
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

213

BBTC: A New Update-aware Coding Scheme for
Efficient Structure Join

Guoliang Li, Jianhua Feng, Na Ta, Lizhu Zhou

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China

Summary
The identification of ancestor-descendant or parent-child
relationship between elements of XML documents plays a
crucial role in efficient XML query processing. One of the
popular methods for performing this task is to code each
node in the XML document by traversing its nodes.
However, the main problems of existing approaches are
that they either lack the ability to support XML document
update or need huge storage space. This paper proposes a
novel coding scheme called Blocked Binary-Tree Coding
scheme (BBTC) by taking the issues of identification, easy
update and low storage cost into account. BBTC identifies
the ancestor-descendant relationship in constant time. For
the update, only a few simple operations for the affected
document elements are needed. More importantly, for
BBTC, this paper proposes a structure join algorithm BDC
based on Bucket Divide and Conquer. BDC not only
accelerates structure join dramatically when the input
element sets are neither sorted nor indexed, but also can be
applied to other coding schemes. The extensive
experiments show that both the coding scheme BBTC and
BDC significantly outperform the existing studies.

Key words: XML, structure join, coding scheme, partial
order

Introduction

To support queries on XML databases, a number of query
languages such as Lorel[1], XML-QL[9], XPath [7], and
XQuery [3] have been studied. One of their core
techniques is to use path expressions to express structure
queries for XML documents. To evaluate such a query, for
instance, “Book//Name”, a naïve tree traversal strategy
could be used to scan the entire XML data tree even there
are only few results. To overcome the shortcoming of
traversing the entire original document of this naïve
strategy, a coding scheme can be used to assign each node
in the document tree a unique code so that the ancestor-
descendant (or parent-child) relationship of element nodes
and attribute nodes in the tree can be figured out directly.

A number of such XML coding schemes have been
proposed for the query, especially structure query of XML
documents [11]. Based on these methods, for the
“Book//Name” example, an alternative strategy can first
retrieve all Book and Name elements through codes, and
then find all occurrences of the ancestor-descendant
relationship between these two element sets. In this way,
query of XML can be converted to structure join
computation by using coding schemes. However, present
coding schemes either do not support XML documents
update, or have high storage cost. In addition, previous
algorithms about structure join require the order of input
data sets or additional indices with an assumption that
memory buffer can hold full input element sets.

To address these problems, this paper first proposes a
new coding scheme based on binary-tree, which efficiently
supports both dynamic update of XML documents and the
identification of ancestor-descendant relationship. The
coding scheme, Blocked Binary-Tree Coding scheme
(BBTC), has average code length O(log(n)), which is
asymptotically minimum. In this paper, n is used to denote
the number of nodes in an XML document. To skip
unnecessary elements which do not participate in a join, a
structure join algorithm BDC is designed based on a
technique, Bucket Divide and Conquer. This algorithm
partitions the two element sets for the join into different
buckets and only structure join of suited buckets contribute
to the results. In this way, it reduces I/Os sharply and
accelerates the structure join.

In brief, the major contributions are as follows:
• First, BBTC can identify the ancestor-descendant

relationship in constant time, and the inference of
such relationship is based on simple equality
operations (add and shift) rather than complicated
operations (estimation of region range). The
average code length of BBTC is O(log(n)), which
is asymptotically minimum.

• Second, BBTC maintains order information among
sibling nodes so that the queries about sibling
sequence are supported effectively, such as
Book[2]//Name[3]. At the same time, BBTC
supports XML update efficiently through its
sibling order information.

The work was supported by the National Natural Science Foundation of China under
Grant No.60573094, Tsinghua Basic Research Foundation under Grant
No.JCqn2005022 and Zhejiang Natural Science Foundation under Grant No.Y105230

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

214

• Third, BDC can accelerate structure join by
skipping many unnecessary elements which don’t
participate a join through divide and conquer
strategy. BDC is significantly efficient for structure
join, especially when memory size is limited.

• Last, BDC is not only efficient for our coding
scheme, but also portable to other coding schemes.

This paper is organized as follows: section 2 introduces
and analyzes related work on XML coding schemes and
structure join. Section 3 presents our coding scheme in
details. In section 4, a hierarchical storage method is
introduced to BBTC. In section 5, an efficient structure
join algorithm, BDC, is presented. In section 6, the
experimental results of our coding scheme and structure
join algorithm are presented with comparisons to other
approaches. Last, a conclusion is made in section 7.
difference images from adjacent frames and recognize
hand gestures by improved centroidal profile.
This paper consists of 5 sections. The section 2 describes
the hand region extracting method from a sequential color
images with entropy analysis. The section 3 stresses on
gesture recognition techniques from the extracted hand
region images. The section 4 shows the experiment results
by proposed method. The section 5 concludes this
proposal.

2. Related Work

Various coding schemes have been proposed for query
processing of XML documents. These existing coding
schemes fall into two main classes: (1) the region based
coding [5, 10, 12, 13, 21] and (2) the path based coding [8,
15, 20]. The region based coding scheme is more widely
used.

2.1 Coding Schemes

The main idea of region-based coding is to assign a pair of
numbers <start, end> called Region Code to each node in
the XML document tree, satisfying that the Region Code
of a node covers its descendants’ codes. That is, node u is
the ancestor of node v iff. u.start<v.start and v.end<u.end.
The coding schemes in [5, 10, 12, 13, 21] are all based on
Region Code. They require level or height information to
differentiate the ancestor or parent. In addition, complex
operation, instead of equality estimation, is used when
deciding parent-child and ancestor-descendant
relationships. Moreover, these methods cannot support
dynamic update of XML documents well. Some study [13]
proposed a solution which preserves code space for the
size in <order, size> or makes order the extended pre-
order traversal number so that extra space can be preserved
to support update. But it is difficult to decide how much
space the preservation is to make, and when the preserved
space is used up, the XML document has to be recoded

again. N.Wirth proposed the Bit-vector coding scheme in
[19]. Dewey code has been proposed in [17]. Dynamic
labeling structure has been proposed in [4, 8, 20], however,
such long labels not only incur high storage overhead, but
also are less useful in query processing because they are
more expensive to process than shorter labels. W-BOX
and B-BOX, two novel structures for maintaining order-
based labeling of XML elements were presented in [15,
16]. Wang et al. [18] also proposed PBiTree, which
converted an XML document tree into a binary-tree, and
numbered each node sequentially. The main difference of
PBiTree from our approach is that, it does not support
update and involves large storage.

2.2 Structure Join

Structural join is to find all occurrences of structural
relationship between two element sets, which is a core
technique to query path expression. Presently structure
join is almost about region based technique, and always
requires ancestor list and descendent list in order or
maintains indices with assumption that memory buffer can
hold full element sets. Zhang et al. [21] propose a variant
of the traditional merge join algorithm, called multi-
predicate merge join (MPMGJN). However, it may
perform a lot of unnecessary computation and I/Os for
matching structural relationship. Similarly, EE-Join and
EA-Join in [13] may scan an element set multiple times.
The Stack-Tree-Desc algorithm proposed in [2] improved
the merge based structural join algorithms with stack
mechanism. The basic idea is to take the two input lists,
AList and DList, both sorted on their start values, and
merge them. A stack is introduced to maintain ancestor
nodes that will be used later in the join. As such, only one
sequential scan is performed on AList and DList. Chien et
al [6], proposed a stack-based structural join algorithm that
could utilize the B+-tree indices built on the start attribute
of the participating element sets. An enhancement to the
basic B+-tree approach is to add sibling pointers based on
the notion of containment. XR-tree in [14] utilizes a new
index to skip ancestor nodes, which overcomes the
drawback of [6]. However, there is a problem that both of
them have no indices on intermediate results. As a result,
existing algorithms require both of the input element sets
sorted or need to build additional indices (but no indices
for intermediate results).

3 A New Update-aware Coding Scheme

3.1 Coding Scheme and Corresponding Algorithm

Our coding scheme is a pair <order,
sibling_order>, in which order represents the
position information of a node in the XML document tree,
and sibling_order means the sequential number of an
element among its siblings, which reflects order

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

215

characteristic of XML documents and can help to deal with
update operation, therefore query of sibling relationship is
effectively supported. The approach to code an XML
document is described in Algorithm 1, in which the order
of the leftmost child is its parent’s order multiplied by 2,
and its sibling_order is 0; the orders of other
children except the leftmost child are their preceding
siblings’ order multiplied by 2 plus 1, and
sibling_orders are their preceding siblings’
sibling_order plus 1(order of the root is 1,
sibling_order is 0).

Figure 1. XML file Bookset.xml and corresponding codes

Using Algorithm 1 the codes for all nodes can be
worked out during once scan of the XML document tree.
A simple example is shown in Figure 1 (codes of all
TEXT_NODEs are omitted).
3.2 Properties of Our Coding Scheme

We can infer the relationship between any two nodes using
simple operations.

Given nodes A, D and N in an XML document tree T.
1. N.level = number of zeros in the binary

representation of N.order plus 1. This value
represents which level the node N lies in the XML
document tree.

2. A is an ancestor of D iff. (3-1) is true; (3-1) is
equivalent to (3-2) and (3-2) is more easy to be

inferred in computer.
2*A.order =
 ⎣D.order/ 2 2log . log . 12 D order A order− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎦

(3-1)

(A.order<<1) = (D.order>>
(⎣log2(D.order)⎦- ⎣log2(A.order)⎦-1))

(3-2)

3. A is a parent of D iff. (3-1) or (3-2) is true and
D.level= A.level + 1.

In this paper, ⎣X⎦ denotes the integer part of number X;

<< denotes shift leftward; >> denotes shift rightward.

For instance in Bookset.xml (the XML document in

Figure 1), suppose we want to infer the relationship
between /Bookset/Book[1] (order is 2) and
/Bookset//Degree (1st node’s order is 37, 2nd is 85).
As ⎣log237⎦=5, ⎣log285⎦=6, and 2*2=⎣37/25-1-1⎦, so 1st

Degree node is a descendant of Book[1], but not a
child, because level of Book[1] is 2(there is one zero in
binary representation of 2=(10)2), and level of 1st Degree
is 4(there are 3 zeros in binary representation of
37=(100101)2). As 2*2!= ⎣85/26-1-1⎦, 2nd Degree node is
not a descendant of Book[1].

3.3 Support of XML Documents Update

According to the basic idea, our approach does not need to
code the XML document again when updated. Only insert
and delete operations are concerned here, and other update
operations, such as changing the value of a tag, are isolate
to coding schemes. Due to the characteristic of our coding
scheme, a new node is inserted as the ‘last’ child of its
parent, and the order of the new node can be calculated
very easily, only to increase its following siblings’
sibling_orders by 1.

Figure 2. Update of an XML document

An example is shown in Figure 2. The dashed nodes in
Figure 2(a) are inserted nodes. The solid dashed node is

<Bookset>
<Book>

 <ID>1</ID>
<Author>

<Name>Fengjh</Name>
<Degree>PhD</Degree>

</Author>
<Name>DB</Name>

 </Book>
<Book>

 <ID>2</ID>
<Author>

<Name>Zhoulz</Name>
<Degree>PhD</Degree>

</Author>
<Name>DDB</Name>

</Book>
</Bookset>

Bookset

Book Book

ID Author Nam e

Nam e Degree Nam e Degree

Author Nam eID

1

Fengjh Ph.D

2

Zhoulz Ph.D

DB DDB

1， 0

2， 0 5， 1

4，0 9， 1 19， 2 10， 0 21， 1 43， 2

18， 0 37， 1 42， 0 85， 1

Algorithm 1: Coding_XML_Tree(N)
Input: N is a node of an XML document tree T
Output: <N.order, N.sibling_order>
1. if N is the root of T then {N.order=1;
N.sibling_order=0;}
2. else
3. if N is N.parent.leftmost_child then

{N.order=N.parent.order*2;
N.sibling_order=0; }

4. else {
N.order= N.preceding_sibling.order*2+1;

N.sibling_order=N.preceding_sibling.
sibling_order+1;}

5. endif
6. endif
7. for each NC, NC is a child of N
8. Coding_XML_Tree (NC);
{recursive calling all the children nodes of N based on depth first

search}
9. endfor

(a) Original document

(b) Updated document

1，0

9，1 43，221，110，019，24，0

5，12，0

87，2

85，142，037，118，08，0

1，0

9，1 43，321，110，019，24，0

5，12，0

87，2

85，142，037，118，08，0

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

216

appended to node 4, and its code is (4*2,0). But hollow
dashed node 87 is inserted before node 43, so insert it as
the ‘last’ child of its parent node 5, and its order is
43*2+1=87, but its sibling_order is 2 which denotes
its order among its siblings, and increase all of its
following siblings’ sibling_orders by 1, and in
Figure 2(b) node 43’s sibling_order is updated to 3.
Delete operation is very easy, and it is only needed to
remove the deleted node (dn) and decrease
sibling_orders of all the dn’s siblings by 1 whose
sibling_orders are greater than
dn.sibling_order.

4 Storage of BBTC

General XML document trees are not regular, but the
binary-tree has such advantages that it has regular
hierarchical structure and is easily to be stored. Therefore,
the general XML document trees are converted to ordered
binary-trees.

4.1 Conversion from an XML Document Tree to a
Binary-tree

Let T be an XML document tree and BT be the
corresponding converted binary-tree, the corresponding
conversion rules are as follows:

1) A∈T, if A is the root of T, then A is the root of BT.
2) ∀A, D∈T, if D is the first child of A in T, then D is
the left child of A in BT.
3) ∀D1, D2∈T, if D2 is the following sibling of D1 in T,
then D2 is the right child of D1 in BT.

Figure 3. XML document tree and its binary-tree

Figure 4. Storage architecture of BBTC

Using these rules, the XML document tree in Figure 1 can
be converted to a binary-tree in Figure 3.

In this way, an element can be coded in the XML
document through its binary-tree directly. The detailed
coding method is as follows:

1) if R is the root of BT then R.order =1
2) ∀D1, D2, A∈BT, if D1 is the left child of A then
D1.order = A.order*2;

3) if D2 is the right child of A then D2.order =
A.order *2+1.

The coding method of the binary-tree is identical with
Algorithm1 in section 3.1.

 Figure 5. BBTC

4.2 BBTC

The disadvantage of the binary-tree code is that it needs
relatively large storage space. To solve this issue, we
propose new storage architecture. Due to properties of the
binary-tree, some descendent nodes store prefix of their
ancestors repeatedly. Therefore, the binary-tree can be
partitioned into different sub-blocks with elements in each
sub-block having the same ancestor, and then each element
can be coded relative to the ancestor (root of the sub-block)
in each sub-block. Thus, the common prefix of each
element’s code can be stored only once. We call it Blocked
Binary-Tree Coding scheme (BBTC) as shown in Figure 4.
The common prefix called BlockID (BID), and the other
part of the code to distinguish each other in the sub-block
is called InnerID (IID). In Figure 4, ElementNO denotes
how many elements there are in a sub-block. That is to say
in BBTC, each element has its own IID, and all elements
in a same sub-block share a common BID, which is the
original order code of this sub-block’s root. There are
some issues to be addressed in BBTC, such as how large a
sub-block should be and what structural relationship
should be maintained between sub-blocks. To describe
quantitatively how large a sub-block is, we introduce B,
which is the height of the sub-block (the height of the sub-
block which has only one node is 1), and 2B-1 represents
the maximum number of elements in a sub-block.

The rules to partition a binary-tree are:
1. All nodes whose height differences to the root less

than B (including the root itself) are in a same sub-
block. The first sub-block’s BID is 1, and the sub-
block’s root is the root of the binary-tree.

2. ∀NA, NA is a leaf node of one sub-block, if NA has a
child ND, then a new sub-block is created with ND as
its root, and all of ND’s descendents whose height
differences to ND less than B are in this sub-block.
Suppose that IID of NA is C, and the BID of that sub-
block which NA belongs to is D, then the BID of the
new sub-block rooted at ND can be computed by

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

217

formula 4-1:
-1

-1

((-1)*2)*2 -

((-1)*2)*2 1 -

B
D A

B
D A

D C N is the left child of N
BID

D C N is the right child of N

⎧ +⎪= ⎨
+ +⎪⎩

(4-1)

3. The IID of each sub-block’s root is always 1; other
nodes’ IIDs and sibling_orders are coded in
each sub-block according to 4.1.

Table 1. The storage of BBTC
BBTC Original code

BID ElemetNO (IID,sibling_order)
(1,0) (2,0) (4,0) (5,1) 1 4 (1,0) (2,0) (4,0) (5,1)
(9,1) (18,0) (19,2) (37,1) 9 4 (1,1) (2,0) (3,2) (5,1)
(10,0) (21,1) (42,0) (43,2) 10 4 (1,0) (3,1) (6,0) (7,2)

(85,1) 85 1 (1,1)

Let B be 3, the binary-tree of the XML document,
Bookset.xml (Figure 3), can be partitioned into four sub-
blocks (Figure 5), and Table 1 lists the details.

For each sub-block, we can compute each node’s
original order code through its IID and its sub-block’s
BID. Suppose that a node’s IID is C and its sub-block’s
BID is D, and its order code in the original XML
document tree is:

2log(D-1)*2 C C⎢ ⎥⎣ ⎦ + (4-2)

For example, the original order of node (IID is 7,
BID is 10) is 43((10-1)*22+7). Therefore, when inferring
whether two nodes have the ancestor-descendant
relationship or not, firstly their original codes are figured
out according to (3-2), and then the relationship according
to the rules in section 3.2 can be gotten. However, it is not
necessary to compute the original codes to infer the
relationship. In next section some simple rules will be
given, through which a node’s IID and its sub-block’s BID
will be used directly to infer their relationship.

There are two definitions to be introduced before we
present the rules in detail.

Definition 1: Sibling Sub-blocks
Given two different sub-blocks, suppose that their
BIDs are B1 and B2 respectively, if B1 and B2
satisfy

2 2
log 1 log 2B BB B⎢ ⎥ ⎢ ⎥=⎣ ⎦ ⎣ ⎦ , then these two sub-blocks are

called sibling sub-blocks.
Definition 2: Collateral Sub-blocks
Given two different sub-blocks, suppose that their
BIDs are B1 and B2 respectively, if B1 and B2 do not
have the ancestor-descendant relationship according to
rules in section 3.2, then these two sub-blocks are
called collateral sub-blocks.
Three rules are given to infer two elements’

relationship by their BIDs and IIDs:
1. If two nodes have the same BID (in the same sub-

block), then the rules in section 3.2 can be used to
infer their relationship through their IIDs.

2. If the sub-blocks that the two elements belong to are
sibling sub-blocks or collateral sub-blocks, then there
is no ancestor-descendant relationship between them.

3. Otherwise, suppose the IIDs of the two nodes are C1

and C2 respectively and their BIDs are D1 and D2
(without loss of generality, we suppose D1<D2).
Their relationship can be inferred by evaluating
relationship between N1 and D2 through the rules in
section 3.2, where 2log 11 (1 1)*2 1CN D C⎢ ⎥⎣ ⎦= − + ,
N1.level=C1.level+D1.level-1.

Using the three rules, the relationship between them can be
inferred. For instance, the relationship between some
nodes in Table 2 can be inferred, in which A-D and P-C
stand for Ancestor-Descendant and Parent-Child
relationships.

Table 2. Inferring relationships between some nodes
Node A Node D A-

D
P-
C

Reason

order BID IID order BID IID
9 9 1 37 9 5 √ √ in the same

 sub-block (rule1)
order BID IID order BID IID

18 9 2 85 85 1 × × collateral
sub-blocks (rule2)

order BID IID order BID IID
√ ×

N1=5, 5*2=⎣85/26-2-1⎦
(rule3); but (5.level
+1=2) !=(85.level+1=4)

4.3 Analysis of Code Length
To analyze the average code length of BBTC, some
definitions are introduced firstly.

Definition 3: Saturation (ξ)
Saturation of a sub-block means the ratio of actual
number of nodes (AN) in this sub-block to the max
number of nodes (TN) that this sub-block can contain,
that is:ξ=AN/TN=AN/(2B-1).
Definition 4: Fan-out (ϒ)
Fan-out can only be defined on a sub-block which
has child sub-blocks. For such a sub-block, ϒ denotes
the number of its leaves which have children in the
binary-tree.

For example, in Figure 5, ξ10=4/7,ξ9=4/7; ϒ1=2,ϒ10=1.
Definition 5: Average Code Length (λ)
Average code length of a coding scheme is the quotient
of the sum of each node’s code length to the total
number of nodes in an XML document. A node’s code
length is the number of bits of its order code in its
binary representation.
Theorem 1: if ξ=1 for all sub-blocks then λ=O(log(n))
Proof:

2

log

(1) 1

1 1

2

((1) 1)2 2 *
2 1

log 2(1) * * 1 (* 2 2 1) *2 1
2 1 2 1

total length of BIDs
total length of IIDsn

BB
k B k

B
k k

total length of BIDs

totalB

B BB

B B

nk B k

n

n nB n B n B nB

λ

− −

= =

− + +
−=

−
− − + − − +− +

− −=

∑ ∑

64444744448
644474448

64444444744444448

2log 1
2 1

length of IIDs

B

n
n B≈ + −

−

644474448

Similar to Theorem 1, it can also be proved when ϒ≥2,
λ=O(log(n)).

Theorem 2: if ∃δ∈[ln2/2, 1), ∀sub-blocks, ξ≥δ, then

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

218

when B=ln2/(2δ)* log2n, λ is asymptotically minimum and
λ=O(log(n)).

Proof: if ∃δ∈[ln2/2, 1), ∀sub-blocks, ξ≥δ. Suppose
l =n/(δ(2B-1)), which is the max number of sub-blocks
(this is the worst case, and each sub-block has only one
child sub-block), and even if under these conditions:

1

((1 *(1))) /Max B i Bλ = + − +∑
l

l

*1 *(1) 1
2 2 2
B B BB= + − + = + +

l
l

'
2

* * 2 * ln 2 1|
22 (2 1) 2 (2 1)

B

Max B B B

n B nλ
δ δ

= − +
− −

2

2

*(2 1) * *2 *ln 2 (2 1)
2 (2 1)

B B B

B

n B n δ
δ

− − + −
=

−

if ' | 0Max Bλ = ,then Maxλ reaches minimum that is O(log(n)).
However, there is no analytical expression about B,
whereas once n and δ are given, B can be figured out.
As Maxλ λ≤ , and usually B=ln2/(2δ)*log2n, then Maxλ λ≤ ≈
(ln2/(2δ))*log(n), and even if δ=ln2/2, Maxλ λ≤ ≈log(n).

Similar to Theorem 2, it can also be proved that when
ξ≥ln2/2 for more than 50% sub-blocks, then λ=O(log(n)).
This condition can be easily satisfied with real data. In
section 6.1, it will be validated by experiments.

5 BDC: An Efficient Algorithm for Structure
Join

5.1 Basic Concepts

Definition 6: Structure Join [14]
Given an ancestor set AList={a1, a2, …, an} and a
descendant set DList={d1, d2, … ,dm}, where both AList
and DList consist of nodes from the XML document
tree. A structure join of AList and DList, denoted as
AList ∞DList, where the symbol ∞ denotes structure
join, returns all tuple pairs (ai, dj), where ai∈AList and
dj∈DList, such that ai is an ancestor of dj.

Structure join is a core technique in XML query
processing, which directly impacts the efficiency of query
processing. In substance, the mainstream method of
structure join is maintaining an in-memory stack to skip
some unnecessary nodes which don’t participate in a join.
However, when the memory buffer cannot hold all the
elements of the two lists, it needs many I/O operations.
Therefore, a novel algorithm BDC is proposed based on
Bucket Divide and Conquer, which is not only efficient for
BBTC, but also portable to other coding schemes. To
determine the sequential relationship between two
elements in the XML document tree, some partial order
operators are introduced to accomplish the comparison
between two elements. For BBTC, if node a and b are in

different sub-blocks, only a.BID is compared with b.BID,
or otherwise only a.IID is compared with b.IID.

Definition 7: Simple Operators ', ', ', ', '= ≤ ≥p f

1 2 2 1 2 2, , () , ()
minimum{ | minimum(,)}

0 '

1 '

'
'

'

n m

i i

j

j

a b Z a a a a b b b b
if j i a b and i m n then

if a then a b

elseif a then a b

else
if m n then a b
elseif n m then a b
else a b

+∀ ∈ = =
∃ = ≠ ≤

=

=

= =
< ≤

≥

L L

p

f

Definition 8: Complex Operators � ' and � '
a� 'b ' ' 'iff a b or a b or a b≤ =p

a� 'b ' ' 'iff a b or a b or a b≥ =f
In fact, stack-based algorithms are applied to BBTC, but
this cannot address the problem that it is inefficient when
the memory is not enough to hold all the elements. The
two element sets can be partitioned into different buckets,
and only structure join of suited buckets is useful for the

join results. That is, AList∞DList=
1

bn

i=
∪ (AListi∞DListi),

where AListi and DListi denote different buckets of AList
and DList respectively, nb denotes the number of buckets,
that is, only AListi∞DListi are helpful to the results, and
AListi∞DListj=∅(i≠j) or AListi∞DListj⊆AListj∞DListj. In
section 5.2, this will be described in detail.

(a) (b) (c)

Figure 6. Partition an XML document tree into different buckets
For example, in Figure 6, 6(a) is partitioned into 6(b)

and 6(c). A∞B in 6(a) is equivalent to A∞B in 6(b) union
A∞B in 6(c); but A6(b)∞B6(c) and A6(c)∞B6(b) are
unnecessary. Enlightened on the idea of this, AList and
DList are partitioned into different buckets until memory
can hold AListi or DListi. The next section will explain
how BDC fulfills this.

5.2 BDC

In BDC, AList and DList are partitioned into different
buckets satisfying the following three conditions:

1) DList =
1

bn

i=
∪ DListi and DListi ∩ DListj=∅ (i≠j)

2)
1

bn

i=
∪ AListi ⊆ AList

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

219

3) AList∞DList =
1

bn

i=
∪ AListi∞DListi

Condition 1) means ∀nD∈DList, ∃i, nD∈DListi, and ∀i, j,
if i≠j, nD∈DListi then nD∉DListj. Condition 2) means there
may be one element nA∈AList, but∀j, nA∉AListj, that is nA
does not have any children in DList. On the contrary, there
may be one element nA which is in different buckets, that is,
this element has children in all of these buckets. The
equation in condition 3) guarantees the correctness of the
method. BDC can be applied to other coding schemes only
assuring that they satisfy the three conditions. To apply
those three conditions to the coding scheme, we may
partition AList and DList into many different buckets, and
make the size of each bucket under the capacity of memory
buffer. However, in order to satisfy those three conditions,
the number of buckets (nb) and how to load nodes to
different buckets must be determined. Suppose bs is the
number of nodes that memory can hold,
nb=⎡minimum(|AList|, |DList|) /bs⎤. The range of the first
bucket is[s,s+r), and the range of the i-th bucket is[s+(i-
1)*r, s+i*r)(1≤i<nb), the range of the last bucket is[s+(nb-
1)*r, ordermax]. r and s are determined by the following
equations1.

2 max 2 min

max min 2 max 2 min

max min 2 max 2 min

max min 2 max 2 min

log log

- log log
' () - log log

- () log log

d order order

order order order order
r order d order order order

order order d order order

= −

=⎧
⎪= << <⎨
⎪ << >⎩

2

' '

(' log) '

b
b

b
b

b

r r nn
r

r n r nn

⎧ ⎢ ⎥ ≥⎪ ⎢ ⎥⎣ ⎦⎪= ⎨ ⎢ << ⎥⎡ ⎤⎢ ⎥⎪ <⎢ ⎥⎪ ⎣ ⎦⎩

min 2 max 2 min

min 2 max 2 min

2

log log
'

() log log

' '
(' log) '

b

b b

order order order
s

order d order order

s r n
s

s n r n

≤⎧
= ⎨ << >⎩

≥⎧⎪= ⎨ << <⎡ ⎤⎪ ⎢ ⎥⎩

There are two rules about how to assign nodes into
different buckets.

Rule 1: Partitioning DList in BDC

()

,
. .max . ' .max

minimum{ | . ' .max . ' .min}

b

D

D D

D n

D i

D k D k

n DList
if n order DList or n order DList

then n DList

else n DList
i k n order DList or n order DList

∀ ∈
= ≤

∈

∈

= ≤p

 Rule 2: Partitioning AList in BDC

1 In this paper, ordermax=DList.max and ordermin=DList.min, they denote
the maximum order and minimum order in DList respectively according
to the partial order operators ', 'p f .

' .min ' .max ' .max

minimum{ | .max '2* . }
maximum{ | .min '2* . 1}

: { | .max ' 2* . .min

A

A A A

A

A i

k A

k A

k A k

n AList
if n DList or n DList or n DList

discard n
else n AList m i n

m k AList n order
n k AList n order
that is i k AList n order and AList

∀ ∈
< > ≥

∈ ≤ ≤
=
= +

∈
p

≮

≮ '2* . 1}An order +p

AListk.min=DListk.min=s+(k-1)*r; AListk.max=DListk.max= s+k*r.

Theorem 3: According to Rule 1 and Rule 2, AList
and DList can be partitioned into different buckets and
the partition satisfies the three conditions.

For example, suppose bs=1, the XML document in Figure
6(a) can be partitioned into four buckets as shown in
Table3.

Table 3. Result of partitioning AList and DList
ordermax ordermin d nb r′ r s′ s .max

21 4 2 4 5 1 16 16 21
AList .min DList

4 A2,A5,A8,A10
B4, B17, B18, B21

AList1 AList2 AList3 AList4 DList1 DList2 DList3 DList4

B4 B17 B18 B21

.min 16 17 18 19

A2
A8 A2 A2 A5

A10

.max 17 18 19 21

We can design our algorithm BDC according to the two
rules. BDC, first partitions two data lists into different
buckets in line 3, then joins suited buckets in memory in
line 8. If both AListi and DListi can not be loaded into the
memory buffer, it will continue to partition AListi and
DListi in line 6.

AList and DList are partitioned until one of AListi and
DListi can be loaded into memory. If |DListi| ≤ bs, DListi is
loaded into memory, and AListi is in disk. For each
element nA in AListi, obviously its descendent nD satisfies
2nA.order '≤ nD.order 'p (2nA.order +1) (represented as
nD∈[2nA, 2nA +1)), that is, all of nA’s descendents in DListi
must be in the range of [2nA, 2nA +1). When DListi is in
memory buffer, SJIM first sorts all elements in DListi in
line 21, then for each element nA in AListi, SJIM finds nA’s
first descendent ns and last descendent ne in DListi using
the binary search in line 23. Thus, all elements in the
range of [ns, ne] are nA’s descendants. In this case, SJIM
only needs |AList|+|DList|(read)+|SJR|(write) I/Os.

However, it is not the same for |AListi | ≤ bs, that is,
given node nD, finding nD’s ancestors in AListi is not very
easy, because it is difficult to find a range except [1, nD]
satisfying that all of nD’s ancestors are in that range. In this
way, SJIM will classify AListi (similar to partition) until
(5-1) is satisfied.

|
jiAList |=1 or

jiAList ={
1An ,... ,

kAn }. ∀
tAn ,

1tAn
+

in
jiAList ,

tAn is the ancestor of
1tAn
+

(1≤t<k), that

is,
1An , ... ,

kAn are in the same path from root to a leaf.

(5-1)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

220

For example, for classifying AList1={the elements
whose tag/lable is A in Figure 6(a)}, the result is
that

11AList ={A2,A8} and
21AList ={A5,A10}.

Therefore, if |AListi|≤bs, then AListi is in memory. BDC
classifies AListi in line 13 and sorts each

jiAList in

memory, then given an element nD in DListi, IT finds nD’s
nearest ancestor nA in each

jiAList using binary search in

line 15; in this way all of such nA’s ancestors are also
ancestors of nD. In addition, classifying and sorting AListi
can be fulfilled in memory. In this case, SJIM also needs
only |AList|+|DList|+|SJR| I/Os.

5.3 Analysis of BDC Algorithm

The following expression computes the I/O complexity of
partitioning in BDC:

(1)
()

* (/)+
s

b b s

O n b
T n

n T n n n n b
≤⎧

= ⎨ >⎩

T(n) denotes comparing times to partition AList and
DList; n denotes number of nodes in AList or DList, when
partitioning AList it is initialized as |AList |; while
partitioning DList it is initialized as | DList |. nb denotes
number of buckets.

If the size of each bucket is nearly equal, BDC only
scans datasets once for partitioning. In this case,
T(n)=|AList|+|DList|. Even if in real-world data
sets, BDC usually costs (|AList|+|DList|) for
partitioning. In addition, when considering read and write,
it costs 2(|AList|+|DList|). SJIM only costs
|AList|+|DList|+|SJR|, which is used to read
datasets to memory and write the result SJR to disk. As a
result BDC costs (3(|AList |+|DList|)+|SJR|)
I/Os. BDC is superior to stack-based algorithms, because
previous algorithms first need to sort AList and DList, then
read them to memory, the I/O cost is at least
2(log|DList|*|DList|+log|AList|*|AList|)
+(|AList|+|DList|+|results|), in which sorting
costs 2(log|DList|*|DList|+log|AList|*
|AList|) I/Os and memory computing costs
(|AList|+|DList|+|results|) I/Os. If consider
maintaining indices, the I/O cost is more expensive.
BDC not only accelerates structure join by skipping more
unnecessary elements, but also works for other coding
schemes, such as Region Code. In that case, BDC just
requires changing the general operators such as <, >, etc.
to the corresponding simple operators in Definition 7.

6 Experimental Analysis of BBTC&BDC

Comprehensive experiments are conducted to study the
effectiveness of BBTC and BDC. In experiment 1, B is
determined, which is the key to reduce storage. Second,
the time and space performances of BBTC are compared
with those of Region Code: Zhang [21] and Dietz [10] in
experiment 2. Then the update cost of BBTC is compared
with Region Code in experiment 3. Last, since the best and
most common structure join algorithm based on Region
Code is XR-tree, BDC is compared with XR-tree in
experiment 4. The experiments use the standard XMark
[22], Shakespeare [23] and DBLP [24] datasets to test the
algorithms. The experimental environment is a Windows
2000 machine with AMD2600 CPU and 1GB RAM. The
programming language is standard C++.

6.1 Experiment 1: Determination of B in BBTC

Figure 7 (a) and (b) illustrate the choice of B value for
Shakespeare and XMark documents respectively. They

Algorithm 2 BDC(AList,DList,bs)
Input: AList, DList, bs
Output: SJR={(a,d)|a∈AList,d∈DList and a is
an ancestor of d}
1. nb=⎡minimum(|AList|,|DList|)/bs ⎤;
2. SJR=∅;
3. partition AList, DList into AListi, DListi;
4. for i=1 to nb
5. if(minimum(|AListi|,|DListi|)>bs) then
6. BDC(AListi, DListi, bs);
7. else
8. SJR= SJR ∪ SJIM(AListi, DListi, bs);
9. endif
10.endfor.

SJIM (AListk, DListk, bs)
Input: AListk, DListk, bs
Output: SJRk={(a,d)|a∈AListk,d∈DListk and a is
an ancestor of d}
11. SJRk=∅;
12. if(|AListk| ≤ bs)
13. classify AListk into ikAList until

satisfying(5-1) and sort
ikAList

14. for Dn ∈DListk

15. find its nearest ancestor 'An in each
ikAList ;

16. for
iA kn AList∈ and An is an ancestor of 'An

(contain 'An)

17. SJRk = SJRk ∪ {(An , Dn)};

18. end for
19. end for
20. else {|DListk| ≤ bs }
21. sort DListk in memory;

22. for each A kn AList∈

23. find the range of An ’s descendent in

DList
k
:[,s en n];

24. SJRk= SJRk ∪ {(An , Dn)};(Dn ∈[,s en n])

25. endfor
26. endif.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

221

present the space of the BBTC consumed with different B
values for various XML documents. Each curve denotes an
XML document. Since the lowest point of each curve
represents the minimum space cost, and the B value at this
point is its best choice. On the one hand, the curves with
block-partition have observable advantages in storage size,
but the stability of space cost with different values of B is
another advantage revealed. Figure 7 (a) and (b) also
illustrate the effect of different values of B on space
performance for Shakespeare and XMark respectively.
Compared with Non-block, BBTC reduces 30% storage
space in Shakespeare data and 73% in XMark data. In
addition, it can be concluded from the analysis that the best
B value is related to the number of nodes in the XML
document. Figure 8 indicates the relation between the best
B value and n (the number of nodes in the XML
document). Since the relation between the best B value and
n meets logarithmic normal distribution, the best B value
can be represented by log(n) approximately, which
exactly complies with the analysis in Theorem 2 of
section 4.3.

6.2 Experiment 2: Cost of Update

BBTC supports dynamic updating of XML documents,
and when XML Documents updated, the cost of updating
codes in BBTC is less than Region Code dramatically. In
Figure 9, when only inserting or deleting a node, Region
Code nearly needs to recode the whole document, but
BBTC only changes a few codes, that is why the columns
of BBTC are invisible in Figure 9.

6.3 Experiment 3: Comparison of Time and Space
Performance

Region Code is asymptotically minimal in space
performance, however BBTC has superior space
performance to the Region Code, because the Region
Code maintains two large numbers for one code, but
sibling_order in BBTC is very small and needs little
storage.

6.4 Experiment 4: Comparison of Structure Join
Algorithms

In this section, different data sets are used to compare
BDC with XR-tree. They are real-world XML data, i.e.
XMark [22] and DBLP [24]. DBLP is a set of bibliography
files, the size of the raw text files is around 53.3MB. The
benchmark (XMark) data is generated with SF(scale factor)
= 1, and the raw text file is 113MB. Six structure joins are
selected for the DBLP data, namely DSD1, DSD2, ... ,
DSD6. Similarly, for XMark, they are DSX1,DSX2, ... ,
DSX6. Six structure joins are also selected for synthetic
data Bookset.xml which is similar to Figure1, namely
DSB1, DSB2, ... , DSB6. In addition, in order to compare

the two algorithms, structure joins are selected with
different ratios, namely DS-A/D1, DS-A/D2, ... , DS-
A/D6(|AList|<|DList|) and DS-D/A1, DS-D/A2, ... , DS-
D/A6(|DList|< |AList|). The statistics of the data sets are
shown in Table 4.

Table 4. Statistics of data sets
Name |AList| |DList| Name |AList| |DList| Name |AList| |DList|
DSX1 9750 35 DSD1 105754 294470 DSB1 1 3571
DSX2 21750 43500 DSD2 105754 171071 DSB2 1 3621
DSX3 21750 48250 DSD3 801 184465 DSB3 50 3621
DSX4 25500 12823 DSD4 2326 4969 DSB4 50 3571
DSX5 10830 59486 DSD5 84095 13660 DSB5 3571 3621
DSX6 25500 48250 DSD6 84095 82980 DSB6 3571 26728
DS-
A/D1 801 184465

DS-
A/D5 25500 48250

DS-
D/A3 8765 1256

DS-
A/D2 3571 267287

DS-
A/D6 105754 171071

DS-
D/A4 9750 2685

DS-
A/D3 2326 49969

DS-
D/A1 9750 35

DS-
D/A5 13500 12823

DS-
A/D4 10830 59486

DS-
D/A2 8765 454

DS-
D/A6 15071 13660

To compare BDC with XR-tree, Improved Ratio (IR) is

defined:
IR=(TXR-tree-TBDC)/TXR-tree

where TXR-tree and TBDC are the elapsed times for XR-tree
and BDC algorithm respectively.

First, BDC is better than XR-tree in different data sets:
(1) Real-world data sets: for XMark, its IR is nearly

80% in DSX6 (Figure 12(a)); for DBLP, its IR exceeds
90% in DSD1 (Figure 12(b)).

(2) Synthetic data set: for Bookset.xml, its IR is nearly
1 in DSB6 (Figure 12(c)).

Second, BDC is compared with XR-tree on different
buffer sizes. Because XR-tree needs large memory to sort
data sets and store indices, when memory size is limited,
its performance declines dramatically. As shown in Figure
13, when buffer size is 0.5% of the data sets, the
performance of XR-tree is far worse than BDC; and even
if the buffer size is 10% or more, it is not as good as BDC,
where the datasets are from XMark with |AList|=21750
and |DList|=69969.
Last, in real queries, the sizes of AList and DList are
usually not equal, even quite different, that is, |AList| is far
less than |DList| or vice versa. In this way, sorting data sets
is not efficient. As a result, through simply partitioning the
smaller data set and loading it to memory, we can only
scan the other sets once to finish the structure join. Figure
14(a) and (b) reflect the efficiency of BDC, and their IRs
reach 1 in most of DS-A/Ds and DS-D/As.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

222

Figure 12. Elapsed time with different data sets

0

2

4

6

8

10

12

14

16

18

DSX1 DSX2 DSX3 DSX4 DSX5 DSX6

E
l
a
p
s
e
d

T
i
m
e
(
S
)

XR-tree BDC

0

2

4

6

8

10

12

14

DSB1 DSB2 DSB3 DSB4 DSB5 DSB6

El
a
ps
ed
 T
im
e(
S)

XR-tree BDC

0

10

20

30

40

50

60

70

80

90

100

DSD1 DSD2 DSD3 DSD4 DSD5 DSD6

E
la
p
s
e
d
T
i
m
e(
S
)

XR-tree BDC

(a) XMark (b) DBLP (c) Synthetic

0

10

20

30

40

50

60

0.50% 1.00% 2.00% 3.00% 4.00% 5.00% 6.00% 10%

Buffer size/Dataset size

El
a
ps

ed
 T

im
e
(S

) XR-tree BDC

Figure 13. Elapsed time with different buffer

0

2

4

6

8

10

12

14

16

18

DS-A/D1 DS-A/D2 DS-A/D3 DS-A/D4 DS-A/D5 DS-A/D6

E
l
a
ps

e
d
 T

i
m
e
(S

)

XR-tree BDC

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

DS-D/A1 DS-D/A2 DS-D/A3 DS-D/A4 DS-D/A5 DS-D/A6

E
la
p
se
d
T
im
e
(S
)

XR-tree

BDC

(a) |AList| < |DList| (b) |DList| < |AList|
Figure 14. Elapsed time with different ratios between |AList| and |DList|

0

50

100

150

200

250

300

350

400

228k 179k 249k 210k 197k
size of Shakespeare XML doc

Sp
ac

e(
K

)

BBTC

DietZ

Zhang

0

5

10

15

20

25

30

2.27 5.61 6.81 9.15 11.3 22.8 34.1 45.3

size of XMark XML doc(M)

Sp
ac

e(
M

)

BBTC

DietZ

Zhang

23679
46021

69874
92663

106743
129462

156371

224357

16 60 88 120 220 340 360 410
0

50000

100000

150000

200000

250000

24079 46224 69952 94663 116606 139832 187961 234412

Number of nodes in an XML document

N
um

be
r o

f n
od

es
 to

 b
e

re
co

de
d

Region Code
BBTC

Figure 9. Cost of update (a) Shakespeare (b) XMark
Figure 10. Comparison of space performance

0

50

100

150

200

250

300

350

400

450

500

No-Block 8 12 16 20 24 28 32

Value of B（bits）

Sp
ac

e(
K

)

hen_v.xml john.xml lear.xml

lll.xml taming.xml
0

2

4

6

8

10

12

14

16

No-
Block

8 12 16 20 24 28 32 36 40 44 48

Value of B(bits)

Sp
ac

e(
M

) 1.12M 2.27M 3.41M

4.61M 5.62M

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000 250000

number of nodes

B
(b

its
)

(a) Shakespeare (b) XMark
Figure 7. The effect of different B values on space performance Figure 8. The best B values vs. n.

0

0.05

0.1

0.15

0.2

0.25

228k 179k 249k 210k 197k
size of Shakespeare XML doc

Ti
m

e(
S)

BBTC

DietZ

Zhang

0

100

200

300

400

500

600

2.27 5.61 6.81 9.15 11.3 22.8 34.1 45.3

size of XMark XML doc（M）

Ti
m

e（
S）

BBTC

DietZ

Zhang

(a) Shakespeare (b) XMark Figure 11. Comparison of time performance

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

223

7. Conclusion

In this paper, firstly a new update-aware coding scheme is
proposed based on the binary-tree, which not only codes
the XML documents easily and infers relationship between
nodes rapidly, but also supports XML documents update
effectively.

Second, to save storage space, BBTC is presented,
which partitions an XML document into sub-blocks and
reduces the average code length to O(log(n)).

At BDC is proposed, which is more efficient than
previous algorithms when memory buffer cannot hold the
unsorted input element sets. BDC partitions an XML
document tree into different buckets and only the structure
joins of suited buckets are helpful to the result, that is,
BDC accelerates structure join when input element sets are
out-of-order. BDC, not only accelerates structure join
based on BBTC without any indices, but also has good
portability, that is, it can be applied to other coding
schemes.

Our experiments have proved that both the coding
scheme BBTC and the structure join algorithm BDC
significantly outperform the existing studies.

References
[1] S Abiteboul, D. Quass, J. McHugh et al. The Lorel query language

for semi-structured data Int’l Journal on Digital Libraries, 1997.
[2] S. AI-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D. Srivastava,

Y.Q. Wu. Structural joins: A primitive for efficient XML query
pattern matching. ICDE, 2002.

[3] D. Chamberlin et al. XQuery : A query language for XML. WWW,
2001

[4] Y. Chen et al. L-Tree: a dynamic labeling structure for ordered
XML data. In Proc. of the 2004 Int’l Workshop on Database
Technologies for Handling XML Information on the Web.

[5] S.Y. Chien et al. Efficient complex query support for multi-version
XML documents. EDBT, 2002.

[6] S.Y. Chien et al. Efficient structural joins on indexed XML
documents. VLDB, 2002.

[7] J. Clark, Steve DeRose. XML path language (XPath) . W3C
Recommendation World Wide Web Consortium, 1999.

[8] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. In
Proc. of the 2002 ACM Symp. on Principles of Database Systems,
2002.

[9] Alin Deutsch, Mary Fernandez, Daniela Florescu et al. A query
language for XML. WWW, 1999.

[10] Paul F Dietz. Maintaining order in a linked list. The 14th Annual
ACM Symp. on Theory of Computing, 1982.

[11] D. Florescu, D. Kossman. Storing and Querying XML Data using
an RDBMS, IEEE Data Engineering Bulletin, 1999.

[12] D. D. Kha, Masatoshi Yoshikawa, and Shansake aemara. An XML
indexing structure with relative region coordinate. ICDE, 2001.

[13] Q. Li and B. Moon. Indexing and querying XML data for regular
path expressions. VLDB, 2001.

[14] H.F. Jiang, H.J. Lu, W. Wang, B.C. Ooi. XR-Tree: Indexing XML
data for efficient structural joins. ICDE 2003.

[15] A. Silberstein et al. BOXes: Efficient maintenance of order-based
labeling for dynamic XML data. Technical report, Duke University,
2004.

[16] A. Silberstein, H. He, Ke Yi, Jun Yang. BOXes: Efficient
Maintenance of Order-Based Labeling for Dynamic XML Data.
ICDE, 2005.

[17] Igor Tatarinod, Stratis D. diglas, Kedin Beyer, and Chan Zhang.
Storing and querying ordered XML using a relational database
system. SIGMOD, 2002.

[18] W.Wang, H.f. Jiang, Hongjun Lu, and Jeffrey Xu Yu. PBiTree
coding and efficient processing of containment joins. ICDE, 2003.

[19] N. Wirth. Type Extentions. ACM Transaction on Programming
Languages and systems, 1988.

[20] X. Wu et al. A prime number labeling scheme for dynamic ordered
XML trees. ICDE, 2004.

[21] C. Zhang et al. On Supporting Containment Queries in Relational
Database Management Systems. SIGMOD, 2001.

[22] http://www.xml-benchmark.org/
[23] http://www.xml.com/pub/r/396
[24] http://dblp.uni-trier.de/xml/

Guoliang Li, male, Ph.D candidate in
Tsinghua University. His main research
interests are in the areas of database, XML,
semantic cache, web service, and data mining.

Jianhua Feng, male, professor in Tsinghua
University. His main research interests are in
the areas of database, XML, data warehouse,
and semantic cache.

Na Ta, female, master in Tsinghua University.
Her main research interests are in the areas of
XML, Semantic cache.

Lizhu Zhou, male, professor in Tsinghua
University. His main research interests are in
the areas of database, distributed database,
digital library, data mining and massive
storage.

