
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006 
 

 

 

154 

Manuscript reviced  March 19, 2006. 

On Developing Privacy-Preserving Compilers 

Yu Yu, and  Jussipekka Leiwo, and Benjamin Premkumar 
  

Nanyang Technological University,  School of Computer Engineering, Nanyang Avenue, Singapore 
 

 
Summary  
In this paper, we discuss whether or not it is possible to execute a 
program on an untrustworthy computer without revealing 
anything substantial. We simulate this task by developing a 
compiler that transforms a program p to an equivalent circuit 
format GC, which can be executed remotely on an untrustworthy 
computer by taking as argument encrypted input and producing 
encrypted output. The whole computation is totally hidden from 
the computer. The design of the compiler is detailed. With our 
compiler, polynomial-time programs can be efficiently converted 
to polynomial-size Boolean circuits. 
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Introduction 

1.1 Problem Formalization 

Alice has a private program p and she wants to compute p 
with some private input x but lacks resources to do it.  Bob 
is a powerful computer and is willing to help Alice.  Alice 
hopes that p can be executed by Bob in such an oblivious 
way that nothing substantial about p, x and p(x) is 
disclosed to Bob. 

1.2 Related Work 

Abadi, Feigenbaum, and Kilian [2] described computing 
with encrypted data (CED) as follows:  Alice wishes to 
know f (x) for some x but lacks power to compute it. Bob 
has the power to compute f and is willing to send f (y) to 
Alice if she sends him y, for any y.  Alice transforms x into 
an encrypted instance y, obtains f (y) from Bob and infers f 
(x) from f (y) in such a way that B cannot infer x from y. 
 
If such an encryption scheme exists, f is considered 
encryptable. They found that problems such as Discrete 
Logarithm and Primitive Root are encryptable.  However, 
they did not propose any encryption scheme for general 
function f.  Abadi and Feigenbaum [1] proposed a circuit 
evaluation protocol for CED. However, their method 
cannot evaluate AND gates non-interactively. Sander et al. 

[9] presented an AND-PH to solve this problem, but their 
method only allows evaluation of log- depth circuits. 

 
Sander and Tschudin [8] proposed a solution to compute 
with encrypted functions (CEF): Alice has a private 
function f. Bob has an input x. Alice wants Bob to compute 
f (x) without revealing anything substantial about f.  Their 
scheme only allows encryption of polynomials. Loureiro 
[6] presented another scheme which allows encryption of a 
general function f with small inputs.  This approach, how- 
ever, fails to meet our goal since a non-trivial program 
usually has an input of at least hundreds of bits. 

 
Above approaches attempt to find universal encryption 
schemes, either for function f or for input x, that can be 
used repeatedly with provable privacy. Nevertheless, none 
of them seems to provide a satisfactory solution for our 
scenario due to the lack of generality. 

 
In software industry, a lot of commercial software (i.e. 
shareware) will be packed (compressed or encrypted) to 
prevent reverse engineering and cracking. Figure 1 shows 
how an executable is packed. The main body of the code 
segment is encrypted and thus cannot be analyzed by static 
dis-assemblers.  However, when it is executed, the whole 
image of the executable file will be loaded into memory 
and the encrypted code will be decrypted by the decryption 
routine (located at the end of the image) prior to the 
execution. Therefore, we can use a debugger to dump 
these codes (in plain text) to a new executable right after 
the decryption is done.  These tricks are also used by some 
viruses to hide themselves from detection of anti-virus 
software.  However, since these tricks have no 
cryptographic foundations, they are used to prevent 
reverse engineering only for a limited period of time.  
Another related technique is program obfuscation, namely, 
a program is rendered unintelligent to reverse engineers 
but still remain its original functionality.  Unfortunately, it 
has been proved that universal obfuscators do not exist [4].  
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Fig. 1 A packed executable file. 

1.3 Our Solution 

We develop a compiler that on input a user-written C-style 
source code p, produces as output the encoding of a 
garbled circuit GC. We also develop a virtual machine on 
which GC can be run obliviously.  

2. Solution Overview 

The compiler can be viewed as two subroutines, a 
program-circuit transformer and a circuit-encryptor, where 
the former transforms p into a Boolean circuit C and the 
latter encrypts C to produce GC, which can be executed 
obliviously by an untrustworthy party. 

2.1 Boolean Circuits 

Informally, a Boolean circuit is a directed acyclic graph 
with internal nodes characterized by Boolean gates (e.g., 
gates numbered 4 through 6 in Fig. 2). Nodes with no 
incoming edges are called circuit-inputs (e.g., gates 
numbered 0 through 3 in Fig. 2) and those with no 
outgoing edges are circuit-outputs.  The size of a Boolean 
circuit is the number of its gates. The functionality of a 
gate can be expressed with truth tables, e.g., for gate of 
fan-in 2, its functionality g(a, b) whose inputs are a and b 
can be represented using truth table [g(0,0), g(0,1), g(1,0), 
g(1,1)]. 

2.2 Possibility of Transforming Polynomial-Time 
Programs to Polynomial-Size Circuits 

Since the von Neumann architecture is the most prevailing 
computer architecture, we assume that programs 
correspond to micro-instructions that can be executed on a 

von Neumann computer. Such a computing device has a 
counter, 

 

Fig. 2 An example of Boolean circuit. 

a memory, and a CPU that can perform the following 
micro-instructions [3]: Load (from a memory location to a 
register), Store (from a register to a memory location), Add, 
Complement, Jump, JumpZ (for conditional branching) 
and Terminating. Informally, a family of programs 
{pn:{0,1}n  →{0,1}m }n∈N  is polynomial- time computable 
if there exists a polynomial poly such that the number of 
micro-instructions processed by the CPU before pn 
terminates is at most poly(n). 

 
We can establish the possibility of converting polynomial-
time programs to polynomial-size Boolean circuits with 
the following steps.  First, it is well-known (see e.g. [3, 
Theorem 1.3]) that each of the above micro-instructions 
can be simulated by a Turing machine in polynomial time 
and consequently problems solvable by a von Neumann 
computer in polynomial time can also be solved by a 
Turing machine in polynomial time.  Second, Goldreich 
[5] constructed a Boolean circuit that simulates the run of a 
Turing machine M on input x∈{0, 1}n  with a circuit size 
quadratic in TM (n) (the running time of M on input of 
length n), namely, problems solvable by Turing machine in 
polynomial-time can be solved using polynomial-size 
Boolean circuits. 

2.3 Program-Circuit Transformer 

Although it is theoretically possible to convert polynomial-
time programs to polynomial-size circuits, the approach in 
Sect. 2.2 is inefficient in that the conversion cannot be 
done directly.  Malkhi et al. [7] implemented a compiler 
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that can represent simple programs (e.g., the Millionaire 
problem and the Private Information Retrieval problem) by 
Boolean circuits, but their compiler only supports two 
arithmetic operations, addition and subtraction, but 
complicated programs require multiplication and division. 
To solve this problem, we develop a compiler 
independently and ours is more powerful in that it supports 
multiplication, truncating division, rounding division and 
modular arithmetic.  The Boolean gates generated by our 
compiler have fan-in bounded by 3. The BNF grammar 
defined by our compiler is similar to that of the C language, 
for example, we can simulate the micro-
instruction ”jumpZ” by ”IF” statements.  The design of 
such a compiler is not a trivial task because the object code 
is a Boolean circuit that is totally different from micro-
instruction in that it does not have branching when 
executed. 
 
Our compiler supports three data types: Boolean, signed 
integer and unsigned integer. In contrast to computers 
whose CPUs can only process data of fixed length, we can 
declare an integer to be of an arbitrary constant length, 
namely, the cost of  solving  a  family  of  problems  is  
measured  by  the  size  of  input  in  a  uniform manner. 
For example, let {pn:{0,1}2n→{0,1}n}n∈N  be a family of 
programs that take two n-bit-long integers as argument and 
produce their sum, it is obvious that the solution on 
computers is non-uniform because the data must be 
partitioned to fixed-length (e.g. 32-bit) to be processed by 
CPU in case of large n, nevertheless, with our compiler, 
we only need to define two input integers An  and Bn , and 
then write in the source code of pn  as 

return(An＋Bn); 
And the compiler will generate a circuit of 2n Boolean 
gates that computes the same function as pn does. 
 
We discuss informally how many Boolean gates general 
polynomial-time program pn needs. When pn is executed, it 
will terminate after at most poly(n) basic operations,  
which includes logical operations,  arithmetic operations,  
comparisons,  value  assignments,  etc.   As  depicted  in  
Table  1,  each  basic  operation corresponds to no more 
than 3mn0 +6m+n0  Boolean gates,  where m and n0  are 
bounded by a fixed polynomial of n. Thus, the number of 
Boolean gates generated for each basic operation is also 
bounded by poly’(n) and the resulting number of Boolean 
gates poly(n)×poly’ (n) is still polynomial in n. 

2.4 Circuit Encryptor 

After converting a program to the functionally equivalent 
Boolean circuit, we can encrypt the circuit using Yao’s 
method [10] such that the encrypted circuit can be 

executed by an untrustworthy party (e.g., a remote PC) 
without revealing anything substantial to it. 
 

Table 1: The number of Boolean gates needed for each basic operation, 
where cost1 and cost2 are costs for unsigned operands and signed ones 

respectively. 

 

3. Compiler Design 

3.1 Data Types and Data Declaration 

The compiler supports three data types: Boolean, signed 
integer and unsigned integer. A Boolean is a 1-bit-long 
variable that is mostly used in selection statements. Signed 
integers and unsigned integers are variables that can be 
declared to be of arbitrary constant (no less than 2) length.  
Unsigned integers are internally represented as base 2. 
Thus, the value of unsigned integer An, with the 
representation an· · · a1, is simply its base 2 value, namely,   

 
Signed integers are represented using two's complement, 
e.g., the value of Bn =bn· · · b1 is 

 
We can also declare constants without necessarily 
specifying their data types. For example, 

unsigned int (30) A; 
bool b; 
sigined int (50) C ; 
const D=15; 

are a list of data declarations where A, b, C and D are 
declared to be a 30-bit-long unsigned  integer, a Boolean, a 
50-bit-long signed integer and constant 15 respectively. 

3.2 Language Syntax 

The language acceptable by the compiler is defined using 
Backus-Naur Form (BNF) that consists of a set of a 
production rules. A production rule states that the symbol 
(i.e.  non-terminal) on the left-hand side of the ":" must be 
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replaced by one of the alternatives on the right hand side, 
where the alternatives are separated by "|". For example, 

symbol : 
alternative1 
| alternative2 
· · · 

With production rules, programmers can write programs 
that can be recognized by the compiler. The recognition is 
done by applying the production rules in reverse (i.e. LL(1) 
grammar). That is, the compiler parses the input program 
terminal (basic unit of strings that make sense to the 
compiler, e.g. IF, FOR and ';') by terminal, chooses the 
right rule by looking at only the current terminal on the 
input and takes the corresponding action. The grammar 
defined by the compiler can be summarized with the 
following production rules: 
statements : statement 

|statements statement 

 
statement : variable ’:=’expression ’;’ 

| RETURN expression ’;’ 
| IF ’(’ bool ’)’  

’{’ statements ’}’ 
| IF ’(’ bool ’)’  

’{’ statements ’}’ 
ELSE 
’{’ statements ’}’ 

| FOR variable :’=’  
expression TO expression 
’{’ statements ’}’ 

 
expression : variable 

| constant 
| ’(’ expression ’)’ 
| NOT expression 
| expression  
logical_operator expression 

| expression  
arithmetic_operator 

expression 
 
bool : TRUE 

| FALSE  
| expression compare expression

 

|’(’ bool ’)’ 
| bool logical operator bool 

where the rules are oversimplified for the sake of 
demonstration.   For example, operators (e.g.  +, −, ×, ÷) 
are considered to be of the same operator precedence and 
there is a reduce-shift conflict when parsing ”IF” and ”IF-
ELSE” statements, but all these problems can be solved by 
introducing detailed rules. 

3.3 Operations between Expressions 

With the production rules, we know that an (logical or 
arithmetic) operation between two expressions will be 
reduced to a new expression. The compiler will generate 
Boolean gates for this new expression such that it can be 
further referred to by other operations.  We first show how 
the operations between unsigned integer expressions are 
implemented by the compiler and then reduce the 
operations between signed integer expressions to the 
unsigned analogue.  We assume that Am  (resp., Bn ) is an 
m-bit-long (resp., n-bit-long) integer expression with 
binary representation am · · · a1  (resp., bn· · · b1). Of course, 
each label ai (resp., bj) corresponds to a circuit-input, or a 
Boolean constant, or an output of some Boolean gate 
generated by the compiler. 

 
Logical operators can be either unary (e.g.  NOT) or 
binary (e.g.  AND, OR, XOR, etc) and the operands can be 
Booleans and integers. For uniformity, we treat Boolean as 
1-bit-long integer and let “*” be the logical operator, then 
the gates generation algorithm can be described using the 
following pseudo-code: 

 
where c ← gate(a, b) means generating a Boolean gate 
whose inputs are a and b and whose output are labeled by 
c. Labels can be reused, e.g., a ← gate(a, b) indicates that 
gate with inputs a and b is generated and label a is 
reallocated to the output of the resulting gate. 
Addition/subtraction between unsigned integers is handled 
as follows: 

 
where carry(a ⊕ b ⊕ c) =  (a∧b)∨(b∧c)∨(a∧c) and 2n 
Boolean gates are generated. Multiplication can be 
implemented by invoking the above subroutine, namely, 
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Thus, multiplication needs at most 3mn Boolean gates. The  
Boolean gates of rounding division ”DivR”, truncating 
division ”DivT” and modular arithmetic ”Mod” can be 
generated using the following subroutine: 
 

 
Now we consider the arithmetic operations in case of 
signed integer operands. The addition and subtraction of 
signed integer expressions is similar to their unsigned 
counterparts since we use two’s-complement integer 
representation for signed integers.  Other operations can be 
implemented by invoking their signed analogue as follows: 

 

 

3.4 Comparisons between Expressions 

The compiler will generate a Boolean indicating the result 
of comparison between expressions. There are six 
comparison operators as depicted in Table 3, where (An 
==Bn, An!=Bn), (An>Bn, An <=Bn) and (An<Bn, 
An >=Bn ) are complementary pairs and An >Bn  can be 
viewed as Bn<An . Thus, it suffices to show the pseudo-
code of An ==Bn and An<Bn, which is as follows: 

 

 

3.5 Selection Statements and Value Assignments 

The two forms of selection statements supported by our 
compiler are ”IF(<bool>)-<statements>”  
and  
”IF(<bool>)-<statements>-ELSE-<statements>”, 
where ”bool” is a label of the Boolean expression in the 
parentheses.  When the selection statements are executed 
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on computers, the control is passed to the statement 
following 
”IF” if the ”bool” is nonzero, otherwise it is passed to the 
second statements (if any). If we generate Boolean gates in 
this way, the resulting circuits will have conditional 
branches and the flow of control might vary for different 
inputs.  This is non-oblivious since the flow of control will 
reveal sensitive information (e.g. value of ”bool”) even if 
the circuit is evaluated in its encrypted format.  Therefore, 
our compiler generates Boolean gates that have uniform 
control  flow  when  evaluated,  namely,  the  resulting  
circuit  is  evaluated  sequentially without a single gate to 
be skipped.  In fact, this is not hard to achieve since most 
operations in selection statements can be done identically 
as they are in statements outside ”IF” with one exception 
being the operation of assigning value.  This is because 
that the compiler generates new Boolean gates to store 
intermediate results and the values of variables are not 
changed unless value assignments happen. Based on the 
fact that the value of a variable will be updated only if 
the ”bool” is non-zero, we initializes a stack with only one 
item ”TRUE” (i.e. 1) on its top at the start of compilation. 
The stack operations are as follows: 

 

 

 

 
where ”bool” is the label passed to sub-routine push(-).  
We also describe the actions taken by the compiler when it 
enters/leaves the statements of IF and ELSE whose 
Boolean expression in the parentheses is labeled by ”b”, 
namely, 

 
Thus, the pseudo-code of ”An:=Bn”, whether in selection 
statements or not, can be uniformly written as: 

 

3.6 Iteration Statements 

The iteration statement supported by the compiler is 
FOR <variable> :=  

<expression1> TO <expression2>  
{ <statements> } 

 
where  <statements>  are  repeatedly  executed  
unless  ”<variable>”  exceeds  the range  specified by  the  
two  expressions.   However, a Boolean circuit is a 
directed acyclic graph and thus Boolean gates cannot be 
reusable. To solve this problem, the compiler treats the 
iteration statement as a macro and unrolls it during the 
preprocessing stage to produce: 

 
where <expression1>  and <expression2> should be 
constant expressions and increment is 1 if <expression1> 
is less than <expression2> and is −1 otherwise.  The 
unrolled program is functionally equivalent to the 
corresponding iteration statement and it can be easily 
converted to Boolean gates. Since our compiler requires 
that the iteration number must be determined at compile 
time, it does not support statements such as 

WHILE (<expression>) { <statements> } 
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where <statement> is executed repeatedly as long as the 
value of the <expression> remains true. Nevertheless, we 
can solve this problem by rephrasing it as 

FOR i := 1 TO max{ 
 IF(<expression>){ 

<statements>  
} 

} 
where max is the upper bound of number of iterations that 
the ”while-statement” cannot exceed.  For a polynomial-
time program, max is still bounded by a polynomial, e.g., a 
bubble sort program has at most n(n-1)/2 iterations, where 
n is the number of inputs to be sorted. 

3.7 Return Statements 

Usually a program or a function will halt after 
a ”RETURN” statement and will return a value (if any) to 
the the environment that called it, but in our 
case, ”RETURN <expression>;” only indicates that 
<expression> is a circuit-output. Thus, the compiler will 
mark the labels of the gates that correspond to 
<expression> as final outputs and continue parsing the 
program. 
 

4. Concluding Remarks 

We have developed a privacy-preserving compiler that 
maps a polynomial-time program to a polynomial-size 
circuit. Such a compiler is useful in cryptography and 
private computation as it allows an untrustworthy to 
execute a program without revealing anything substantial 
to him.  
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