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Summary  
The identification of ancestor-descendant or parent-child 
relationship between elements of XML documents plays a 
crucial role in efficient XML query processing. One of the 
popular methods for performing this task is to code each 
node in the XML document by traversing its nodes. 
However, the main problems of existing approaches are 
that they either lack the ability to support XML document 
update or need huge storage space. This paper proposes a 
novel coding scheme called Blocked Binary-Tree Coding 
scheme (BBTC) by taking the issues of identification, easy 
update and low storage cost into account. BBTC identifies 
the ancestor-descendant relationship in constant time. For 
the update, only a few simple operations for the affected 
document elements are needed. More importantly, for 
BBTC, this paper proposes a structure join algorithm BDC 
based on Bucket Divide and Conquer. BDC not only 
accelerates structure join dramatically when the input 
element sets are neither sorted nor indexed, but also can be 
applied to other coding schemes. The extensive 
experiments show that both the coding scheme BBTC and 
BDC significantly outperform the existing studies. 
 
Key words: XML, structure join, coding scheme, partial 
order 

Introduction 

To support queries on XML databases, a number of query 
languages such as Lorel[1], XML-QL[9], XPath [7], and 
XQuery [3] have been studied. One of their core 
techniques is to use path expressions to express structure 
queries for XML documents. To evaluate such a query, for 
instance, “Book//Name”, a naïve tree traversal strategy 
could be used to scan the entire XML data tree even there 
are only few results. To overcome the shortcoming of 
traversing the entire original document of this naïve 
strategy, a coding scheme can be used to assign each node 
in the document tree a unique code so that the ancestor-
descendant (or parent-child) relationship of element nodes 
and attribute nodes in the tree can be figured out directly. 

A number of such XML coding schemes have been 
proposed for the query, especially structure query of XML 
documents [11]. Based on these methods, for the 
“Book//Name” example, an alternative strategy can first 
retrieve all Book and Name elements through codes, and 
then find all occurrences of the ancestor-descendant 
relationship between these two element sets. In this way, 
query of XML can be converted to structure join 
computation by using coding schemes. However, present 
coding schemes either do not support XML documents 
update, or have high storage cost. In addition, previous 
algorithms about structure join require the order of input 
data sets or additional indices with an assumption that 
memory buffer can hold full input element sets.  

To address these problems, this paper first proposes a 
new coding scheme based on binary-tree, which efficiently 
supports both dynamic update of XML documents and the 
identification of ancestor-descendant relationship. The 
coding scheme, Blocked Binary-Tree Coding scheme 
(BBTC), has average code length O(log(n)), which is 
asymptotically minimum. In this paper, n is used to denote 
the number of nodes in an XML document. To skip 
unnecessary elements which do not participate in a join, a 
structure join algorithm BDC is designed based on a 
technique, Bucket Divide and Conquer. This algorithm 
partitions the two element sets for the join into different 
buckets and only structure join of suited buckets contribute 
to the results. In this way, it reduces I/Os sharply and 
accelerates the structure join.  

In brief, the major contributions are as follows:  
• First, BBTC can identify the ancestor-descendant 

relationship in constant time, and the inference of 
such relationship is based on simple equality 
operations (add and shift) rather than complicated 
operations (estimation of region range). The 
average code length of BBTC is O(log(n)), which 
is asymptotically minimum.  

• Second, BBTC maintains order information among 
sibling nodes so that the queries about sibling 
sequence are supported effectively, such as 
Book[2]//Name[3]. At the same time, BBTC 
supports XML update efficiently through its 
sibling order information.  
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• Third, BDC can accelerate structure join by 
skipping many unnecessary elements which don’t 
participate a join through divide and conquer 
strategy. BDC is significantly efficient for structure 
join, especially when memory size is limited.  

• Last, BDC is not only efficient for our coding 
scheme, but also portable to other coding schemes.  

This paper is organized as follows: section 2 introduces 
and analyzes related work on XML coding schemes and 
structure join. Section 3 presents our coding scheme in 
details. In section 4, a hierarchical storage method is 
introduced to BBTC. In section 5, an efficient structure 
join algorithm, BDC, is presented. In section 6, the 
experimental results of our coding scheme and structure 
join algorithm are presented with comparisons to other 
approaches. Last, a conclusion is made in section 7.  
difference images from adjacent frames and recognize 
hand gestures by improved centroidal profile. 
This paper consists of 5 sections. The section 2 describes 
the hand region extracting method from a sequential color 
images with entropy analysis. The section 3 stresses on 
gesture recognition techniques from the extracted hand 
region images. The section 4 shows the experiment results 
by proposed method. The section 5 concludes this 
proposal. 

2.  Related Work 

Various coding schemes have been proposed for query 
processing of XML documents. These existing coding 
schemes fall into two main classes: (1) the region based 
coding [5, 10, 12, 13, 21] and (2) the path based coding [8, 
15, 20]. The region based coding scheme is more widely 
used. 

2.1   Coding Schemes 

The main idea of region-based coding is to assign a pair of 
numbers <start, end> called Region Code to each node in 
the XML document tree, satisfying that the Region Code 
of a node covers its descendants’ codes. That is, node u is 
the ancestor of node v iff. u.start<v.start and v.end<u.end. 
The coding schemes in [5, 10, 12, 13, 21] are all based on 
Region Code. They require level or height information to 
differentiate the ancestor or parent. In addition, complex 
operation, instead of equality estimation, is used when 
deciding parent-child and ancestor-descendant 
relationships. Moreover, these methods cannot support 
dynamic update of XML documents well. Some study [13] 
proposed a solution which preserves code space for the 
size in <order, size> or makes order the extended pre-
order traversal number so that extra space can be preserved 
to support update. But it is difficult to decide how much 
space the preservation is to make, and when the preserved 
space is used up, the XML document has to be recoded 

again. N.Wirth proposed the Bit-vector coding scheme in 
[19]. Dewey code has been proposed in [17]. Dynamic 
labeling structure has been proposed in [4, 8, 20], however, 
such long labels not only incur high storage overhead, but 
also are less useful in query processing because they are 
more expensive to process than shorter labels. W-BOX 
and B-BOX, two novel structures for maintaining order-
based labeling of XML elements were presented in [15, 
16]. Wang et al. [18] also proposed PBiTree, which 
converted an XML document tree into a binary-tree, and 
numbered each node sequentially. The main difference of 
PBiTree from our approach is that, it does not support 
update and involves large storage.  

2.2   Structure Join 

Structural join is to find all occurrences of structural 
relationship between two element sets, which is a core 
technique to query path expression. Presently structure 
join is almost about region based technique, and always 
requires ancestor list and descendent list in order or 
maintains indices with assumption that memory buffer can 
hold full element sets. Zhang et al. [21] propose a variant 
of the traditional merge join algorithm, called multi-
predicate merge join (MPMGJN). However, it may 
perform a lot of unnecessary computation and I/Os for 
matching structural relationship. Similarly, EE-Join and 
EA-Join in [13] may scan an element set multiple times. 
The Stack-Tree-Desc algorithm proposed in [2] improved 
the merge based structural join algorithms with stack 
mechanism. The basic idea is to take the two input lists, 
AList and DList, both sorted on their start values, and 
merge them. A stack is introduced to maintain ancestor 
nodes that will be used later in the join. As such, only one 
sequential scan is performed on AList and DList. Chien et 
al [6], proposed a stack-based structural join algorithm that 
could utilize the B+-tree indices built on the start attribute 
of the participating element sets. An enhancement to the 
basic B+-tree approach is to add sibling pointers based on 
the notion of containment. XR-tree in [14] utilizes a new 
index to skip ancestor nodes, which overcomes the 
drawback of [6]. However, there is a problem that both of 
them have no indices on intermediate results. As a result, 
existing algorithms require both of the input element sets 
sorted or need to build additional indices (but no indices 
for intermediate results). 

3   A New Update-aware Coding Scheme 

3.1   Coding Scheme and Corresponding Algorithm 

Our coding scheme is a pair <order, 
sibling_order>, in which order represents the 
position information of a node in the XML document tree, 
and sibling_order means the sequential number of an 
element among its siblings, which reflects order 
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characteristic of XML documents and can help to deal with 
update operation, therefore query of sibling relationship is 
effectively supported. The approach to code an XML 
document is described in Algorithm 1, in which the order 
of the leftmost child is its parent’s order multiplied by 2, 
and its sibling_order is 0; the orders of other 
children except the leftmost child are their preceding 
siblings’ order multiplied by 2 plus 1, and 
sibling_orders are their preceding siblings’ 
sibling_order plus 1(order of the root is 1, 
sibling_order is 0). 

 

 
Figure 1. XML file Bookset.xml and corresponding codes 

Using Algorithm 1 the codes for all nodes can be 
worked out during once scan of the XML document tree. 
A simple example is shown in Figure 1 (codes of all 
TEXT_NODEs are omitted). 
3.2   Properties of Our Coding Scheme 

We can infer the relationship between any two nodes using 
simple operations. 

Given nodes A, D and N in an XML document tree T.  
1. N.level = number of zeros in the binary 

representation of N.order plus 1. This value 
represents which level the node N lies in the XML 
document tree.  

2. A is an ancestor of D iff. (3-1) is true; (3-1) is 
equivalent to (3-2) and (3-2) is more easy to be 

inferred in computer. 
2*A.order = 
 ⎣D.order/ 2 2log . log . 12 D order A order− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎦ 

(3-1)

(A.order<<1) = (D.order>> 
(⎣log2(D.order)⎦- ⎣log2(A.order)⎦-1)) 

(3-2)

3. A is a parent of D iff. (3-1) or (3-2) is true and 
D.level= A.level + 1. 

 
In this paper, ⎣X⎦ denotes the integer part of number X; 

<< denotes shift leftward; >> denotes shift rightward.  
 
For instance in Bookset.xml (the XML document in 

Figure 1), suppose we want to infer the relationship 
between /Bookset/Book[1] (order is 2) and 
/Bookset//Degree (1st node’s order is 37, 2nd is 85). 
As ⎣log237⎦=5, ⎣log285⎦=6, and 2*2=⎣37/25-1-1⎦, so 1st 

Degree node is a descendant of Book[1], but not a 
child, because level of Book[1] is 2(there is one zero in 
binary representation of 2=(10)2), and level of 1st Degree 
is 4(there are 3 zeros in binary representation of 
37=(100101)2). As 2*2!= ⎣85/26-1-1⎦, 2nd Degree node is 
not a descendant of Book[1].   

3.3   Support of XML Documents Update 

According to the basic idea, our approach does not need to 
code the XML document again when updated. Only insert 
and delete operations are concerned here, and other update 
operations, such as changing the value of a tag, are isolate 
to coding schemes. Due to the characteristic of our coding 
scheme, a new node is inserted as the ‘last’ child of its 
parent, and the order of the new node can be calculated 
very easily, only to increase its following siblings’ 
sibling_orders by 1.  

 
Figure 2. Update of an XML document 

An example is shown in Figure 2. The dashed nodes in 
Figure 2(a) are inserted nodes. The solid dashed node is 

<Bookset> 
<Book> 

  <ID>1</ID> 
<Author> 

<Name>Fengjh</Name> 
<Degree>PhD</Degree> 

</Author> 
<Name>DB</Name> 

 </Book> 
<Book> 

  <ID>2</ID> 
<Author> 

<Name>Zhoulz</Name> 
<Degree>PhD</Degree> 

</Author> 
<Name>DDB</Name> 

</Book> 
</Bookset> 

Bookset

Book Book

ID Author Nam e

Nam e Degree Nam e Degree

Author Nam eID

1

Fengjh Ph.D

2

Zhoulz Ph.D

DB DDB

1， 0

2， 0 5， 1

4，0 9， 1 19， 2 10， 0 21， 1 43， 2

18， 0 37， 1 42， 0 85， 1

Algorithm 1: Coding_XML_Tree(N) 
Input: N is a node of an XML document tree T 
Output: <N.order, N.sibling_order> 
1. if N is the root of T then {N.order=1; 
N.sibling_order=0;} 
2. else  
3.    if N is N.parent.leftmost_child then 

{N.order=N.parent.order*2; 
N.sibling_order=0; } 

4.    else {  
N.order= N.preceding_sibling.order*2+1; 

N.sibling_order=N.preceding_sibling.
sibling_order+1;} 

5.    endif 
6. endif 
7. for each NC, NC is a child of N 
8.    Coding_XML_Tree (NC); 
{recursive calling all the children nodes of N based on depth first 

search} 
9. endfor 

(a)  Original document 

(b)  Updated document 

1，0

9，1 43，221，110，019，24，0

5，12，0

87，2

85，142，037，118，08，0

1，0

9，1 43，321，110，019，24，0

5，12，0

87，2

85，142，037，118，08，0
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appended to node 4, and its code is (4*2,0). But hollow 
dashed node 87 is inserted before node 43, so insert it as 
the ‘last’ child of its parent node 5, and its order is 
43*2+1=87, but its sibling_order is 2 which denotes 
its order among its siblings, and increase all of its 
following siblings’ sibling_orders by 1, and in 
Figure 2(b) node 43’s sibling_order is updated to 3. 
Delete operation is very easy, and it is only needed to 
remove the deleted node (dn) and decrease 
sibling_orders of all the dn’s siblings by 1 whose 
sibling_orders are greater than 
dn.sibling_order. 

4   Storage of BBTC 

General XML document trees are not regular, but the 
binary-tree has such advantages that it has regular 
hierarchical structure and is easily to be stored. Therefore, 
the general XML document trees are converted to ordered 
binary-trees. 

4.1   Conversion from an XML Document Tree to a 
Binary-tree 

Let T be an XML document tree and BT be the 
corresponding converted binary-tree, the corresponding 
conversion rules are as follows:  

1) A∈T, if A is the root of T, then A is the root of BT. 
2) ∀A, D∈T, if D is the first child of A in T, then D is 
the left child of A in BT. 
3) ∀D1, D2∈T, if D2 is the following sibling of D1 in T, 
then D2 is the right child of D1 in BT. 

     
Figure 3. XML document tree and its binary-tree 

 

 
Figure 4. Storage architecture of BBTC 

Using these rules, the XML document tree in Figure 1 can 
be converted to a binary-tree in Figure 3. 

In this way, an element can be coded in the XML 
document through its binary-tree directly. The detailed 
coding method is as follows:  

1) if R is the root of BT then R.order =1 
2) ∀D1, D2, A∈BT, if D1 is the left child of A then 
D1.order = A.order*2;  

3) if D2 is the right child of A then D2.order = 
A.order *2+1.  

The coding method of the binary-tree is identical with 
Algorithm1 in section 3.1. 

 
   Figure 5. BBTC 

4.2   BBTC 

The disadvantage of the binary-tree code is that it needs 
relatively large storage space. To solve this issue, we 
propose new storage architecture. Due to properties of the 
binary-tree, some descendent nodes store prefix of their 
ancestors repeatedly. Therefore, the binary-tree can be 
partitioned into different sub-blocks with elements in each 
sub-block having the same ancestor, and then each element 
can be coded relative to the ancestor (root of the sub-block) 
in each sub-block. Thus, the common prefix of each 
element’s code can be stored only once. We call it Blocked 
Binary-Tree Coding scheme (BBTC) as shown in Figure 4. 
The common prefix called BlockID (BID), and the other 
part of the code to distinguish each other in the sub-block 
is called InnerID (IID). In Figure 4, ElementNO denotes 
how many elements there are in a sub-block. That is to say 
in BBTC, each element has its own IID, and all elements 
in a same sub-block share a common BID, which is the 
original order code of this sub-block’s root. There are 
some issues to be addressed in BBTC, such as how large a 
sub-block should be and what structural relationship 
should be maintained between sub-blocks. To describe 
quantitatively how large a sub-block is, we introduce B, 
which is the height of the sub-block (the height of the sub-
block which has only one node is 1), and 2B-1 represents 
the maximum number of elements in a sub-block.  

The rules to partition a binary-tree are:  
1. All nodes whose height differences to the root less 

than B (including the root itself) are in a same sub-
block. The first sub-block’s BID is 1, and the sub-
block’s root is the root of the binary-tree.  

2. ∀NA, NA is a leaf node of one sub-block, if NA has a 
child ND, then a new sub-block is created with ND as 
its root, and all of ND’s descendents whose height 
differences to ND less than B are in this sub-block. 
Suppose that IID of NA is C, and the BID of that sub-
block which NA belongs to is D, then the BID of the 
new sub-block rooted at ND can be computed by 
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formula 4-1: 
-1

-1

(( -1)*2 )*2         -    

(( -1)*2 )*2 1  -

B
D A

B
D A

D C N is the left child of N
BID

D C N is the right child of N

⎧ +⎪= ⎨
+ +⎪⎩

 

(4-1)

3. The IID of each sub-block’s root is always 1; other 
nodes’ IIDs and sibling_orders are coded in 
each sub-block according to 4.1. 

Table 1. The storage of BBTC 
BBTC Original code 

BID ElemetNO (IID,sibling_order) 
(1,0) (2,0) (4,0) (5,1) 1 4 (1,0) (2,0) (4,0) (5,1)
(9,1) (18,0) (19,2) (37,1) 9 4 (1,1) (2,0) (3,2) (5,1)
(10,0) (21,1) (42,0) (43,2) 10 4 (1,0) (3,1) (6,0) (7,2)

(85,1) 85 1 (1,1) 

Let B be 3, the binary-tree of the XML document, 
Bookset.xml (Figure 3), can be partitioned into four sub-
blocks (Figure 5), and Table 1 lists the details.  

For each sub-block, we can compute each node’s 
original order code through its IID and its sub-block’s 
BID. Suppose that a node’s IID is C and its sub-block’s 
BID is D, and its order code in the original XML 
document tree is:  

2log(D-1)*2 C C⎢ ⎥⎣ ⎦ +  (4-2)

For example, the original order of node (IID is 7, 
BID is 10) is 43((10-1)*22+7). Therefore, when inferring 
whether two nodes have the ancestor-descendant 
relationship or not, firstly their original codes are figured 
out according to (3-2), and then the relationship according 
to the rules in section 3.2 can be gotten. However, it is not 
necessary to compute the original codes to infer the 
relationship. In next section some simple rules will be 
given, through which a node’s IID and its sub-block’s BID 
will be used directly to infer their relationship.  

There are two definitions to be introduced before we 
present the rules in detail.  

Definition 1: Sibling Sub-blocks 
Given two different sub-blocks, suppose that their 
BIDs are B1 and B2 respectively, if B1 and B2 
satisfy

2 2
log 1 log 2B BB B⎢ ⎥ ⎢ ⎥=⎣ ⎦ ⎣ ⎦ , then these two sub-blocks are 

called sibling sub-blocks.  
Definition 2: Collateral Sub-blocks 
Given two different sub-blocks, suppose that their 
BIDs are B1 and B2 respectively, if B1 and B2 do not 
have the ancestor-descendant relationship according to 
rules in section 3.2, then these two sub-blocks are 
called collateral sub-blocks. 
Three rules are given to infer two elements’ 

relationship by their BIDs and IIDs: 
1. If two nodes have the same BID (in the same sub-

block), then the rules in section 3.2 can be used to 
infer their relationship through their IIDs.  

2. If the sub-blocks that the two elements belong to are 
sibling sub-blocks or collateral sub-blocks, then there 
is no ancestor-descendant relationship between them.  

3. Otherwise, suppose the IIDs of the two nodes are C1 

and C2 respectively and their BIDs are D1 and D2 
(without loss of generality, we suppose D1<D2). 
Their relationship can be inferred by evaluating 
relationship between N1 and D2 through the rules in 
section 3.2, where 2log 11 ( 1 1)*2 1CN D C⎢ ⎥⎣ ⎦= − + , 
N1.level=C1.level+D1.level-1.  

Using the three rules, the relationship between them can be 
inferred. For instance, the relationship between some 
nodes in Table 2 can be inferred, in which A-D and P-C 
stand for Ancestor-Descendant and Parent-Child 
relationships. 

Table 2. Inferring relationships between some nodes 
Node A Node D A-

D 
P-
C 

Reason 

order BID IID order BID IID 
9 9 1 37 9 5 √ √ in the same 

 sub-block (rule1) 
order BID IID order BID IID 

18 9 2 85 85 1 × × collateral  
sub-blocks (rule2) 

order BID IID order BID IID 
√ × 

N1=5, 5*2=⎣85/26-2-1⎦ 
(rule3); but (5.level 
+1=2) !=(85.level+1=4)

4.3   Analysis of Code Length 
To analyze the average code length of BBTC, some 
definitions are introduced firstly. 

Definition 3: Saturation (ξ)  
Saturation of a sub-block means the ratio of actual 
number of nodes (AN) in this sub-block to the max 
number of nodes (TN) that this sub-block can contain, 
that is:ξ=AN/TN=AN/(2B-1). 
Definition 4: Fan-out (ϒ)  
Fan-out can only be defined on a sub-block      which 
has child sub-blocks. For such a sub-block, ϒ denotes 
the number of its leaves which have children in the 
binary-tree.  

For example, in Figure 5, ξ10=4/7,ξ9=4/7; ϒ1=2,ϒ10=1. 
Definition 5: Average Code Length (λ)  
Average code length of a coding scheme is the quotient 
of the sum of each node’s code length to the total 
number of nodes in an XML document. A node’s code 
length is the number of bits of its order code in its 
binary representation.  
Theorem 1: if ξ=1 for all sub-blocks then λ=O(log(n)) 
Proof:  

2

   

log

( 1) 1

1 1

   

2

(( 1) 1)2 2 *
2 1

log 2( 1) * * 1 ( * 2 2 1) *2 1
2 1 2 1

total length of BIDs
total length of IIDsn

BB
k B k

B
k k

total length of BIDs

totalB

B BB

B B

nk B k

n

n nB n B n B nB

λ

− −

= =

− + +
−=

−
− − + − − +− +

− −=

∑ ∑

64444744448
644474448

64444444744444448

  

 

2log 1
2 1

length of IIDs

B

n
n B≈ + −

−

644474448 

 

Similar to Theorem 1, it can also be proved when ϒ≥2, 
λ=O(log(n)). 

Theorem 2: if ∃δ∈[ln2/2, 1), ∀sub-blocks, ξ≥δ, then 
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when B=ln2/(2δ)* log2n, λ is asymptotically minimum and 
λ=O(log(n)). 

Proof: if ∃δ∈[ln2/2, 1), ∀sub-blocks, ξ≥δ. Suppose 
l =n/(δ(2B-1)), which is the max number of sub-blocks 
(this is the worst case, and each sub-block has only one 
child sub-block), and even if under these conditions: 

1

( (1 *( 1))) /Max B i Bλ = + − +∑
l

l  

*1 *( 1) 1
2 2 2
B B BB= + − + = + +

l
l  

'
2

* * 2 * ln 2 1|
22 (2 1) 2 (2 1)

B

Max B B B

n B nλ
δ δ

= − +
− −

 

2

2

*(2 1) * *2 *ln 2 (2 1)
2 (2 1)

B B B

B

n B n δ
δ

− − + −
=

−
 

if ' | 0Max Bλ = ,then Maxλ reaches minimum that is O(log(n)). 
However, there is no analytical expression about B, 
whereas once n and δ are given, B can be figured out. 
As Maxλ λ≤ , and usually B=ln2/(2δ)*log2n, then Maxλ λ≤ ≈ 
(ln2/(2δ))*log(n), and even if δ=ln2/2, Maxλ λ≤ ≈log(n).  

Similar to Theorem 2, it can also be proved that when 
ξ≥ln2/2 for more than 50% sub-blocks, then λ=O(log(n)). 
This condition can be easily satisfied with real data. In 
section 6.1, it will be validated by experiments.  

5   BDC: An Efficient Algorithm for Structure 
Join  

5.1   Basic Concepts 

Definition 6: Structure Join [14] 
Given an ancestor set AList={a1, a2, …, an} and a 
descendant set DList={d1, d2, … ,dm}, where both AList 
and DList consist of nodes from the XML document 
tree. A structure join of AList and DList, denoted as 
AList ∞DList, where the symbol ∞ denotes structure 
join, returns all tuple pairs (ai, dj), where ai∈AList and 
dj∈DList, such that ai is an ancestor of dj. 

Structure join is a core technique in XML query 
processing, which directly impacts the efficiency of query 
processing. In substance, the mainstream method of 
structure join is maintaining an in-memory stack to skip 
some unnecessary nodes which don’t participate in a join. 
However, when the memory buffer cannot hold all the 
elements of the two lists, it needs many I/O operations. 
Therefore, a novel algorithm BDC is proposed based on 
Bucket Divide and Conquer, which is not only efficient for 
BBTC, but also portable to other coding schemes. To 
determine the sequential relationship between two 
elements in the XML document tree, some partial order 
operators are introduced to accomplish the comparison 
between two elements. For BBTC, if node a and b are in 

different sub-blocks, only a.BID is compared with b.BID, 
or otherwise only a.IID is compared with b.IID. 

Definition 7: Simple Operators ', ', ', ', '= ≤ ≥p f  

1 2 2 1 2 2, , ( ) , ( )
minimum{ | minimum( , )}

0 '

1 '

'
'

'

n m

i i

j

j

a b Z a a a a b b b b
if j i a b and i m n then

if a then a b

elseif a then a b

else
if m n then a b
elseif n m then a b
else a b

+∀ ∈ = =
∃ = ≠ ≤

=

=

= =
< ≤

≥

L L

p

f  

Definition 8: Complex Operators � '  and � '  
a� 'b ' ' 'iff a b or a b or a b≤ =p  

a� 'b ' ' 'iff a b or a b or a b≥ =f  
In fact, stack-based algorithms are applied to BBTC, but 
this cannot address the problem that it is inefficient when 
the memory is not enough to hold all the elements. The 
two element sets can be partitioned into different buckets, 
and only structure join of suited buckets is useful for the 

join results. That is, AList∞DList=  
1

bn

i=
∪ (AListi∞DListi), 

where AListi and DListi denote different buckets of AList 
and DList respectively, nb denotes the number of buckets, 
that is, only AListi∞DListi are helpful to the results, and 
AListi∞DListj=∅(i≠j) or AListi∞DListj⊆AListj∞DListj. In 
section 5.2, this will be described in detail. 

  
(a)                                          (b)                       (c) 

Figure 6. Partition an XML document tree into different buckets 
For example, in Figure 6, 6(a) is partitioned into 6(b) 

and 6(c). A∞B in 6(a) is equivalent to A∞B in 6(b) union 
A∞B in 6(c); but A6(b)∞B6(c) and A6(c)∞B6(b) are 
unnecessary. Enlightened on the idea of this, AList and 
DList are partitioned into different buckets until memory 
can hold AListi or DListi. The next section will explain 
how BDC fulfills this.  

5.2   BDC 

In BDC, AList and DList are partitioned into different 
buckets satisfying the following three conditions:  

1) DList =
1

bn

i=
∪ DListi and DListi ∩ DListj=∅ (i≠j) 

2) 
1

bn

i=
∪ AListi ⊆ AList 
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3) AList∞DList =
1

bn

i=
∪ AListi∞DListi  

Condition 1) means ∀nD∈DList, ∃i, nD∈DListi, and ∀i, j, 
if i≠j, nD∈DListi then nD∉DListj. Condition 2) means there 
may be one element nA∈AList, but∀j, nA∉AListj, that is nA 
does not have any children in DList. On the contrary, there 
may be one element nA which is in different buckets, that is, 
this element has children in all of these buckets. The 
equation in condition 3) guarantees the correctness of the 
method. BDC can be applied to other coding schemes only 
assuring that they satisfy the three conditions. To apply 
those three conditions to the coding scheme, we may 
partition AList and DList into many different buckets, and 
make the size of each bucket under the capacity of memory 
buffer. However, in order to satisfy those three conditions, 
the number of buckets (nb) and how to load nodes to 
different buckets must be determined. Suppose bs is the 
number of nodes that memory can hold, 
nb=⎡minimum(|AList|, |DList|) /bs⎤. The range of the first 
bucket is[s,s+r), and the range of the i-th bucket is[s+(i-
1)*r, s+i*r)(1≤i<nb), the range of the last bucket is[s+(nb-
1)*r, ordermax]. r and s are determined by the following 
equations1. 

2 max 2 min

max min 2 max 2 min

max min 2 max 2 min

max min 2 max 2 min

log log

- log log
' ( ) - log log

- ( ) log log

d order order

order order order order
r order d order order order

order order d order order

= −

=⎧
⎪= << <⎨
⎪ << >⎩

 

2

' '

( ' log ) '

b
b

b
b

b

r r nn
r

r n r nn

⎧ ⎢ ⎥ ≥⎪ ⎢ ⎥⎣ ⎦⎪= ⎨ ⎢ << ⎥⎡ ⎤⎢ ⎥⎪ <⎢ ⎥⎪ ⎣ ⎦⎩

 

min 2 max 2 min

min 2 max 2 min

2

log log
'

( ) log log

' '
( ' log ) '

b

b b

order order order
s

order d order order

s r n
s

s n r n

≤⎧
= ⎨ << >⎩

≥⎧⎪= ⎨ << <⎡ ⎤⎪ ⎢ ⎥⎩

 

There are two rules about how to assign nodes into 
different buckets. 

Rule 1: Partitioning DList in BDC 

( )

,
. .max . ' .max

minimum{ | . ' .max . ' .min}

b

D

D D

D n

D i

D k D k

n DList
if n order DList or n order DList

then n DList

else n DList
i k n order DList or n order DList

∀ ∈
= ≤

∈

∈

= ≤p

    Rule 2: Partitioning AList in BDC 

                                                           
1 In this paper, ordermax=DList.max and ordermin=DList.min, they denote 
the maximum order and minimum order in DList respectively according 
to the partial order operators ', 'p f .  

' .min ' .max ' .max

minimum{ | .max '2* . }
maximum{ | .min '2* . 1}

: { | .max ' 2* . .min

A

A A A

A

A i

k A

k A

k A k

n AList
if n DList or n DList or n DList

discard n
else n AList m i n

m k AList n order
n k AList n order
that is i k AList n order and AList

∀ ∈
< > ≥

∈ ≤ ≤
=
= +

∈
p

≮

≮ '2* . 1}An order +p

AListk.min=DListk.min=s+(k-1)*r; AListk.max=DListk.max= s+k*r. 

Theorem 3: According to Rule 1 and Rule 2, AList 
and DList can be partitioned into different buckets and 
the partition satisfies the three conditions.  

For example, suppose bs=1, the XML document in Figure 
6(a) can be partitioned into four buckets as shown in 
Table3. 

Table 3. Result of partitioning AList and DList  
ordermax  ordermin d nb r′ r s′ s .max 

21 4 2 4 5 1 16 16 21 
AList .min DList 

4 A2,A5,A8,A10  
B4, B17, B18, B21  

AList1 AList2 AList3 AList4 DList1 DList2 DList3 DList4 

B4 B17 B18 B21 

.min 16 17 18 19 

A2 
A8 A2 A2 A5 

A10 

.max  17 18 19 21 

We can design our algorithm BDC according to the two 
rules. BDC, first partitions two data lists into different 
buckets in line 3, then joins suited buckets in memory in 
line 8. If both AListi and DListi can not be loaded into the 
memory buffer, it will continue to partition AListi and 
DListi in line 6.  

AList and DList are partitioned until one of AListi and 
DListi can be loaded into memory. If |DListi| ≤ bs, DListi is 
loaded into memory, and AListi is in disk. For each 
element nA in AListi, obviously its descendent nD satisfies 
2nA.order '≤  nD.order 'p (2nA.order +1) (represented as 
nD∈[2nA, 2nA +1)), that is, all of nA’s descendents in DListi 
must be in the range of [2nA, 2nA +1). When DListi is in 
memory buffer, SJIM first sorts all elements in DListi in 
line 21, then for each element nA in AListi, SJIM finds nA’s 
first descendent ns and last descendent ne in DListi using 
the binary search in line 23. Thus, all elements in the 
range of [ns, ne] are nA’s descendants. In this case, SJIM 
only needs |AList|+|DList|(read)+|SJR|(write) I/Os.  

However, it is not the same for |AListi | ≤ bs, that is, 
given node nD, finding nD’s ancestors in AListi is not very 
easy, because it is difficult to find a range except [1, nD] 
satisfying that all of nD’s ancestors are in that range. In this 
way, SJIM will classify AListi (similar to partition) until 
(5-1) is satisfied. 

|
jiAList |=1 or 

jiAList ={
1An ,... , 

kAn }. ∀
tAn , 

1tAn
+

 

in
jiAList ,

tAn is the ancestor of
1tAn
+

(1≤t<k), that 

is,
1An , ... ,

kAn are in the same path from root to a leaf. 

 

(5-1)
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For example, for classifying AList1={the elements 
whose tag/lable is A in Figure 6(a)}, the result is 
that

11AList ={A2,A8} and 
21AList ={A5,A10}. 

Therefore, if |AListi|≤bs, then AListi is in memory. BDC 
classifies AListi in line 13 and sorts each

jiAList in 

memory, then given an element nD in DListi, IT finds nD’s 
nearest ancestor nA in each

jiAList using binary search in 

line 15; in this way all of such nA’s ancestors are also 
ancestors of nD. In addition, classifying and sorting AListi 
can be fulfilled in memory. In this case, SJIM also needs 
only |AList|+|DList|+|SJR| I/Os.  

 

5.3   Analysis of BDC Algorithm 

The following expression computes the I/O complexity of 
partitioning in BDC:  
 

(1)
( )  

* ( / )+
s

b b s

O n b
T n

n T n n n n b
≤⎧

= ⎨ >⎩  
 
T(n) denotes comparing times to partition AList and 
DList; n denotes number of nodes in AList or DList, when 
partitioning AList it is initialized as |AList |; while 
partitioning DList it is initialized as | DList |. nb denotes 
number of buckets.  

If the size of each bucket is nearly equal, BDC only 
scans datasets once for partitioning. In this case, 
T(n)=|AList|+|DList|. Even if in real-world data 
sets, BDC usually costs (|AList|+|DList|) for 
partitioning. In addition, when considering read and write, 
it costs 2(|AList|+|DList|). SJIM only costs 
|AList|+|DList|+|SJR|, which is used to read 
datasets to memory and write the result SJR to disk. As a 
result BDC costs (3(|AList |+|DList|)+|SJR|) 
I/Os. BDC is superior to stack-based algorithms, because 
previous algorithms first need to sort AList and DList, then 
read them to memory, the I/O cost is at least 
2(log|DList|*|DList|+log|AList|*|AList|)
+(|AList|+|DList|+|results|), in which sorting 
costs 2(log|DList|*|DList|+log|AList|* 
|AList|) I/Os and memory computing costs 
(|AList|+|DList|+|results|)  I/Os. If consider 
maintaining indices, the I/O cost is more expensive.  
BDC not only accelerates structure join by skipping more 
unnecessary elements, but also works for other coding 
schemes, such as Region Code. In that case, BDC just 
requires changing the general operators such as <, >, etc. 
to the corresponding simple operators in Definition 7. 

6   Experimental Analysis of BBTC&BDC 

Comprehensive experiments are conducted to study the 
effectiveness of BBTC and BDC. In experiment 1, B is 
determined, which is the key to reduce storage. Second, 
the time and space performances of BBTC are compared 
with those of Region Code: Zhang [21] and Dietz [10] in 
experiment 2. Then the update cost of BBTC is compared 
with Region Code in experiment 3. Last, since the best and 
most common structure join algorithm based on Region 
Code is XR-tree, BDC is compared with XR-tree in 
experiment 4. The experiments use the standard XMark 
[22], Shakespeare [23] and DBLP [24] datasets to test the 
algorithms. The experimental environment is a Windows 
2000 machine with AMD2600 CPU and 1GB RAM. The 
programming language is standard C++.  

6.1   Experiment 1: Determination of B in BBTC 

Figure 7 (a) and (b) illustrate the choice of B value for 
Shakespeare and XMark documents respectively. They 

Algorithm 2 BDC(AList,DList,bs) 
Input:  AList, DList, bs  
Output: SJR={(a,d)|a∈AList,d∈DList and a is 
an ancestor of d} 
1. nb=⎡minimum(|AList|,|DList|)/bs ⎤; 
2. SJR=∅; 
3. partition AList, DList into AListi, DListi; 
4. for i=1 to nb 
5.    if( minimum(|AListi|,|DListi|)>bs ) then 
6. BDC(AListi, DListi, bs); 
7.    else 
8.       SJR= SJR ∪ SJIM(AListi, DListi, bs); 
9.    endif 
10.endfor. 
 
SJIM (AListk, DListk, bs) 
Input:  AListk, DListk, bs 
Output: SJRk={(a,d)|a∈AListk,d∈DListk and a is 
an ancestor of d} 
11. SJRk=∅; 
12. if(|AListk| ≤ bs) 
13.   classify AListk into ikAList until 

satisfying(5-1) and sort
ikAList  

14.   for Dn ∈DListk 

15.     find its nearest ancestor 'An in each
ikAList ;  

16.     for 
iA kn AList∈ and An is an ancestor of 'An  

(contain 'An ) 

17.        SJRk = SJRk ∪ {( An , Dn )}; 

18.     end for 
19.   end for 
20. else  {|DListk| ≤  bs  } 
21.   sort DListk in memory; 

22.   for each A kn AList∈  

23.      find the range of An ’s descendent in 

DList
k
:[ ,s en n ]; 

24.      SJRk= SJRk ∪ {( An , Dn )};( Dn ∈[ ,s en n ]) 

25.   endfor 
26. endif. 
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present the space of the BBTC consumed with different B 
values for various XML documents. Each curve denotes an 
XML document. Since the lowest point of each curve 
represents the minimum space cost, and the B value at this 
point is its best choice. On the one hand, the curves with 
block-partition have observable advantages in storage size, 
but the stability of space cost with different values of B is 
another advantage revealed. Figure 7 (a) and (b) also 
illustrate the effect of different values of B on space 
performance for Shakespeare and XMark respectively. 
Compared with Non-block, BBTC reduces 30% storage 
space in Shakespeare data and 73% in XMark data. In 
addition, it can be concluded from the analysis that the best 
B value is related to the number of nodes in the XML 
document. Figure 8 indicates the relation between the best 
B value and n (the number of nodes in the XML 
document). Since the relation between the best B value and 
n meets logarithmic normal distribution, the best B value 
can be represented by log(n) approximately, which 
exactly complies with the  analysis in Theorem 2 of 
section 4.3. 

6.2   Experiment 2: Cost of Update 

BBTC supports dynamic updating of XML documents, 
and when XML Documents updated, the cost of updating 
codes in BBTC is less than Region Code dramatically. In 
Figure 9, when only inserting or deleting a node, Region 
Code nearly needs to recode the whole document, but 
BBTC only changes a few codes, that is why the columns 
of BBTC are invisible in Figure 9.  

6.3   Experiment 3: Comparison of Time and Space 
Performance  

Region Code is asymptotically minimal in space 
performance, however BBTC has superior space 
performance to the Region Code, because the Region 
Code maintains two large numbers for one code, but 
sibling_order in BBTC is very small and needs little 
storage.  

6.4 Experiment 4: Comparison of Structure Join 
Algorithms  

In this section, different data sets are used to compare 
BDC with XR-tree. They are real-world XML data, i.e. 
XMark [22] and DBLP [24]. DBLP is a set of bibliography 
files, the size of the raw text files is around 53.3MB. The 
benchmark (XMark) data is generated with SF(scale factor) 
= 1, and the raw text file is 113MB. Six structure joins are 
selected for the DBLP data, namely DSD1, DSD2, ... , 
DSD6. Similarly, for XMark, they are DSX1,DSX2, ... , 
DSX6. Six structure joins are also selected for synthetic 
data Bookset.xml which is similar to Figure1, namely 
DSB1, DSB2, ... , DSB6. In addition, in order to compare 

the two algorithms, structure joins are selected with 
different ratios, namely DS-A/D1, DS-A/D2, ... , DS-
A/D6(|AList|<|DList|) and DS-D/A1, DS-D/A2, ... , DS-
D/A6(|DList|< |AList|). The statistics of the data sets are 
shown in Table 4. 
 

Table 4. Statistics of data sets 
Name |AList| |DList| Name |AList| |DList| Name |AList| |DList|
DSX1 9750 35 DSD1 105754 294470 DSB1 1 3571 
DSX2 21750 43500 DSD2 105754 171071 DSB2 1 3621 
DSX3 21750 48250 DSD3 801 184465 DSB3 50 3621 
DSX4 25500 12823 DSD4 2326 4969 DSB4 50 3571 
DSX5 10830 59486 DSD5 84095 13660 DSB5 3571 3621 
DSX6 25500 48250 DSD6 84095 82980 DSB6 3571 26728 
DS-
A/D1 801 184465

DS-
A/D5 25500 48250 

DS-
D/A3 8765 1256 

DS-
A/D2 3571 267287

DS-
A/D6 105754 171071 

DS-
D/A4 9750 2685 

DS-
A/D3 2326 49969 

DS-
D/A1 9750 35 

DS-
D/A5 13500 12823 

DS-
A/D4 10830 59486 

DS-
D/A2 8765 454 

DS-
D/A6 15071 13660 

 
To compare BDC with XR-tree, Improved Ratio (IR) is 

defined:    
IR=(TXR-tree-TBDC)/TXR-tree  

where TXR-tree and TBDC are the elapsed times for XR-tree 
and BDC algorithm respectively. 

First, BDC is better than XR-tree in different data sets: 
(1) Real-world data sets: for XMark, its IR is nearly 

80% in DSX6 (Figure 12(a)); for DBLP, its IR exceeds 
90% in DSD1 (Figure 12(b)). 

(2) Synthetic data set: for Bookset.xml, its IR is nearly 
1 in DSB6 (Figure 12(c)).  

Second, BDC is compared with XR-tree on different 
buffer sizes. Because XR-tree needs large memory to sort 
data sets and store indices, when memory size is limited, 
its performance declines dramatically. As shown in Figure 
13, when buffer size is 0.5% of the data sets, the 
performance of XR-tree is far worse than BDC; and even 
if the buffer size is 10% or more, it is not as good as BDC, 
where the datasets are from XMark with |AList|=21750 
and |DList|=69969. 
Last, in real queries, the sizes of AList and DList are 
usually not equal, even quite different, that is, |AList| is far 
less than |DList| or vice versa. In this way, sorting data sets 
is not efficient. As a result, through simply partitioning the 
smaller data set and loading it to memory, we can only 
scan the other sets once to finish the structure join. Figure 
14(a) and (b) reflect the efficiency of BDC, and their IRs 
reach 1 in most of DS-A/Ds and DS-D/As. 
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Figure 12. Elapsed time with different data sets 
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7. Conclusion 

In this paper, firstly a new update-aware coding scheme is 
proposed based on the binary-tree, which not only codes 
the XML documents easily and infers relationship between 
nodes rapidly, but also supports XML documents update 
effectively.  

Second, to save storage space, BBTC is presented, 
which partitions an XML document into sub-blocks and 
reduces the average code length to O(log(n)).  

At BDC is proposed, which is more efficient than 
previous algorithms when memory buffer cannot hold the 
unsorted input element sets. BDC partitions an XML 
document tree into different buckets and only the structure 
joins of suited buckets are helpful to the result, that is, 
BDC accelerates structure join when input element sets are 
out-of-order. BDC, not only accelerates structure join 
based on BBTC without any indices, but also has good 
portability, that is, it can be applied to other coding 
schemes.  

Our experiments have proved that both the coding 
scheme BBTC and the structure join algorithm BDC 
significantly outperform the existing studies. 
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