
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

57

Manuscript received January 15, 2006.
Manuscript revised February 25, 2006.

C_MACSE: A Novel ACSE Protocol for Hard Real-time
Multimedia Communications*

Dimitris Kanellopoulos† and Sotiris Kotsiantis††

† University of Patras, Department of Electrical & Computer Engineering, Greece

†† University of Patras, Department of Mathematics, Greece

* This paper combines and extends research work that appeared in preliminary form in Proceedings of the IEEE International Conference
on Military Communications, Mc Lean, Virginia, USA, October 1996, Eds. IEEE, pp. 755-759 and in Proceedings of the 5th IEEE
International Conference on Universal Personal Communications, Cambridge, Massachusetts, USA, Sept.-Oct. 1996, Eds. IEEE, pp.
487-491. Part of this work was done in RACE-Project R1086 TELEMED.

Summary
A connection establishment protocol for multimedia
communication residing at the OSI application layer is presented.
The new protocol (C_MACSE) adopts a comprehensive
approach for Quality of Service (QoS), as it incorporates
resource management strategies for the CPU scheduling and the
virtual memory of a multimedia system. The C_MACSE
protocol provides services for the negotiation, renegotiation and
monitoring of the comprehensive QoS.
Key words:
Multimedia communications; QoS; ACSE; CPU scheduling;
memory management.

Introduction

In a multimedia system, different media types coexist with
divergent performance parameters [1], which impose strict
requirements not only to the underlying network capacity
and protocol efficiency, but also to the computer’s ability
to manage its resources effectively [2] (i.e. CPU
scheduling, virtual memory and I/O devices). The end-
system support for multimedia communications is required
because part of the communications protocol stack is
implemented in software and executed by the end-system.
If the end-system cannot guarantee the execution time for
instructions (referring to protocol stack), there will be no
real-time communications system no matter how well
networking support is provided. Besides, if the media data
need to be processed (including compression and
decompression) before presentation, the processing time
should be predictable. Otherwise, a meaningful
presentation is not achieved. The hardware should have

high processing power and high data transfer throughput,
because digital video and audio are very data intensive. In
addition, the problem of “mismatch in bandwidth” [3] is
time-critical for multimedia communications, as usual host
system buses (e.g. VME bus) support lower transmission
rates than high-speed networks.

In many existing communications architectures the
notion of QoS is extremely narrow, because they are based
on best-effort performance models and they do not support
quantitative QoS. A comprehensive QoS approach
considers multimedia requirements imposed both on the
network and operating system. In the near past, many
researchers have made specific assumptions about the end-
points of multimedia communication [4]. For example,
they envisaged multimedia systems equipped with
specialized real-time operating systems, massive physical
memory, large CPU processing power and enhancement
I/O devices. However, conventional workstations running
standard multiprogrammed operating systems (eg. Unix)
are interfaced to ATM networks, in order to support
distributed multimedia applications. In such cases,
resource management strategies have to be proposed for
the ATM network, but also for the CPU, the virtual
memory and the I/O devices.

The main approach to developing multimedia
operating systems is to modify and extend certain micro-
kernels to support real-time applications, while providing
a “personality” to run existing applications. A micro-
kernel is an operating system that is only responsible for
manipulating low-level system resources, and is
independent of any specific user-level computational
paradigm. Consequently, by developing hard real-time

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

58

multimedia communication systems, a basic consideration
deals with the underlying micro-kernel. Chorus [5] is one
of the most dominant micro-kernel that provides the
system platform for our project. Chorus has been widely
used for embedded multimedia applications, because it has
real-time features: pre-emptive scheduling, page locking,
system call timeouts and efficient interrupt handling. In
Chorus’s implementation, modern techniques such as
multithreaded address spaces and Inter-Process
Communication (IPC) with copy-on-write semantics have
been used. The basic Chorus micro-kernel abstractions are
actors, threads and ports. Protocol’s developers can add
new scheduling policy modules to a multimedia system via
a Chorus framework called scheduling classes. For the
development of communications protocols, a protocol
stack consisting of a kernel-resident network device
manager with a link layer interface and separate network
and transport layer actors are provided. Micro-kernels
such as Chorus, Mach and Amoeba have common
limitations in the multimedia communications domain [6].
For example, Chorus is not directly applicable for the
support of distributed multimedia applications, because it
does not support QoS control and resource reservation.
The performance over existing micro-kernel facilities can
be improved by reducing the number of protection-domain
crossings and context switches incurred. Existing Chorus
abstractions can be extended in order to include QoS
configurability, connection-oriented communications and
real-time threads.

Our project quantifies multimedia communication
requirements imposed, by the end-user, on the operating
system and network and enhances the ACSE (Association
Control Service Element) standard [7] taking into account
system resources management policies (i.e. CPU
scheduling, memory and I/O management strategies). We
designed and developed an enhanced protocol
(C_MACSE) that improves the ACSE standard, as it
provides comprehensive QoS support and ad hoc services
to multimedia application developers.
This paper is composed as follows. In Section 2,
multimedia requirements imposed on the operating system
are reviewed, and in Section 3, background work is
discussed. Section 4 describes the comprehensive QoS
architecture. The new protocol and a pilot scheduling
architecture are presented in Sections 5 and 6
correspondingly. Finally, concluding remarks are
summarized in Section 7.

2. Multimedia requirements in the operating
system

The end-user perceives a continuous performance level for
a real-time continuous media, if QoS guarantees are
provided at all relevant subsystems (network, CPU,
memory, I/O). In the CPU subsystem, the required QoS is
expressed in terms of guaranteed CPU processing for
those threads (real-time threads), which handle streams of
real-time continuous media. Since continuous streams are
handled by real-time threads, the kernel must deliver
multimedia data directly to peripheral end-points with
minimal or no interaction with the CPU. This is enforced
by the real-time behavior of a continuous media stream,
which implies a key requirement to the CPU scheduling of
all processing threads related to this stream: “threads
associated with a continuous media stream ought to be
closely co-ordinated in such level such as to ensure that
the temporal integrity of this media stream is not violated”
[2]. In both, application and protocol processing, kernel
context switches must be minimised for those threads that
handle streams of real-time continuous media (real-time
threads). Real-time threads must access memory regions
(data, code, stack) with bounded latency. The bounded
access latency levels of these threads are deduced by the
enforced user-level QoS requirements, expressed for a
continuous media stream.
In addition, CPU resources must be fairly shared across
multiple address spaces of the processes that compose the
multimedia application. The level of priority for each
process varies from the QoS user’s requirements. The
splitting of processing demands the use of an effective
CPU scheduling policy for real-time threads.

3. Background work

Three main architectures or/and models have been
proposed in order the communication architecture of the
Internet to provide QoS guarantees. They are IntServ [8],
DiffServ [9] and MPLS [10]. Lue [11] analysed issues and
technologies for supporting multimedia communications
over the Internet, while Foster et al [12] described a
General–purpose Architecture for Reservation and
Allocation (GARA) to support secure immediate and
advance co-reservation, online monitoring/control, and
policy-driven management of a variety of resource types,
including networks. Sampatakos et al [13] introduced a
scalable inter-domain resource control architecture for
Differentiated Services networks. A higher level QoS
manager tool and a channel library named SALMON were
proposed in [14]. In the projects HeiTS [15] and SUMO

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

59

[6], protocols and mechanisms were proposed in the
domain of operating system support for handling
continuous-media. The HeiTS project has investigated
end-system issues in the integration of transport QoS and
CPU scheduling. An elegant split scheduling scheme and
IPC mechanisms for continuous media were proposed in
[16]. Research work at Lancaster University [2, 6] has
addressed the design of a QoS-controlled ATM-based
communications system in Chorus and QoS guarantees
were extended into the operating system.
In signalling protocols domain, many research trials have
been made. The EXPANSE signalling protocol was
introduced in [17] and a call model for the establishment
of multipoint connections over ATM network was
proposed in [18]. Design issues related with signalling
architectures and protocols, aimed to support B-ISDN,
were discussed in [19]. A novel SVC mechanism for call
connection and control in ATM networks was presented in
[20]. A set of generic QoS parameters that capture the
varied requirements imposed by multimedia applications
has been defined in the RACE Eurobridge (R 1008)
project. These generic QoS parameters don’t rely on the
underlying heterogeneous network infrastructures and
became relevant in an enhanced ACSE element (XACSE
[21]).
 Our project was based on MACSE [22], a connection
establishment protocol for multimedia communication
residing at the OSI application layer. The objective of
MACSE is the efficient establishment and control of
multimedia associations among spatially dispersed users.
MACSE introduced the notion of out-of-band signalling at
the application layer and defined procedures for the
negotiation and confirmation of QoS per association, in
contrast with the structure of the well-known ACSE
protocol. In the MACSE framework, the following
services have been implemented: a) establishment, normal
and abnormal release of multimedia associations, b)
renegotiation of a particular QoS value per individual
association, c) addition and deletion of users in a
multimedia call, d) addition and deletion of associations in
a multimedia call and e) synchronization of two or more
associations in a multimedia call.
However, the main limitation of the MACSE protocol is
that it does not adopt a comprehensive QoS approach, as it
ignores CPU scheduling, virtual memory and I/O
management issues. At the OSI application layer,
connection establishment protocols have not yet adopted a
comprehensive QoS approach.

4. The comprehensive QoS architecture

 The C_MACSE protocol comprises an integral module in
the proposed ATM-based architecture [23, 24], where
service commitments are supported both in the network
and in the end-system.

This architecture (depicted in Fig. 1) aspires to satisfy
the requirements of hard real-time multimedia applications
and presents the following advantages:
• It has mechanisms capable of negotiating,

renegotiating and monitoring the provided
comprehensive QoS.

• It supports synchronization services and multicast
communications services.

• It does not take into consideration a revolutionary
approach in resource management, and thus it
operates with existing standards whenever it is
feasible.
This integrated QoS architecture is composed of three

vertical planes: a) the communication plane, b) the
operating system plane and c) the flow management plane.
The communication plane contains protocols implemented
with multithread processes, while the operating system
plane contains the necessary micro-kernel operating
system mechanisms. Finally, the flow management plane
provides services related to dynamic QoS control
functions, such as flow admission control and QoS
renegotiation. In particular, the proposed communication
plane consists of the following modules:

1) Application service modules, which are application
service elements (ASEs) that deliver functionalities within
the OSI application layer.

2) Session layer mechanisms. The synchronization
manager synchronizes audio and video streams, and
provides session setup and tear-down as well as flexibility
in QoS aspects.

3) Transport protocol combinations. Different
transport protocol combinations such as TCP/IP, UDP/IP,
or even raw sockets for IPC can be used. High-speed
transport protocols such as TPX, XTP, XTPX [25] and
VMTP can be used.

4) Network protocols support both network and end-
system resource allocation (eg. RSVP [8]).

5) The communication model of ATM includes the
AAL, the ATM layer and the physical layer. In developing
ATM APIs, two different approaches can be adopted: a)
LAN emulation [26] and b) classical IP over ATM [27].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

60

F lo w M a n a g e r

C M IS

F T A M X . 4 0 0

R O S E

X . 5 0 0

R T S E

B E R

S y n c h r o n i z a ti o n M a n a g e r

T C P

I P

S T -I I

V M TP

L L C

C S M A /C D

A A L

A T M

S D H

X T P

7

4 -- 6

1 -- 3

P S A P

N S A P

D T A M

A A L 5

A T M M A C

R F C 1 5 7 7

R F C 1 4 8 3

L L C

P H Y S I C A L

T P X

VM M

C P U
S c h e du le r

Ph
ys

ic
al
 M

em
or

y

C _ M A C S E

X T P X

M u l ti m e d i a
a p p l i c a ti o n

Q o S C o m p i l e r

A S A P

U s e r - lev e l
Q oS pa r a m e te r s

A p p lic a tio n -lev e l
Q oS pa r a m e te r s Q oS m a p pe r e n ti ty of p a ge s

T S A P

R S VP

Q
oS

 m
ap

pe
r Q oS

T r a n s la t o
r

Fig. 1: The comprehensive QoS architecture [23]

5. The C_MACSE protocol

The new protocol [23, 24] is entitled: Comprehensive
approach - Multiple Association Control Service Element
(C_MACSE). It defines procedures for the support of
multiple associations among multiple users and
negotiation and confirmation of the comprehensive QoS
per association between the peer entities. During the
lifetime of an association, renegotiation of the
comprehensive QoS is also supported. The ACSE standard
and the MACSE can be considered as subdivided
protocols of the C_MACSE protocol.

5.1 The service definition

The C_MACSE services are listed in Table 1. The
C_MACSE service definition has been based on the
abstract model for a service layer promoted by OSI RM.

Table 1: The C_MACSE services

Service Type
C-MA-ASSOCIATE
C-MA-RENEGOTIATE
C-MA-SIGNAL-QOS
C-MA-ALTER-USER
C-MA-ALTER -ASSOCIATION
C-MA-SYNCHRONIZE
C-MA-RELEASE
C-MA-ABORT
C-MA-ABORT-USER
C-MA-ABORT-ASSOCIATION
C-MA-P-ABORT

Confirmed
Confirmed
Provider-initiated
Confirmed
Confirmed
Confirmed
Confirmed
Non-confirmed
Non-confirmed
Non-confirmed
Provider-initiated

 C_MA-ASSOCIATE: Multiple associations among

multiple users can be established using this service.
Negotiation of a particular comprehensive QoS per
individual association can also be attained. The
requirement for a particular value of a QoS parameter is
negotiated within the range [acceptable,
desired] (acceptable≤desired) specified in
the request primitive. The C_MACSE protocol machine
(C_MACPM) issues a C_MA-ASSOCIATE

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

61

indication primitive to every called user. The
maximum value desired of the range may be decreased
by the service provider to a new value, named
available. The called user, in turn, may further
decrease it to lower value, named agreed and return it
with the response primitive. Calling C_MACSE user
considers a multimedia call successful as soon as the first
positive confirmation primitive from the C_MACSE
service provider arrives. Any subsequent positive
confirmation primitive results in an establishment of a new
composite association. If the service provider does not
support the requested comprehensive QoS (e.g. due to
unavailability of network or system resources), it issues a
C_MA-SIGNAL-QOS indication primitive back to
the user indicating the type of result (negative) of the QoS
negotiation.

 C_MA-RENEGOTIATE: It is used to renegotiate the
comprehensive QoS of an association during its lifetime.
The C_MACSE user issues the C_MA-RENEGOTIATE
request primitive to alter the values of the
comprehensive QoS parameters initially achieved. The
operation is completed by exploiting the updated
properties of the association. For the coordination of the
peer entities, the C_MACSE service provider issues a
C_MA-SIGNAL-QOS indication primitive to the
target user, simultaneously with a C_MA-RENEGOTIATE
confirmation primitive to the origin. The called user
considers the QoS alternation successful as soon as the
former primitive arrives.
 C_MA-SIGNAL-QOS. It is issued by the C_MACSE

service provider to signal the result of a comprehensive
QoS operation during C_MA-ASSOCIATE and C_MA-
RENEGOTIATE procedures and indicate any QoS
thresholds violation. When the C_MACSE service-
provider detects either the inability of the underlying
services (belong to network or to operating system) to
support the requested QoS or a positive responded
renegotiation request, it issues a C_MA-SIGNAL-QOS
indication primitive to the corresponding user.
 C_MA-ALTER-USER. It is used to provide for

addition and deletion of users in a multimedia call.
 C_MA-ALTER-ASSOCIATION. It is used to provide

addition and deletion of associations in a multimedia call.
 C_MA-SYNCHRONIZE. It is used for the activities

initiation of the underlying synchronization entity. The
C_MA-SYNCHRONIZE service request is issued by a
C_MACSE user whenever it is desired for two or more
established associations to be synchronized according to a
particular relation requirement.

 C_MA-RELEASE and C_MA-ABORT services are
used by a calling application entity to cause the normal
and abnormal release of a multimedia call respectively.
 C_MA-ABORT-USER and C_MA-ABORT-

ASSOCIATION services are used to provide abnormal
release of an established composite association and
association, respectively.

 C_MA-P-ABORT: It is used by the C_MACSE
service provider (i.e. network or operating system) to
signal abnormal release of the multimedia call due to
problems in services below the application layer.

5.2 The C_MACSE elements

The C_MACSE protocol (as depicted in Fig. 1)
incorporates the following modules:

5.2.1 The QoS translator (QoS-T)
During the connection establishment or QoS renegotiation
phases, user-level QoS parameters (e.g. window size,
color, depth, frame rate, concerning a video stream) can be
compiled into application-level QoS parameters by the
QoS compiler. Then, QoS-T translates application-level
QoS parameters into representations usable by the relevant
subsystems (network, CPU and memory). To do this task,
it uses tables that include relations between the two
different levels of QoS parameters.

In the C_MACSE protocol, we incorporated proper
QoS parameters as to provide control at the OSI
application layer for network and system resource
management. Concerning a media stream, these
incorporated application-level QoS parameters are:

media stream_QoS =
(commitment, delivery, buffer_rate,

buffer_size, latency, delay priority level,
loss priority level, jitter)

5.2.2 The CPU scheduler
The problem of CPU scheduling demands two steps: a) to
classify all processing threads, generated by the
multimedia application, into classes and b) to apply an
effective scheduling policy to the same class threads. The
CPU scheduler executes these tasks/steps and permits
threads processing wherever required according to the
notion of urgency. Our project is strongly based on the
work presented in [6], because we use the same admission
tests and resource classes for QoS-controlled connections.

Classification of threads: Threads generated from
various media streams have different QoS requirements
defined as guaranteed (G) or best-effort (B). The notion of
commitment expresses a degree of certainty that the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

62

requested QoS levels will actually be granted during run-
time. Commitment can take two values: guaranteed or
best-effort. If commitment is guaranteed, physical memory
and CPU resources are permanently dedicated to support
the requested QoS levels of this stream. Every stream
connection has two main properties: commitment and
delivery. Using these properties, five resources classes are
formed:
(1) GI : Here, there are threads which handle streams of

real-time continuous media (viz. isochronous).
(2) GW : In this class belong threads, which are associated

with guaranteed and workahead stream connections.
The workahead value relaxes the restriction of a
continuous media to issue an APDU at a fixed point of
time. Therefore, an A_DATA.request or an
A_DATA.indication service primitive may be
issued at an earlier time than actually allowed.

(3) BI : In this class threads are associated with best-effort
and isochronous stream connections.

(4) BW : In this class threads handle best-effort and
workahead stream connections.

(5) BC : These threads are associated with classic, non
real-time, UNIX application programs.
Scheduling Policies: Threads belonging to GI class are

scheduled according to an extended Earliest Deadline
First (EDF) algorithm [28], while threads belonging to GW
class are scheduled according to the standard pre-emptive
EDF policy. In both of these thread classes, we use an
admission test to ensure predictive behavior. Threads
belonging to B classes are scheduled according to the pre-
emptible EDF policy, but no admission test is used.

5.2.3 Virtual Memory Manager (VMM)
The VMM [23, 24] ensures that multimedia QoS-
controlled connections can access memory regions with
bounded latency. The time constraints are achieved by: 1)
determining whether or not requests for QoS-controlled

memory resources should succeed or fail and 2)
preempting QoS-controlled memory resources from CPU
scheduler when necessary. For example, “high urgency”
threads have higher priority than “low urgency” threads.
During the connection establishment or renegotiation
phases, two memory-related properties are deduced from
the user-level QoS parameters: a) the number of buffers
required per stream connection and b) the required access
latency associated with those buffers. As a thread has three
access regions with the kernel, three access latency levels
are considered. These levels are related to the code, data
and stack regions. If access latency levels to these regions
are bounded, QoS guarantees for the QoS-controlled
threads can be achieved.
There are swappable and locked pages in memory and thus
two different access latencies for these pages are observed.
The latency bound of swappable pages [29] depends on: 1)
the delay due to the Remote Procedure Call (RPC)
communication between the VMM and the pages mapper
(viz. a daemon process that maps the virtual memory
address space to physical address space, without
predictions about the pages faults of the real-time threads
during their execution) and 2) on the delay associated with
the external swap device. The latency bound of the locked
pages depends on the system bus and on the clock speed.
To bound access latency levels to swappable pages, new
page replacement policies and disk layout strategies must
be proposed. Page replacements algorithms oriented to the
“working set model” [30] are the most promising.
Resultantly, adjusting the above system parameters, access
latency levels can be bounded. In the C_MACSE
framework, we designed and developed a QoS pages
mapper that is based on the reference and distance string
models [31]. QoS guarantees (relating to page faults of
real-time threads) are achieved partially.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

63

QoS
Mapper
Entity of
pages

V
I
R
T
U
A
L

M
E
M
O
R
Y

source
code

source
code

thread

Multithread
address
space

PHYSICAL
MEMORY

suitable
virtual

memory
manager

Remote
Procedure

Calls

A multithread process
(e.g. a media actor)

C_MACSE
protocol machine

Instruction pointer
V
M

another
media
actor

Fig. 2: The memory management architecture [23]

5.2.4 The flow manager (FM)
FM integrates the resource management in both
communication end-systems and the network. Precisely,
FM is supervising the three resource subsystems and
executes three admission tests (i.e. bandwidth test, delay
bound test, and buffer availability test), in order the
C_MACSE protocol to determine whether a new session
can be created, given its specific resource requirements
and the availability of the subsystems resources. During
connection time, FM arranges the memory and allocates
proper CPU and network resources. It uses a prior
resource reservation mechanism to obtain guaranteed real-
time performance. In addition, FM is responsible for
dynamic QoS management and adapts the degradations
made in one subsystem resource by compensating in terms
of the others.

6. A pilot CPU scheduling architecture

In order to meet multimedia application requirements, we
developed a pilot split-level CPU scheduling architecture
[23] in the SunOS R.4.1 operating system. This
architecture resides in the user-level space, as light-weight
processes (LWP) library lacks kernel support. It exploits
the concept of light-weight threads and classifies all
processing threads generated by the current multimedia
application. It applies the scheduling policies (described

above) to the same class threads and permits threads CPU
processing, where required, according to the notion of
urgency. In this architecture, there are media, network and
memory actors (e.g. QoS mapper). The network actor
contains threads implementing the OSI upper layer
protocols of the communication architecture [24]. Inside
the network actor, threads are organized according to the
pipe-line model. This architecture is split in two main
levels: a) the level of the application level scheduler
(ALS) and b) the level of User Level Schedulers (ULSs).
The ALS communicates with the ULSs using shared
memory and software interrupts. The common shared
memory is divided in parts that contain the current value
of urgency for each ULS. The urgency of a ULS expresses
the priority of the most urgent thread running above this
ULS. Therefore, this architecture always executes the most
urgent thread, while the value of urgency is deduced
indirectly by the user-level QoS parameters using the
QoS_T.
The main factor that provoked potential violations of the
scheduling invariants in this architecture was the
execution of blocking system calls by real-time threads.
We solved this problem by using the non-blocking I/O
library (libnbio.a) and rewriting parts of the system
calls library. Particularly, we placed code (jacket) around
the “suspicious” system calls to do the checking.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

64

ULS 1 ULS 3ULS 2

ALS

SunOS 4.1 Kernel Level Scheduler

ULS
Memory

ULS
Network

(time-slice)

actor actor actor
QoS

Mapper
C_MACSE

actor

Virtual
Memory Network

C
PU

sc
he

du
lin

g

 video stream audio stream

protocol
processing

memory
managementmedia processing

protocol
thread

VP1 VP2 VP3 VPn
VPm

media
thread

ULS: User Level Scheduler
VP: Virtual Processor
ALS: Application Level Scheduler

MULTIMEDIA APPLICATION (developed in ODP)

Figure 3: The pilot scheduling architecture in SunOS R.4.1 [23]

7. Conclusion

The field of connection establishment protocols has not
yet adopted a comprehensive QoS approach in
development and standardization. An important advantage
of the proposed C_MACSE protocol is that it robustly and
effectively reflects not only the network capabilities, but
also the operating system resource management strategies
by incorporating specific mechanisms for threads
scheduling and virtual memory management. An
integrated communication architecture with
comprehensive QoS support for ATM-based multimedia
communications systems, as well a pilot CPU scheduling
architecture have been proposed.

References
[1] H. Chu, K. Nahrstedt, CPU service classes for multimedia
applications, Proc.IEEE Conf. on Multimedia Computing and
Systems, 1999.

[2] G. Coulson, G. Blair, Micro-kernel support for
continuous media in distributed systems, Computer Networks &
ISDN Systems, 26, 1994, 1323-1341.
[3] Special Issue: End-System Support for High-Speed
Networks/Breaking the Network I/O Bottleneck, IEEE Network,
7(4), 1993.

[4] M. Zafirovic-Vukotic, I. Niemegeers, Multimedia
Communication Systems: Upper Layers in the OSI Reference
Model, IEEE J. Select. Areas Commun., 10(9), 1992, 1397-1402.

[5] M. Rozier et al., Overview of the CHORUS
Distributed Operating Systems, Computing Systems, Journal of
the UNIX Association, 1(4), 1991.

[6] G. Coulson et al., The Design of a QoS-Controlled
ATM-Based Communications System in Chorus, IEEE J. Select.
Areas in Communications, 13(4), 1995, 686-699.

[7] CCITT Recommendation X.217: ‘Association Control
Service Definition for Open Systems Interconnection for CCITT
applications’ (Vol. VIII, Fascicle VIII.4, 1988).

[8] R. Braden et al., Resource ReSerVation Protocol
(RSVP)-Version 1 Functional specification, Internet RFC2205,
September 1997.

[9] Y. Nernet et al., A framework for differentiated
services, IETF Internet Draft: draft-diffserv-framework-02.txt,
February 1999.

[10] G. Armitage, MPLS: the magic behind the myths,
IEEE Commun. Magazine, 38(1), 2000, 124-131.

[11] G. Lu, Issues and technologies for supporting
multimedia communications over the Internet, Computer
Communications, 23, 2000, 1323-1335.

[12] I. Foster et al., End-end quality of service for high-end
applications, Computer Communications, 2004 (to be published).

[13] P. Sampatakos et al, BGRP: Quite Grafting
Mechanisms for Providing a Scalable End-to-End QoS solution,
Computer Communications, 27, 2004, 423-433.

[14] A. Schill, T. Hutschenreuther, Architectural support for
QoS management and abstraction: SALMON (Support

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

65

Architecture for transmission of Live Media streams On
networks), Computer Communications, 20, 1997, 411-419.

[15] D.B. Hehmann et al., Implementing HeiTS:
Architecture and implementation strategy of the Heidelberg
high-speed transport system, Proc. 2nd Int. Workshop Network,
Operating Sys. Support Digital Audio, Video, 1991, (Heidelberg
Germany).

[16] R. Gonindan, D.P. Anderson, Scheduling and IPC
mechanisms for continuous media, in Proc. Thirteenth ACM
Symp. Operating Syst. principles (Pacific Grove, CA), SIGOPS,
25, 1991, 68-80.

[17] S. Minzer, A Signaling Protocol for Complex
Multimedia Services, IEEE J. Select. Areas Commun., 9(9), 1991,
1383-1394.

[18] R. Bubenik et al., Multipoint connection management
in high-speed networks, Proc. IEEE INFOCOM, 1991 59-68.

[19] T. La Porta et al., B-ISDN: A technological
discontinuity, IEEE Commun. Mag., 32(10), 1994, 84-97.

[20] R. Henry, P. Darby, A novel SVC mechanism for call
connection and control in ATM networks, Computer
Communications, 20, 1997, 1123-1128.

[21] D. Mc Glinchey, XACSE: Connection Set-up for
Broadband Services using Generic QoS Parameters, Proc. of the
2nd Brodband Islands Conf., 1993, 207-210.

[22] G. Orphanos, G. Papadopoulos, S. Koubias, MACSE:
A Generic Connection Establishment Protocol for Multimedia
Communication Residing at the OSI Application Layer,
European Transactions on Telecommunications, 9(3), 1998, 295-
311.

[23] D. Kanellopoulos, S. Koubias, G. Papadopoulos, A
Novel User-to-User Protocol for the Establishment of
Multimedia Associations adopting a Comprehensive QoS
Approach”, Proc. IEEE Conf. on Military Communications
(MILCOM), 1996, 755-759.

[24] D. Kanellopoulos, G. Papadopoulos, S. Koubias, A
Novel ACSE Protocol with Comprehensive QoS Support for
Multimedia Communications in Chorus”, Proc. 5th IEEE Conf.
on Universal Personal Communications, 1996, 487-491.

[25] Specification of the Broadband Transport Protocol
XTPX, CIO/RACE 2060, 1994.

[26] J. Heinanen, Multiprotocol Encapsulation over ATM
Adaptation Layer 5, Networking Working Group, RFC 1483,
Telecom Finland, July 1993.

[27] M. Perez et al., ATM Signalling Support for IP over
ATM, RFC 1755, February 1995.

[28] C.L. Liu, J.W. Layland, Scheduling algorithms for
multiprogramming in a hard real-time environment, J. Assoc.
Computing Mach., 20(1), 1973, 46-61.

[29] A. S. Tanenbaum, Modern Operating Systems, Vol. I,
Prentice-Hall (Ed.), 1992.

[30] K. Park et al., The working set algorithm has
competitive ratio less than two, Information Processing Letters,
63, 1997, 183-188.

[31] B. Prieve, R, Fabry, VMIN: an optimal variable space
page replacement algorithm, Communications of the ACM, 19(5),
1976, 295-297.

 Dimitris Kanellopoulos received a
diploma in electrical engineering and a
Ph.D. degree in electrical and computer
engineering from the University of Patras,
Greece. Since 1990, he was a research
assistant in the Department of Electrical
and Computer Engineering at the

University of Patras and involved in several EU R&D projects
(e.g. RACE I and II, ESPRIT). His research interests are in the
field of hard real-time multimedia communication protocols,
ATM networking, new OSI services and web engineering. He
has more than 30 publications to his credit in international
journals and conferences in these areas. Dr. Kanellopoulos is a
member of the Technical Chamber of Greece.

Sotiris Kotsintis received a diploma in
mathematics, a Master and a Ph.D. degree
in computer science from the University of
Patras, Greece. His research interests are in
the field of data and multimedia mining. He
has more than 40 publications to his credit
in international journals and conferences.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

66

REMARK: THIS APPENDIX WILL BE USED ONLY FOR THE REVIEWING PROCESS (NOT FOR PUBLISHING)

APPENDIX A: C_MA-ASSOCIATE service primitives and a portion of the C_MACSE protocol specification in ASN.1
notation

SERVICE PRIMITIVE PARAMETER
C_MA-ASSOCIATE request

Multimedia-call-identifier
Calling-AE
sequence {Called-AE
 Composite-association-identifier
 User information
 sequence {Association-identifier
 Application-context-name
 commitment or service type
 delivery
 QoSNET
 throughput
 acceptable
 desired
 transit-delay
 acceptable
 desired
 transit-delay-jitter
 acceptable
 desired
 residual-error-rate
 acceptable
 desired
 QoSCPU
 period
 quantum
 acceptable
 desired
 QoSMEM
 buffers
 acceptable
 desired
 buffer_size
 acceptable
 desired
 } association-list
} user-list
sequence {Synchronization-identifier
 Synchronization-type
 sequence {Application-context-name
 }
} synchonization-relations (U)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

67

C_MA-ASSOCIATE indication Multimedia-call-identifier
Calling-AE
Called-AE
Composite-association-identifier
User information
 sequence {Association-identifier
 Application-context-name
 commitment or service type
 delivery
 QoSNET
 throughput
 acceptable
 available
 transit-delay
 acceptable
 available
 transit-delay-jitter
 acceptable
 available
 residual-error-rate
 acceptable
 available
 QoSCPU
 period
 quantum
 acceptable
 available
 QoSMEM
 buffers
 acceptable
 available
 buffer_size
 acceptable
 available
} association-list
sequence {Synchronization-identifier
 Synchronization-type
 sequence {Application-context-name
 }
} synchronization-relations (U)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

68

SERVICE PRIMITIVE PARAMETER

C_MA-ASSOCIATE response

Multimedia-call-identifier
Called-AE
Composite-association-identifier
User information
sequence {Association-identifier
 Application-context-name
 QoSNET
 throughput
 agreed
 transit-delay
 agreed
 residual-error-rate
 agreed
 QoSCPU
 period
 quantum
 agreed
 QoSMEM
 buffers
 agreed
 buffer_size
 agreed
 Association-result
 Association-diagnostic
} association-list
Synchronization-result
Result
Diagnostic

SERVICE PRIMITIVE PARAMETER
C_MA-ASSOCIATE confirmation

Multimedia-call-identifier
Called-AE
Composite-association-identifier
sequence {Association-identifier
 Application-context-name
 QoSNET
 throughput
 agreed
 transit-delay
 agreed
 residual-error-rate
 agreed
 QoSCPU
 period
 quantum
 agreed
 QoSMEM
 buffers
 agreed
 buffer_size
 agreed
 Association-result
 Association-diagnostic
} association-list
Synchronization-result
Result
Result-source
Diagnostic

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

69

For notational reasons: sequence denotes one or more elements
 U denotes that the presence of the parameter is user-optional

C_MACSE-1-0 DEFINITIONS ::=

-- C_MACSE-1-0 refers to version 1.0 for the MACSE protocol

BEGIN

-- The following elements define the APDUs used in the C_MACSE protocol

C_MACSE-apdu ::= CHOICE {
 masrq [APPLICATION 0] C_MASRQ-apdu,
 masre [APPLICATION 1] C_MASRE-apdu,
 mrnrq [APPLICATION 2] C_MRNRQ-apdu,
 mrnre [APPLICATION 3] C_MRNRE-apdu,
 maurq [APPLICATION 4] C_MAURQ-apdu,
 maure [APPLICATION 5] C_MAURE-apdu,
 macrq [APPLICATION 6] C_MACRQ-apdu,
 macre [APPLICATION 7] C_MACRE-apdu,
 msnrq [APPLICATION 8] C_MSNRQ-apdu,
 msnre [APPLICATION 9] C_MSNRE-apdu,
 mrsrq [APPLICATION 10] C_MRSRQ-apdu,
 mrsre [APPLICATION 11] C_MRSRE-apdu,
 mabrt [APPLICATION 12] C_MABRT-apdu
}

-- C_MA-ASSOCIATE service APDUs

C_MASRQ-apdu ::= SEQUENCE {
 protocol-version [0] Version-type,
 calling-AE [1] AE-type,
 user-list [2] User-type,
 synchronization-relations [3] Relations-type
}

C_MASRE-apdu ::= SEQUENCE {
 protocol-version [0] Version-type,
 called-AE [1] AE-type,
 association-list [2] Association-response-type,
 synchronization-result [3] Sync-result-type,
 result [4] Result-type,
 diagnostic [5] Diagnostic-type
}

-- C_MA-RENEGOTIATE service APDUs

C_MRNRQ-apdu ::= SEQUENCE {
 calling-AE [0] AE-type,
 called-AE [1] AE-type,
 qos [2] Qos-type
}

C_MRNRE-apdu ::= SEQUENCE {
 called-AE [0] AE-type,
 qos [1] Qos-response-type
}

-- C_MA-ALTER-USER service APDUs

C_MAURQ-apdu ::= SEQUENCE {
 calling-AE [0] AE-type,
 user-addition-list [1] User-type,
 user-deletion-list [2] User-deletion-type,
 user-deletion-reason [3] Deletion-reason-type
}

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

70

C_MAURE-apdu ::= SEQUENCE {
 called-AE [0] AE-type,
 association-list [1] Association-response-type,
 result [2] Result-type,
 diagnostic [3] Diagnostic-type,
 user-deletion-result [4] User-deletion-result-type
}

-- C_MA-ALTER-ASSOCIATION service APDUs

C_MACRQ-apdu ::= SEQUENCE {
 calling-AE [0] AE-type,
 called-AE [1] AE-type,
 association-addition-list [2] Association-type,
 synchronization-relations [3] Relations-type,
 association-deletion-list [4] Association-deletion-type,
 association-deletion-reason [5] Reason-type
}

C_MACRE-apdu ::= SEQUENCE {
 called-AE [0] AE-type,
 association-addition-result-list [1] Addition-result-type,
 synchronization-result [2] Sync-result-type,
 result [3] Result-type,
 diagnostic [4] Diagnostic-type,
 association-deletion-result [5] Deletion-result-type
}

-- C_MA-SYNCHRONIZE service APDUs

C_MSNRQ-apdu ::= SEQUENCE {
 calling-AE [0] AE-type,
 called-AE [1] AE-type,
 synchronization-relations [2] Sync-relations-type
}

C_MSNRE-apdu ::= SEQUENCE {
 called-AE [0] AE-type,
 synchronization-result [1] Sync-result-type
}

-- C_MA-RELEASE service APDUs

C_MRSRQ-apdu ::= SEQUENCE {
 reason [0] Reason-type,
 user-information [1] User-info-type
}

C_MRSRE-apdu ::= SEQUENCE {
 reason [0] Reason-type,
 user-information [1] User-info-type,
 result [2] Result-type
}

-- C_MA-ABORT service APDUs

C_MABRT-apdu ::= SEQUENCE {
 user-information [0] User-info-type,
 abort-source [1] Source-type
}

-- 1st level of supplementary definitions

Version-type ::= INTEGER

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

71

AE-type ::= OCTET STRING

User-type ::= SEQUENCE {
 called-AE [0] AE-type,
 association-list [1] Association-type
}

Association-response-type ::= SEQUENCE {
 application-context-name [0] Context-type,
 qos [1] Qos-response-type
}

Relations-type ::= SEQUENCE {
 synchronization-type [0] Sync-type,
 application-context-name [1] Context-names-type
}

Qos-type ::= SEQUENCE {
 throughput [0] Throughput-type,
 transit-delay [1] Delay-type,
 residual-error-rate [2] Rer-type
}

Qos-response-type ::= SEQUENCE {
 throughput [0] Throughput-response-type,
 transit-delay [1] Delay-response-type,
 transit-delay-jitter [3] Jitter-type
 residual-error-rate [2] Rer-type
}

Sync-relations-type ::= SEQUENCE {
 synchronization-type [0] Sync-type,
 association-ids [1] Ids-type
}

Association-deletion-type ::= SEQUENCE {
 assoc-id [0] INTEGER
}

User-info-type ::= ANY

-- 2nd level of supplementary definitions

Association-type ::= SEQUENCE {
 application-context-name [0] Context-type,
 user-information [1] User-info-type,
 qos [2] Qos-type
}

Context-type ::= OBJECT IDENTIFIER

Sync-type ::= CHOICE {
 temporal [0] INTEGER,
 spacial [1] INTEGER,
 logical [2] INTEGER
}

Context-names-type ::= SEQUENCE {
 application-context-name [0] Context-type
}

Ids-type ::= INTEGER

-- 3rd level of supplementary definitions

Throughput-type ::= CHOICE {

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

72

 acceptable [0] INTEGER,
 desired [1] INTEGER
}

Delay-type ::= CHOICE {
 acceptable [0] INTEGER,
 desired [1] INTEGER
}

Rer-type ::= INTEGER

Jitter-type ::= INTEGER

Throughput-response-type ::= INTEGER {
 agreed(0)
}

Delay-response-type ::= INTEGER {
 agreed(0)
}

END

