156

that can represent simple programs (e.g., the Millionaire
problem and the Private Information Retrieval problem) by
Boolean circuits, but their compiler only supports two
arithmetic operations, addition and subtraction, but
complicated programs require multiplication and division.
To solve this problem, we develop a compiler
independently and ours is more powerful in that it supports
multiplication, truncating division, rounding division and
modular arithmetic. The Boolean gates generated by our
compiler have fan-in bounded by 3. The BNF grammar
defined by our compiler is similar to that of the C language,
for example, we can simulate the micro-
instruction ”jumpZ” by ”IF” statements. The design of
such a compiler is not a trivial task because the object code
is a Boolean circuit that is totally different from micro-
instruction in that it does not have branching when
executed.

Our compiler supports three data types: Boolean, signed
integer and unsigned integer. In contrast to computers
whose CPUs can only process data of fixed length, we can
declare an integer to be of an arbitrary constant length,
namely, the cost of solving a family of problems is
measured by the size of input in a uniform manner.
For example, let {pn:{0,1}2n→{0,1}n}n∈N be a family of
programs that take two n-bit-long integers as argument and
produce their sum, it is obvious that the solution on
computers is non-uniform because the data must be
partitioned to fixed-length (e.g. 32-bit) to be processed by
CPU in case of large n, nevertheless, with our compiler,
we only need to define two input integers An and Bn , and
then write in the source code of pn as

return(An＋Bn);
And the compiler will generate a circuit of 2n Boolean
gates that computes the same function as pn does.

We discuss informally how many Boolean gates general
polynomial-time program pn needs. When pn is executed, it
will terminate after at most poly(n) basic operations,
which includes logical operations, arithmetic operations,
comparisons, value assignments, etc. As depicted in
Table 1, each basic operation corresponds to no more
than 3mn0 +6m+n0 Boolean gates, where m and n0 are
bounded by a fixed polynomial of n. Thus, the number of
Boolean gates generated for each basic operation is also
bounded by poly’(n) and the resulting number of Boolean
gates poly(n)×poly’ (n) is still polynomial in n.

2.4 Circuit Encryptor

After converting a program to the functionally equivalent
Boolean circuit, we can encrypt the circuit using Yao’s
method [10] such that the encrypted circuit can be

executed by an untrustworthy party (e.g., a remote PC)
without revealing anything substantial to it.

Table 1: The number of Boolean gates needed for each basic operation,
where cost1 and cost2 are costs for unsigned operands and signed ones

respectively.

3. Compiler Design

3.1 Data Types and Data Declaration

The compiler supports three data types: Boolean, signed
integer and unsigned integer. A Boolean is a 1-bit-long
variable that is mostly used in selection statements. Signed
integers and unsigned integers are variables that can be
declared to be of arbitrary constant (no less than 2) length.
Unsigned integers are internally represented as base 2.
Thus, the value of unsigned integer An, with the
representation an· · · a1, is simply its base 2 value, namely,

Signed integers are represented using two's complement,
e.g., the value of Bn =bn· · · b1 is

We can also declare constants without necessarily
specifying their data types. For example,

unsigned int (30) A;
bool b;
sigined int (50) C ;
const D=15;

are a list of data declarations where A, b, C and D are
declared to be a 30-bit-long unsigned integer, a Boolean, a
50-bit-long signed integer and constant 15 respectively.

3.2 Language Syntax

The language acceptable by the compiler is defined using
Backus-Naur Form (BNF) that consists of a set of a
production rules. A production rule states that the symbol
(i.e. non-terminal) on the left-hand side of the ":" must be

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

157

replaced by one of the alternatives on the right hand side,
where the alternatives are separated by "|". For example,

symbol :
alternative1
| alternative2
· · ·

With production rules, programmers can write programs
that can be recognized by the compiler. The recognition is
done by applying the production rules in reverse (i.e. LL(1)
grammar). That is, the compiler parses the input program
terminal (basic unit of strings that make sense to the
compiler, e.g. IF, FOR and ';') by terminal, chooses the
right rule by looking at only the current terminal on the
input and takes the corresponding action. The grammar
defined by the compiler can be summarized with the
following production rules:
statements : statement

|statements statement

statement : variable ’:=’expression ’;’

| RETURN expression ’;’
| IF ’(’ bool ’)’

’{’ statements ’}’
| IF ’(’ bool ’)’

’{’ statements ’}’
ELSE
’{’ statements ’}’

| FOR variable :’=’
expression TO expression
’{’ statements ’}’

expression : variable

| constant
| ’(’ expression ’)’
| NOT expression
| expression
logical_operator expression

| expression
arithmetic_operator

expression

bool : TRUE

| FALSE
| expression compare expression

|’(’ bool ’)’
| bool logical operator bool

where the rules are oversimplified for the sake of
demonstration. For example, operators (e.g. +, −, ×, ÷)
are considered to be of the same operator precedence and
there is a reduce-shift conflict when parsing ”IF” and ”IF-
ELSE” statements, but all these problems can be solved by
introducing detailed rules.

3.3 Operations between Expressions

With the production rules, we know that an (logical or
arithmetic) operation between two expressions will be
reduced to a new expression. The compiler will generate
Boolean gates for this new expression such that it can be
further referred to by other operations. We first show how
the operations between unsigned integer expressions are
implemented by the compiler and then reduce the
operations between signed integer expressions to the
unsigned analogue. We assume that Am (resp., Bn) is an
m-bit-long (resp., n-bit-long) integer expression with
binary representation am · · · a1 (resp., bn· · · b1). Of course,
each label ai (resp., bj) corresponds to a circuit-input, or a
Boolean constant, or an output of some Boolean gate
generated by the compiler.

Logical operators can be either unary (e.g. NOT) or
binary (e.g. AND, OR, XOR, etc) and the operands can be
Booleans and integers. For uniformity, we treat Boolean as
1-bit-long integer and let “*” be the logical operator, then
the gates generation algorithm can be described using the
following pseudo-code:

where c ← gate(a, b) means generating a Boolean gate
whose inputs are a and b and whose output are labeled by
c. Labels can be reused, e.g., a ← gate(a, b) indicates that
gate with inputs a and b is generated and label a is
reallocated to the output of the resulting gate.
Addition/subtraction between unsigned integers is handled
as follows:

where carry(a ⊕ b ⊕ c) = (a∧b)∨(b∧c)∨(a∧c) and 2n
Boolean gates are generated. Multiplication can be
implemented by invoking the above subroutine, namely,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

158

Thus, multiplication needs at most 3mn Boolean gates. The
Boolean gates of rounding division ”DivR”, truncating
division ”DivT” and modular arithmetic ”Mod” can be
generated using the following subroutine:

Now we consider the arithmetic operations in case of
signed integer operands. The addition and subtraction of
signed integer expressions is similar to their unsigned
counterparts since we use two’s-complement integer
representation for signed integers. Other operations can be
implemented by invoking their signed analogue as follows:

3.4 Comparisons between Expressions

The compiler will generate a Boolean indicating the result
of comparison between expressions. There are six
comparison operators as depicted in Table 3, where (An
==Bn, An!=Bn), (An>Bn, An <=Bn) and (An<Bn,
An >=Bn) are complementary pairs and An >Bn can be
viewed as Bn<An . Thus, it suffices to show the pseudo-
code of An ==Bn and An<Bn, which is as follows:

3.5 Selection Statements and Value Assignments

The two forms of selection statements supported by our
compiler are ”IF(<bool>)-<statements>”
and
”IF(<bool>)-<statements>-ELSE-<statements>”,
where ”bool” is a label of the Boolean expression in the
parentheses. When the selection statements are executed

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

159

on computers, the control is passed to the statement
following
”IF” if the ”bool” is nonzero, otherwise it is passed to the
second statements (if any). If we generate Boolean gates in
this way, the resulting circuits will have conditional
branches and the flow of control might vary for different
inputs. This is non-oblivious since the flow of control will
reveal sensitive information (e.g. value of ”bool”) even if
the circuit is evaluated in its encrypted format. Therefore,
our compiler generates Boolean gates that have uniform
control flow when evaluated, namely, the resulting
circuit is evaluated sequentially without a single gate to
be skipped. In fact, this is not hard to achieve since most
operations in selection statements can be done identically
as they are in statements outside ”IF” with one exception
being the operation of assigning value. This is because
that the compiler generates new Boolean gates to store
intermediate results and the values of variables are not
changed unless value assignments happen. Based on the
fact that the value of a variable will be updated only if
the ”bool” is non-zero, we initializes a stack with only one
item ”TRUE” (i.e. 1) on its top at the start of compilation.
The stack operations are as follows:

where ”bool” is the label passed to sub-routine push(-).
We also describe the actions taken by the compiler when it
enters/leaves the statements of IF and ELSE whose
Boolean expression in the parentheses is labeled by ”b”,
namely,

Thus, the pseudo-code of ”An:=Bn”, whether in selection
statements or not, can be uniformly written as:

3.6 Iteration Statements

The iteration statement supported by the compiler is
FOR <variable> :=

<expression1> TO <expression2>
{ <statements> }

where <statements> are repeatedly executed
unless ”<variable>” exceeds the range specified by the
two expressions. However, a Boolean circuit is a
directed acyclic graph and thus Boolean gates cannot be
reusable. To solve this problem, the compiler treats the
iteration statement as a macro and unrolls it during the
preprocessing stage to produce:

where <expression1> and <expression2> should be
constant expressions and increment is 1 if <expression1>
is less than <expression2> and is −1 otherwise. The
unrolled program is functionally equivalent to the
corresponding iteration statement and it can be easily
converted to Boolean gates. Since our compiler requires
that the iteration number must be determined at compile
time, it does not support statements such as

WHILE (<expression>) { <statements> }

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

160

where <statement> is executed repeatedly as long as the
value of the <expression> remains true. Nevertheless, we
can solve this problem by rephrasing it as

FOR i := 1 TO max{
 IF(<expression>){

<statements>
}

}
where max is the upper bound of number of iterations that
the ”while-statement” cannot exceed. For a polynomial-
time program, max is still bounded by a polynomial, e.g., a
bubble sort program has at most n(n-1)/2 iterations, where
n is the number of inputs to be sorted.

3.7 Return Statements

Usually a program or a function will halt after
a ”RETURN” statement and will return a value (if any) to
the the environment that called it, but in our
case, ”RETURN <expression>;” only indicates that
<expression> is a circuit-output. Thus, the compiler will
mark the labels of the gates that correspond to
<expression> as final outputs and continue parsing the
program.

4. Concluding Remarks

We have developed a privacy-preserving compiler that
maps a polynomial-time program to a polynomial-size
circuit. Such a compiler is useful in cryptography and
private computation as it allows an untrustworthy to
execute a program without revealing anything substantial
to him.

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable comments.

References
[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation: A

protocol based on hiding information from an oracle. J.
Cryptol.2, pages 1–12, 1990.

[2] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding
information from an oracle. J. Comput. Syst. Sci., 39:21–30,
1989.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design
and Analysis of Computer Algorithms. Addison-Wesley,
1974.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.
Sahai, S. P. Vad- han, and K. Yang. On the (im)possibility
of obfuscating programs. In Proc. CRYPTO ’2001, pages 1–
18. Springer-Verlag, 2001.

[5] O. Goldreich. Introduction to complexity theory –
lecture 2: NP- completeness and self reducibility. The
Weizmann Institute of Science, Israel, 1999.
(http://www.wisdom.weizmann.ac.il/˜oded/c
c99.html).

[6] S. Loureiro. Mobile Code Protection. PhD thesis, Ecole
Nationale Superieure des Telecommunication, 2001.

[7] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - a
secure two-party computation system. In Proc. Usenix
Security 2004, 2004.

[8] T. Sander and C. F. Tschudin. Protecting mobile agents
against malicious hosts. In Mobile Agents and Security,
LNCS, volume 1419, pages 44–60, 1998.

[9] T. Sander, A. Young, and M. Yung. Non-interactive
cryptocomputing for NC1. In In Proc. 40th Annual IEEE
Symp. Found. Comput. Sci., page 554, 1999.

[10] A. C. Yao. How to genera te and exchange sec re t s .
In Proc. 27th Annual FOCS, pages 162–167, 1986.

Yu Yu received his B.S. degree in
Computer Science from Fudan
University, Shanghai, in 2003. He is now
a PhD candidate in Computer Science at
Nanyang Technological University,
Singapore.

Jussipekka Leiwo received his MSc and
PhD degrees from University of Oulu
and Monash University respectively. He
is now an assistant professor at School
of Computer Engineering, Nanyang
Technological University, Singapore.

Benjamin Premkumar received his
MSc and PhD degrees from North
Dakota State University and university of
Illinois respectively. He is now an
associate professor at School of
Computer Engineering, Nanyang
Technological University, Singapore.

