
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006 247

Early Performance Modeling For Multi-Agent Systems Using UML2.0

D. Evangelin Geetha, T. V. Suresh Kumar, and K. Rajani Kanth,

 M. S. Ramaiah Institute of Technology, Bangalore – 54, India

Summary
Software engineers continually strive to develop tools and
techniques to manage the complexity that is inherent in the
system, they have to build. The advent of global computing
platforms like the Internet and worldwide web has increased the
complexity of designing software systems. To reduce the
complexity, multi-agent system has been well recognized. In this
context, quality cannot be neglected and so performance is vital
for such software systems. In this paper, we present a method,
for the performance assessment early in life cycle among agent
objects, before the design phase. We exploit the features of UML
for agent systems. We propose an algorithm to transform
requirements into software execution model, which is useful in
performance assessment. The input graph for this execution
model, actor-event graph is discussed. The model is solved and
the results are presented for a case study on online banking
application.
Key words:
Software Performance Engineering, Muli-agent Systems,
Sequence Diagram, Actor-event Graph, Execution Graph.

Introduction

Over the past three decades, software engineers have
derived a progressively better understanding of the
characteristics of complexity in software. It is now widely
recognized that interaction is probably the most important
single characteristic of complex software. Software
architectures that contain many network aware,
dynamically interacting components, each with their
thread of control, and engaging in complex coordination
protocols to get or offer a plethora of services to other
components, are typically orders of magnitude more
complex to correctly and efficiently engineer than those
that simply compute a function of some input through a
single thread of control.

Unfortunately, it turns out that many real-world
applications have precisely these characteristics.
Consequently, a major research topic in Computer Science
over at least the past two decades has been the
development of tools and techniques to model, understand,
and implement systems in which interaction is the norm.
The advent of global computing platforms, like

the Internet and the World Wide Web, has only increased
the requirement of designing systems including complex
interactions.

Many researchers now believe that in future,
computation itself will be understood as chiefly as a
process of interaction. This has in turn led to the search for
new computational abstractions, models, and tools with
which to conceptualize and implement interacting systems.

A multi-agent system is a system composed of a
number of such agents, which typically interact with one-
another in order to satisfy their goals. Agents have been
applied in several application domains. Amongst the most
important are Air traffic control, Business process
management, Industrial systems management, Distributed
sensing, Space shuttle fault diagnosis, Factory process
control.

Much of the hyperbole that currently surrounds all
things agent-like is related to the phenomenal growth of
the Internet. In particular, there is a lot of interest in
mobile agents that can move themselves around the
Internet operating on a user’s behalf. There are a number
of rationales for this type of agent: Electronic commerce,
Hand-held PDAs with limited bandwidth, Information
gathering.

On all these applications, performance of system is a
key factor. Performance is an important but often
neglected aspect of software development methodologies.
To construct performance models, analysts inspect,
analyze and translate software specifications into models,
then solve these models under different workload factors
in order to diagnose performance problems and
recommend design alternatives for performance
improvement. This performance analysis cycle, when done
properly starting at the early stages of design, the
developer can choose a suitable design, which meets
performance objective. Early generation of performance
model is therefore needed to ease the process of building
quality software. At the analysis phase, prefer sequence
diagrams for expressing performance scenarios because
they are easier to derive early in the process.

Software Performance Engineering (SPE) has
evolved over the past years and has been demonstrated to
be effective during the development of many large
systems [6]. The extensions to SPE process and its
associated models for assessing distributed object-systems

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

248

are discussed in [4]. [3] Describes the use of SPE-ED, a
performance-modeling tool that supports SPE process, for
early lifecycle performance evaluation of object -oriented
systems. Generation of performance models and
performance assessment throughout the life cycle is
widely discussed in [5], [6]. Performance Analysis of
internet based software retrieval systems using Petrinets
and a comparative study has been proposed in [9].
Performance analysis using Unified Modeling Language
(UML) is presented in [10], [11]. LQN performance
models can be derived automatically from UML
specifications using Graph Grammar Techniques [1]. The
ethics of SPE to web applications during software
architectural design phase is discussed in [2]. The
systematic assessment of performance, early in the life
cycle has been developed with OMT (Object Modeling
Techniques) notation in [7]. Performance modeling for
web based applications using collaboration diagrams is
discussed in[9]. An agent-oriented modeling technique
based on UML notation is introduced in [12]. In this paper,
we explore UML 2.0 notation sequence diagram) [13] and
present general algorithm, which is useful to assess
performance for agent systems, early in life cycles.

1. SPE Model

This section is divided into 3 parts. In part I and part II, we
describe Actor Event Graph (AEG) and Execution Graph
(EG) and how a Sequence Diagram (SD) and Class
Diagram (CD) are transformed to AEG in turn into EG. In
part III, we propose an algorithm, developed based on
algorithms in [9] to transform AEG to EG.

1.1 Actor-Event Graph

An actor-event graph is a unifying notation, whose

nodes are called actors (a) and edges are called events (e).
In Fig. 1 an example AEG is shown, where square boxes
represent actors and arrows represent events. An actor
with no incoming event is called an initial actor (actor x in
Fig. 1) while an actor with no outgoing event is called a
final actor (actor s in Fig. 1). An actor is an atomic set of
operations, i.e. the operations executed (by a software
component) with no interaction with any other actor. The
detail about AEG using Collaboration Diagram is given in
[8]. In this paper, based on the transformation rules given
in [8] we transform from UML notation SD to AEG. Each
actor in Fig. 1 is labeled by an identifier (e.g. x inside the
box) taken from the SD, and by a class name (e.g. a
outside the box) taken from the CD.

Fig. 1 Actor-Ev ent Graph

1.2 Execution Graph

An execution graph is a graph, whose nodes represent one
(or more than one) sets of actions (actors) and edges
represent control transfer between them. Each node is
weighted by the demand-vector representing the resource
usage by the node (e.g. CPU time, LAN time, WAN time,
number of I/O operations, etc.). According to [6], an EG
node can be of basic nodes, expanded nodes, repetition
nodes, case nodes, pardo node and split nodes. But only
basic, expanded, repetition, case and pardo nodes are
discussed in this paper.

The translation of AEG into EG is performed by the
simple algorithm, which starts from the AEG initial actor
(Section 2.1) and then proceeds by visiting the graph in
DFS (Depth First Search) order (until the ending actor or
an already visited actor is encountered) while applying the
following rules:
Every actor in the AEG is translated into a basic node of
the EG eventually followed by
• a case node, if the actor has more than one outgoing

event

• a repetition node, if the actor belongs to an AEG
cycle and it is the first visited node of the cycle

• a pardo node, if the actor is connected to concurrent
process

Each event in the AEG is translated into an EG edge
• for an I type event corresponding base node contains

an ‘I’

• for an E type event corresponding base node contains
an ‘E’.

(x,E)a b c c

(r,E)

x

(y,E)

y

(z1,I)

r

(z2,E)

b

s

z

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

249

Fig.2. Execution Graph for Fig. 1

1.3 Algorithm

We develop an algorithm based on the algorithm in [8] for
UML 2.0 based notation.
// Translation of SD and CD into AEG
Get all Sequence Diagrams and Class Diagram
While (Sequence Diagram exists)

 Loop
 Consider next atomic set on the given SD
 If (not translated)
 If (parallel computation)

 If (e1 exists)
 connect e1 to concurrent process //el – last

recently generated e
 end If
 for all parallel messages

 Translate atomic set of operations (agent
 message) into corresponding actor
 Denote the class name from the CD
 Generate the corresponding <a, e> pair

 Connect first <a, e> pair to concurrent
 process
 end For
 else

 Translate atomic set of operations (agent
message) into corresponding actor

 Denote the class name from the CD
 Generate the corresponding <a, e> pair
 If (el exists) Connect el to a end if
 Denote e as e1

 else
 Connect el to ap // ap – already translated actor a

 end If
 end Loop

end While
// Translation of AEG into EG
Get the AEG initial actor and its outgoing event
While (actors in AEG exist)
 Loop // visit the AEG graph in DFS order
 Retrieve actor
 If (the actor has more than one outgoing events)
 Translate the actor into an EG case node

 else If (actor belongs to an AEG cycle, it is the first
visited node of the cycle)

 Translate the actor into an EG repetition node
 else If (actor is connected to a concurrent
 process)
 Translate the actor into an EG pardo node
 else Translate the actor into an EG basic node
 end If
 Retrieve event
 Translate the event into an EG edge
 If (event type = ‘E’)
 Insert ‘E’ into the corresponding EG node
 else
 Insert ‘I’ into the corresponding EG node
 end If

 Consider next <a, e> pair
 end Loop
end While
// Computation of Total Processing Unit
For each scenario
 Get the number of computer resources (k)

 Get the number of software resources (m)

 Let aj be the software resource requirements for each
j software resources

 Get the amount of resource required for each request
of j (wi,j,; i=1..k,j=1..m)

 Get service time(si,; i =1..k)
 For each software component in the scenario
 Calculate the total computer resource
 requirement (ri,; i =1..k)
 Calculate the total unit of service for each k for
 the scenario
 Compute the total processing units for the
 scenario(T)
 T := sum(the total unit of service for each k for
 the scenario*service time)
 end For
end For

The above-mentioned algorithm is a general
algorithm, through which early derivation of software
performance model is possible using UML approach. In

x(E)

y(E)

z(E)

s(E)

r(I)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

250

this paper, the algorithm has been illustrated through a
case study of Personal Banking System developed using
Multi-agent System [12].

2. Case Study

The concepts and technologies of agent-based systems
become increasingly attractive to the software industry.
An agent-oriented modeling technique based on UML
notation is discussed in [12]. In this paper, we consider the
case study discussed in [12] and we apply the proposed
algorithm for UML based notation for the same. While
developing the UML model (ie. Sequence diagram), we
consider the important characteristics of agent, like
autonomy, cooperation, reactivity, pro-active.

2.1 Description of the Case Study

The Personal Banking Agent (PBA) solicits proposals
from the account agents by issuing a call for proposals
which specifies the interest in an account’s transaction
costs. Account agents receiving the call for proposals are
viewed as potential contractors, and are able to generate
proposals to perform the task. Once the personal banking
agent receives back replies from the account agents, it
evaluates the proposals and makes its choice of which
account agent will perform the task. The agent of the
selected proposal will be sent an acceptance message; the
others will receive a notice of rejection. A typical scenario
for a personal banking agent and three Account Agents is
depicted in Fig. 5.

Fig. 3. Class Diagram for Agent System

2.2 Application of the Algorithm

The application of the algorithm is illustrated for an online
banking application. CD in Fig.3 and SD in Fig.5 are the
input diagrams for the algorithm. Actor-event graph is
developed using the algorithm as follows: We consider the

first message in SD, ie., InitPayment. According to the
algorithm, this message is transformed into an actor,
labeled with InitPayment inside and by the class name C
(customer) outside the actor. The corresponding event is
generated and labeled by (a, e) pair as (IP,E). IN
represents the name of the actor and E represents that the
interaction is between the objects belonging to different
classes. Similarly, we generate the remaining actors from
the given SD. The actor messages from CostForProposal1
to Proposal3 are represented inside a fragment with
keyword par (ie. Executing in parallel). The
corresponding actors are connected to the notation
concurrent. Rejecti, and Accepti are represented inside a
fragment with keyword alt. Therefore the actors
Proposal1 and Proposal2 are having more than one
outgoing events.

Then the execution graph as given in Fig.6 has been
developed from actor-event graph in Fig.4 using the
algorithm. In Fig.4, the initial actor Initpayment is
considered first. This actor is transformed into the base
node. By applying the algorithm, all the nodes are visited
in Depth First Search order until the ending actor or an
already visited actor is encountered and the EG in Fig. 6
is obtained (the actors that are connected to concurrent
node are represented using pardo node. The actors
Proposal1 and Proposal2 are having more than one event.
Therefore, they are represented by case node).

The execution graph is integrated with preliminary
design data to obtain complete performance model and the
simulation results are discussed in section 5.

Fig. 4. AEG for Fig. 5

Customer

OnlineBankingApplication

DatabasePBA

AccountAgent

1..n

1
uses
1..n

1

C (IP,E) PBA (RD,E) DB

(GF,I)

PBA

PBA

AC1 AC2

PBA PBA
(PR1,E (PA1,E)

PBA

PBA
(PR2,E (PA2,E)

(CP2,E

(SD,E)
D

…

(CP1,E

InitPay
ment ReqDetail

CostForProposal

Reject1

 Proposal1

Accept1 Accept2

CostForProposa1

 Proposal2

concu
rrent

Reject2

SendDetails

GetFile

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

251

3. Simulation Results

For our discussion, we consider two software
architectures namely architecture1 and architecture2 as
given in Fig. 7(a) and Fig. 7(b) respectively.

alt

 : customer : PBA : DataBase : AccountAgent1 : AccountAgent2 : AccountAgent3

InitPayment
RequestDeatails

GetDetails

SendDeatails

CostForProposal1

Proposal1

CostForProposal2

Proposal2

CostForProposal3

Proposal3

Accept1

Reject2

Reject3

Accept2

Reject3

Reject1

Fig. 5. Sequence Diagram for Agent System for PBA accepting the Proposal either from Account Agent1 or
from Account Agent2

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

252

Fig. 7(a). Software Architecture1

Fig. 7(b). Software Architecture2

The Fig. 8 and Fig.9 represent graphs for governing
parameters no. of account agents and response time

 Architecture I
Concurrent vs.Sequential Access

(Agents)

0
50

100
150

0 10 20 30

No. of Acct Agents

R
es

po
ns

e
Ti

m
e

concurrent

Sequential

Fig. 8 Graph for No. of Agents vs. Response Time (Architecture1)

 Archite cture II
Concurrent vs .Seque ntial Acce s s

(Age nts)

0
50

100
150

0 10 20 30

No. of Acct Age nts

R
es

po
ns

e
Ti

m
e

concurrent
Sequential

Fig. 9 Graph for No. of Agents vs. Response Time for
(Architecture2)

both the architectures and as well as for both concurrent
and sequential access.

From these figures it is observed in general the number of
account agents increases response time increases. The
response time is less for concurrent access in architecture1
compared to archtecture2. The same we observe in
sequential access also.

Processor

PBA Database

Internet
Processor

Database

Processor

PBA

GR(E

 SD(E

 GF(I

 3(E 2(E

) PR1(

 2(E P 2(E

 3(E P 3(E

 ACT1(E

 3(E 1(E ACT2(E

 2(E 1(E ACT3(E

Fig. 6. Execution Graph for AEG in Fig. 4

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

253

 Architecture I
Concurrent vs.Sequential Access

(Database Processing Time)

0
5

10
15
20

0 0.005 0.01 0.015

Database Processing Time

R
es

po
ns

e
Ti

m
e

concurrent

Sequential

Fig. 10. Graph for Database Processing Time vs. Response Time
(Architecture1)

 Architecture II
Concurrent vs.Sequential Access

(Database Processing Tim e)

0

10
20

30

0 0.005 0.01 0.015

Database Processing Tim e

R
es

po
ns

e
Ti

m
e

concurrent

Sequential

Fig. 11. Graph for Database Processing Time vs.
Response Time (Architecture2)

The above figures 10 and 11 represent graphs for
governing parameters database processing time and
response time for both the architectures and as well as for
both concurrent and sequential access. From these figures
it is observed in general as the database processing time
increases response time increases. In the case of
concurrent access the response time is almost same in both
the architectures. In case of sequential access the response
time is more in architecture2 compared to architecture1.
This is because, the database is residing on internet not
with PBA.

The numerical results show that, because of more
interactions between PBA and Database and of overhead
nodes, architecture2 is worser than architecture1 in terms
of response time. It is suggested that having concurrent
access in both the architecture gives better response time.
The differences between two alternatives remain into

reasonable limits and this gives the software and platform
designers early time indications of the best time to follow.

4. Conclusions

Performance model generation of multiagent systems
using UML in early phases of development has been
introduced. A common AEG is obtained for performance
model generation using UML. The developed performance
model has been simulated various governing parameters
such as response time, no. of account agents data
processing time. Calculations are done for the execution
graph. Future work may be involved by considering
complex architectures with different CPU capacities and
processing times. Other UML diagrams like use case may
be considered for assessing performance using this
approach.

References
[1] Amer H, Petriu D.C, Automatic Transformation of UML

Software Specification into LQN performance Models using
Graph Grammar Techniques, Carleton University, 2001.

[2] Connie U. Smith and Lioyd G. Williams, Building
Responsive and Scalable Web Applications, Proceedings
CMGC, December 2000.

[3] Connie U. Smith and Lioyd G. Williams, Performance
Engineering Evaluation of Object Oriented Systems with
SPE-ED, LNCS (Springer Verlag 1997), 1245, pp. 135-153.

[4] Connie U. Smith and Lioyd G. Williams, Performance
Engineering Models of CORBA-based distributed-object
systems, Performance Engineering Services and Software
Engineering Research, 1998.

[5] Connie U. Smith and Murray Woodside, Performance
Validation at Early Stages of Software Development,
Performance Engineering Services, Santa Fe, USA.

[6] Connie U. Smith and Lioyd G. Williams, Performance
Solutions, 2000.

[7] Cortellessa V, Lazeolla G and Mirandola R, Early
Generation of Performance Models for Object-oriented
Systems, IEE Proc.- Softw., June 2000, 147(3), pp. 67-74.

[8] D. Evangelin Geetha, T. V. Suresh Kumar and K. Rajani
Kanth, Early Performance Modeling for Web Based
Applications, LNCS, Springer Verlag, December 2004, pp.
400-409.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3A, March 2006

254

[9] Jose Merseguer, Javier Campos and Eduardo Mena,
Performance Analysis of Internet based Software
Retrieval Systems using Petri Nets, ACM 2001.

[10] Petriu D.C, Shousha C, Jalnapurkar A, Architecture
Based Performance Analysis Applied to a
Telecommunication System, IEEE Transactions on
Software Eng., Vol.26 (11), pp.1049-1065, November
2000.

[11] Pooley R and King P, The unified modeling language and
performance engineering, IEE proc-Software, February
1999, 146(1), pp. 2-10.

[12] Ralph Depke, Reiko Heckel, Jochen Malte Kuster, Formal
Agent-oriented Modeling with UML and Graph
Transformation, Science of Computer programming, vol. 44,
2002, pp.229-252.

[13] Rumbaugh, Jacobson, Booch, The Unified Modeling
Language Reference Manual, Second Edition, Pearson
Education, 2000.

D Evangelin Geetha received MCA
degree from Madurai Kamaraj University,
India in 1993. Pursuing Ph.D in Computer
Applications in Visveswaraiah
Technologolical University, Belgaum,
India. Areas of interest are software
performance engineering, Object
Technology, Distributed Systems.

Currently working as Assistant Professor at M S Ramaiah
Institute of Technology, Bangalore.

T V Suresh Kumar received Ph. D
degree from S.K.University, Anantapur,
India, in 1992. Areas of interest are
software performance engineering, Object
Technology, Distributed Systems.
Currently working as Professor at M S
Ramaiah Institute of Technology,
Bangalore.

K Rajani Kanth received M.E in
Automation and Ph. D degrees from
Indian Institute of Science, Bangalore,
India. Areas of interest are software
engineering, Object Technology,
Embedded Systems. Currently working as
Professor and Principal at M S Ramaiah
Institute of Technology, Bangalore.

