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Summary  
This paper introduces new source separation techniques 
exploiting the cyclostationarity property of the source 
signals. Two cyclostationary-based reference contrast 
functions are presented for convolutive mixtures and 
cyclostationary signals. Contrary to the major contrasts, 
any para-unitarity constraint is made on the mixing system. 
Their maximization enjoys identifiability properties, and 
aims at delivering outputs satisfying specific properties, 
such as statistical independence or a cyclostationarity 
character. Simulation examples are presented to illustrate 
the effectiveness of this approach in terms of the estimated 
source variances. 
Key words: 
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Introduction 

In many real-world situations, man-made signals 
encountered in rotating machines, communications, 
telemetry, radar, and sonar systems are non-stationary and 
very often (quasi-) cyclostationary. Of course, the mixtures 
of real-world signals are usually convolutive mixtures. So 
that the conventional methods for the standard Blind 
Source Separation (BSS) problem that assume 
instantaneous mixtures of stationary sources [1] [2], are no 
longer appropriate. Increasing interest has therefore been 
focused on solving the problem of BSS of convolved 
mixtures of cyclostationary sources. A basic model of BSS 
is simple linear combinations (possibly noisy) of 
statistically independent signals. Given these observations, 
BSS aims to estimate both the structure of the linear 
combinations and the source signals. In cyclostationary 
context, the BSS problem is a relatively new approach. 
The most existing cyclostationary BSS approaches are 
based on second-order statistics as in reference [3] for 
convolutive mixture and in [4] for the instantaneous one. 
Furthermore, certain works [5] address the problem in 
frequency-domain by using spectral correlation density 
matrices. Indeed, the DFT allows us to have instantaneous 

mixtures at each frequency bin. Although, the major 
problem of this kind of approaches is how to correct 
permutation at a given frequency. Thus, at each frequency, 
the unmixing system is identified, thereafter the sources 
are recovered at the outputs. time domain channel is then 
formed by the inverse DFT with respect to some 
constraints like in [6] [7]. A very few works in the BSS 
literature deal with high-order statistics in the case of 
cyclostationary convolved mixtures as in [8] [9]. The focus 
of this paper is on the use of the so called reference 
contrasts. Recently, contrast functions have been 
generalized with the so-called reference signals. For the 
sake of clarity, we notice that reference signals can be 
chosen freely. The idea behind is to imply the reference 
signals with the estimation sources in the maximization of 
the contrast. Several studies have shown their good results 
in comparison with the classical contrasts. Indeed, this has 
been studied in several papers, including the first 
contributions dedicated to instantaneous mixtures of 
stationary sources [1] [2] [10]. Then, such functions have 
been extended in convolutive systems, under some 
technical hypothesis on reference system, either for MISO 
system in [11] or for MIMO system in [12]. In this paper, 
our main contribution regards the generalization of this 
kind of contrasts -that have been proposed to stationary 
input signals [11] - to cyclostationary mixture. Moreover, 
unlike the previous methods that need the observed signals 
to be orthogonal, our contribution is performed without 
regard to any orthogonality constraint, and it needs no 
prior whitening. Hereafter, a necessary and sufficient 
condition for BSS using a set of cyclic cumulants is given. 
Under this condition, two contrast functions are introduced, 
one for para-unitary filters and the other is for the general 
case. Ultimately, we test our method in the case of a 
MIMO system driven by periodically modulated random 
processes. 
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2. System model and new criterion 

2.1 Notations 

Let us consider m  -dimensional sensor or measurement 
vector )(tx  . It's defined as the output of an unknown m  
inputs n  outputs MIMO system with linear transfer 
function ][zH . This can be written as:  

)()()( ktskt
k

−= ∑Hx   (1) 

Here, the (Linear Time Invariant) LTI multichannel system 
is driven by a n -dimensional unknown vector 

T
n1 tstst ))(),...,(()( =s . It should be noted that the 

components of the source vector are cyclostationary, 
mutually statistically independent and non-Gaussian (at 
most only one can be Gaussian). As our approach is an 
iterative one, we will focus on the extraction of a single 
source. Hence, using only the observation )(tx , the 
considered problem consists in estimating a ),( m1  LTI 
vector filter, called equalizer and with impulse response 
)(tg  such that the scalar signal 

)()()( ktkty
k

−= ∑ xg   (2) 

restores one of the components  },...,{),( n1its i ∈  , of the 
source vector. Thus the global vector filter of dimension 

),( m1  is defined by the following impulse response  

)()()( ktkt
k

−= ∑ Hgw   (3) 

and we have  
)()()( ktkty

k
−= ∑ sw   (4) 

 Furthermore, the following assumptions are made. The 
source signals },...,{),( n1its i ∈  are real, cyclostationary, 
mutually independent, zero synchronous mean, and with 
unit synchronous variance. In addition, we define )(tr  as 
the output of another separating filter defined according to  

)()()( ktktr
k

−= ∑ st   (5) 

where the filter ][].[][ zzz Htrt = , which corresponds to 
the second global system and is assumed not equal to 

][zw . The signal )(tr  is called the reference signal and 
tr  the reference vector. It's interesting to notice that the 
reference signal is not identical to any original source. 

In the following, if Z∈kku ))((  is an almost periodic 
sequence, we define >< )(ku  as its temporal mean by  

).(lim)( ku
K
1ku

1K

0kK
∑
−

=∞→
>=<  

and as the cyclostationarity naturally conveys through the 
linear system to their outputs, then if )t(]]z[[)t(y xg= , 

both ))(( tyt 4cum→  and ))(( 2tyt E→  are together 
periodic sequences. 

2.2 New criterion 

It turns out that the most appealing approach to the blind 
equalization problem consists in the use of an appropriate 
contrast function. Basically, a contrast plays the role of an 
objective function in the sense that its (global) 
maximization permits to solve the BSS problem [13]. 
Hence the equalization issue becomes an optimization one. 
Besides, identifiability conditions are provided by the 
definition domain of the considered contrast. To address 
our MISO equalization problem, we recall the definition of 
a contrast for i.i.d. source signals as introducing in [14]: 

Definition:1. Let )(⋅F  be a real function of the signal 
)(ty  as defined in 4. )(⋅F  is called a contrast when there 

exists },...,{ n1io ∈  : 
p1. Z∈∃ l  such that for all possible output )(ty  of 

the equalizer  ))(())(( ltsty
oi −≤FF  

p2. If equality holds in p1, then there exists an index 
},...,{ n1i0 ∈  such that the filter components in ][zw  

read:  ),,,,,,(][ 00100ez id KK−=w   

In the following, we establish a contrast dedicated to 
cyclostationary signals. To this end, we need to recall the 
technical assumption about the reference signal that has 
been introduced in [14]. Before announcing our result, let 
us denote the fourth order cross-cumulant  

( ))(),(),(),( trtrtyty lkjicum , of the separator outputs 

and the reference signals, by kl
ijC  . 

Hypothesis: 1. Z∈∃l  such that 
Z×∈∀ },...,{),( N1kj  we have |)(||)(| lk 1j tt <  when 

lk ≠  or 1j ≠   
The main present section is devoted to propose a new 
contrast function for all signals )(tyi . Furthermore, we 
need this intermediate step that defines two new contrasts 
for normalized signals. 

Proposition: 1. For a given normalized signals )(tyi  
and for all 1≥β , the functions:  

>=< ii
iii

r
ty C))((J   (6) 
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and 

⎪⎩

⎪
⎨
⎧

≤≤><β−><

=><
=

∑ < ni2   

1i                             
ty jj

ijij
ii
ii

ii
ii

i
r

CC

C
))((J (7) 

are contrasts. The index i  references the thi  extracted 
source. 

Proof: The proof of the first one is similar to the proof of 
the main result in [14]. In the following we furnish a short 
overview. Using multilinearity of the cumulant and source 
independence properties, we have:  

><≤ ∑∑
=

)(|)(||)(|))(( j4
2

j
2

j
k

n

1j
i

r
sktkwty cumJ  

Assuming that: >>=<<= )()(max 14j4
n

1j ss cumcum . 
So, according to hypothesis T, we have:  

2
j

k

n

1j
14

2
1i

r
kwsltty |)(|)(|)(|))(( ∑∑

=
><≤ cumJ  

Now, as the )(ty i  is normalized then we have  

.|)(| 1kw 2
j

kj
=∑∑  

Thus the first property of the contrast is satisfied with 
equality if and only if ),..,],[,,(][ 00zw00z

0k=w . 
Using the following contrast propriety [15], for a given 
functions 1I  and 2I  such that 2I  is a contrast, then if: 

• ))(())(( tyty 21 II ≤    
• ))(())(( tsts 21 II =   

Therefore, 1I  is also a contrast. In the above, we have 

proved that ))(( tyi
r

J  is a contrast. So, for 1≥β , we 
have:  

))(())(( tyty i
r

i
r

JJ ≤  

since )(tyi , },...,{ N1i ∈ , are independents we have:  

)()( ss
rr

JJ ≤  

Thus, ))(( tyi
r

J  is a contrast. 

Now, we will eliminate the normalization hypothesis, so 
that we will get a contrast for all vectors )(ty i  . 

Proposition: 2. For all )(ty i , and for all 1≥β   the 
function  

⎪⎩

⎪
⎨
⎧

≤≤><β−><

=><
=

∑ < ni2   
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ty jj

ijij
ii
ii

ii
ii

i
r
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C
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⎪
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y
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2
j

2
i
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2
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2
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i
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)()(
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EE

C

E

C

E

C

L (8) 

is a contrast. 

Proof: This result will be immediately reached by 
replacing )(tyi  by replacing )()(~ tyMty jijji ∑=  

where M  is a diagonal matrix. This matrix's elements 
are the square roots of the respective powers of each 
component of the vector y  . 

3. Cyclic statistics 

3.1. Definition of cyclic statistics 

The previous contrasts require the estimation of the 
cyclic statistics, the objective of the following section is 
to compute the fourth-order cyclic cumulant. In this 
context, we propose a new definition of this kind of 
statistics. To this end, we need to recall the first-order, 
second-order and fourth-order cyclic moments as in [16] 
[17]: The first-order cyclic moment is  

,exp >π−=< t)2j(x(t))M x1 αα  

The second-order cyclic moment is  

,t)2j())kx(t)x(t)(kM 11x2 >π−+=< αα exp  

The third-order cyclic moment is  

,t)2j()k)x(tkx(t)x(t)k,(kM 2121x3 >π−++=< αα exp
 

The fourth-order cyclic moment is  

,t)2j()kx(t
)k)x(tkx(t)x(t)k,k,(kM

3

21321x4

>π−+
++<=

α

α

exp
 

where )(tx  is a real cyclostationary signal of order 4, α  
is known as the cyclic frequency and 31iki ,...,, =  is the 
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delay. Basically, the fourth-order cyclic cumulant is 
defined by:  

)exp(

),,;(lim),,(

tj2

kkkt
N
1kkk 321x4

1N

0tN
321x4

απ

= ∑
−

=∞→

α CC
 

and is computed through the cyclic moments according to 
the following formula for zero-synchronous mean signal:  

)exp())(()( tj23t 2
x2x4x4 απ−= αα

α
∑ MMC  (9) 

from the above formula, we can see that the cyclic fourth-
order cumulant can be written based on second-order and 
fourth-order cyclic moments.  

3.2 Estimation of cyclic statistics 

In fact, the contrast's input are scalars. This can dissuade 
its use with (almost-) periodic statistics. We use temporal 
average like in [9] in order to keep a scalar instead of 
periodic sequence. 

The objective of this sub-section is to give a new 
estimation of the cyclic moments in order to get a 
consistent fourth-order cyclic cumulant. To this end, the 
sampling frequency is synchronized to the signal's cyclic 
frequency. This technique [18] and [19] is known as the 
synchronous sampling and it is much used in the 
acquisition of vibratory signals. The signal split by cyclic 
stochastic realization after synchronous sampling. We 
achieve such averages on all available cycles (period of 
cyclostationarity). In the case of signals with different 
cyclic frequencies, we look to their smallest common 
multiple. 

1 cycle

+

+

+

Synchronously sampled signal

the cycle is considered as a realization

 
Fig. 2. Illustration of the synchronous statistics 

The figure 2 illustrates the synchronous statistics as the 
average of stochastic process. By using the assumption of 
cycloergodicity. one will be able to build an estimator of 
the synchronous mean:  

)mod*(ˆ NTitx
K
1(t)M

1K

0i
cs

x
1 ∑

−

=
+=  

where α= 1
csT  is the cyclostationarity period which 

presents a cycle, N  is the number of samples and K  is 
the number of cycle. taking into account that 

csTKN *= . One can also define the synchronous cross 
correlation as follows :  

 

)mod*(

*)mod*(ˆ

NTity

NTitx
K
1(t)M

cs

1K

0i
cs

xy
2

+

+= ∑
−

=  

In the same way, one can generalize this definition to R-
order synchronous moments as follows :  

)mod*(

...*)mod*(ˆ ...

NTitx

NTitx
K
1(t)M

csR

1K

0i
cs1

xx
R

R1

+

+= ∑
−

=  

ry
2

zx
2

zy
2

rx
2

zr
2

yx
2

zryx
4

zryx
4

MMMM

MMM(t)C
,,,,

,,,,,,,,

ˆ*ˆˆ*ˆ

ˆ*ˆ_ˆˆ

−−

=
 

According to the preceding parametrization, the 
cumulant kl

ijC  will take the following form:  

)(ˆ tlkji rryy
4

kl
ij C=C  

Hereafter, the above cyclic statistics will be used to 
assess the proposed contrast in order to achieve 
separation of cyclostationary sources.  

4. Computer simulations 

The objective of our simulations is to confirm the validity 
of our contrasts, proposed in the case of cyclostationary 
signals with some knowledge of the cyclic frequencies of 
the second order statistics, for any type of channel without 
restriction to the paraunitarity ones. In order to maximize 
the above contrast, we follow a deflation procedure that 
processes good convergence properties and each source is 
extracted using a gradient algorithm. In all experiments, 
we have taken 2n =  source signals, which have mixed 
using ),( 22  FIR 2 paths channel. Our performance 
criteria are a simpler version of separation rate of the 
sources: "TSEP" used in [9] and mean square error (MSE). 
In each run, the source signals, the mixing system have 
been randomly chosen. Indeed, two different types of 
source signals have been considered. The first one 
corresponds to i.i.d circular symbol sequence randomly 
chosen at each trial. The reference signals have been 
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randomly chosen. In such case, TSEP of the sources have 
been evaluated over 100  Monte-carlo runs when 1=β . 
We have plotted in figure 3 the TSEP versus number of 
iteration. As can been seen, there is a visible advantage of 
the proposed contrast.  
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Fig. 3. Reference contrast performance 
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(a) Sources  (b) Restored sources 

Fig. 4. Sources with the same cyclic frequency 

The second case of sources are randomly generated and 
modulated by an AM modulator of carrier 500  Hz. The 
sources with different cyclic frequencies are modulated at 
250  and Hz500  (sub-figure 5). The sample frequency is 
of Hz25000 . The sample size corresponds to the 
observation of 4096  symbols. In the second experiment, 
we suppose that the reference system is one of the sources.  

On the sub-figures 4 and 5, it is seen well that we could 
recover the sources at their cyclic frequencies except for a 
scale factor and a permutation. Furthermore, Figure 6 
shows the evolutions of the averaged values of MSE for 
various SNR over 100  Monte Carlo trials. There is a 
visible advantage of the the rL  contrast especially when 

we introduce the cross cumulants in the general form of 
contrast i.e. 1≥β .  
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(a) Sources  (b) Restored sources 

Fig. 5. Sources with the different cyclic frequency 

5. Conclusion 

This paper is devoted to the separation of the 
cyclostationary signals via the reference contrast. In this 
article, we have essentially proposed a generalization of a 
contrast that have proposed in [12] from the stationary 
signals to cyclostationary ones without constraint of 
orthogonality. As shown by the computer simulations, the 
maximization of the proposed contrast yields better results. 
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