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Summary 
A connection establishment protocol for multimedia 
communication residing at the OSI application layer is presented. 
The new protocol (C_MACSE) adopts a comprehensive 
approach for Quality of Service (QoS), as it incorporates 
resource management strategies for the CPU scheduling and the 
virtual memory of a multimedia system. The C_MACSE 
protocol provides services for the negotiation, renegotiation and 
monitoring of the comprehensive QoS. 
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Introduction 

In a multimedia system, different media types coexist with 
divergent performance parameters [1], which impose strict 
requirements not only to the underlying network capacity 
and protocol efficiency, but also to the computer’s ability 
to manage its resources effectively [2] (i.e. CPU 
scheduling, virtual memory and I/O devices). The end-
system support for multimedia communications is required 
because part of the communications protocol stack is 
implemented in software and executed by the end-system. 
If the end-system cannot guarantee the execution time for 
instructions (referring to protocol stack), there will be no 
real-time communications system no matter how well 
networking support is provided. Besides, if the media data 
need to be processed (including compression and 
decompression) before presentation, the processing time 
should be predictable. Otherwise, a meaningful 
presentation is not achieved. The hardware should have 

high processing power and high data transfer throughput, 
because digital video and audio are very data intensive. In 
addition, the problem of “mismatch in bandwidth” [3] is 
time-critical for multimedia communications, as usual host 
system buses (e.g. VME bus) support lower transmission 
rates than high-speed networks.  

In many existing communications architectures the 
notion of QoS is extremely narrow, because they are based 
on best-effort performance models and they do not support 
quantitative QoS. A comprehensive QoS approach 
considers multimedia requirements imposed both on the 
network and operating system. In the near past, many 
researchers have made specific assumptions about the end-
points of multimedia communication [4]. For example, 
they envisaged multimedia systems equipped with 
specialized real-time operating systems, massive physical 
memory, large CPU processing power and enhancement 
I/O devices. However, conventional workstations running 
standard multiprogrammed operating systems (eg. Unix) 
are interfaced to ATM networks, in order to support 
distributed multimedia applications. In such cases, 
resource management strategies have to be proposed for 
the ATM network, but also for the CPU, the virtual 
memory and the I/O devices.  

The main approach to developing multimedia 
operating systems is to modify and extend certain micro-
kernels to support real-time applications, while providing 
a “personality” to run existing applications. A micro-
kernel is an operating system that is only responsible for 
manipulating low-level system resources, and is 
independent of any specific user-level computational 
paradigm. Consequently, by developing hard real-time 
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multimedia communication systems, a basic consideration 
deals with the underlying micro-kernel. Chorus [5] is one 
of the most dominant micro-kernel that provides the 
system platform for our project. Chorus has been widely 
used for embedded multimedia applications, because it has 
real-time features: pre-emptive scheduling, page locking, 
system call timeouts and efficient interrupt handling. In 
Chorus’s implementation, modern techniques such as 
multithreaded address spaces and Inter-Process 
Communication (IPC) with copy-on-write semantics have 
been used. The basic Chorus micro-kernel abstractions are 
actors, threads and ports. Protocol’s developers can add 
new scheduling policy modules to a multimedia system via 
a Chorus framework called scheduling classes. For the 
development of communications protocols, a protocol 
stack consisting of a kernel-resident network device 
manager with a link layer interface and separate network 
and transport layer actors are provided. Micro-kernels 
such as Chorus, Mach and Amoeba have common 
limitations in the multimedia communications domain [6]. 
For example, Chorus is not directly applicable for the 
support of distributed multimedia applications, because it 
does not support QoS control and resource reservation. 
The performance over existing micro-kernel facilities can 
be improved by reducing the number of protection-domain 
crossings and context switches incurred. Existing Chorus 
abstractions can be extended in order to include QoS 
configurability, connection-oriented communications and 
real-time threads.  

Our project quantifies multimedia communication 
requirements imposed, by the end-user, on the operating 
system and network and enhances the ACSE (Association 
Control Service Element) standard [7] taking into account 
system resources management policies (i.e. CPU 
scheduling, memory and I/O management strategies). We 
designed and developed an enhanced protocol 
(C_MACSE) that improves the ACSE standard, as it 
provides comprehensive QoS support and ad hoc services 
to multimedia application developers. 
This paper is composed as follows. In Section 2, 
multimedia requirements imposed on the operating system 
are reviewed, and in Section 3, background work is 
discussed. Section 4 describes the comprehensive QoS 
architecture. The new protocol and a pilot scheduling 
architecture are presented in Sections 5 and 6 
correspondingly. Finally, concluding remarks are 
summarized in Section 7.  

2. Multimedia requirements in the operating 
system  

The end-user perceives a continuous performance level for 
a real-time continuous media, if QoS guarantees are 
provided at all relevant subsystems (network, CPU, 
memory, I/O). In the CPU subsystem, the required QoS is 
expressed in terms of guaranteed CPU processing for 
those threads (real-time threads), which handle streams of 
real-time continuous media. Since continuous streams are 
handled by real-time threads, the kernel must deliver 
multimedia data directly to peripheral end-points with 
minimal or no interaction with the CPU. This is enforced 
by the real-time behavior of a continuous media stream, 
which implies a key requirement to the CPU scheduling of 
all processing threads related to this stream: “threads 
associated with a continuous media stream ought to be 
closely co-ordinated in such level such as to ensure that 
the temporal integrity of this media stream is not violated” 
[2]. In both, application and protocol processing, kernel 
context switches must be minimised for those threads that 
handle streams of real-time continuous media (real-time 
threads). Real-time threads must access memory regions 
(data, code, stack) with bounded latency. The bounded 
access latency levels of these threads are deduced by the 
enforced user-level QoS requirements, expressed for a 
continuous media stream.  
In addition, CPU resources must be fairly shared across 
multiple address spaces of the processes that compose the 
multimedia application. The level of priority for each 
process varies from the QoS user’s requirements. The 
splitting of processing demands the use of an effective 
CPU scheduling policy for real-time threads. 

3. Background work 

Three main architectures or/and models have been 
proposed in order the communication architecture of the 
Internet to provide QoS guarantees. They are IntServ [8], 
DiffServ [9] and MPLS [10]. Lue [11] analysed issues and 
technologies for supporting multimedia communications 
over the Internet, while Foster et al [12] described a 
General–purpose Architecture for Reservation and 
Allocation (GARA) to support secure immediate and 
advance co-reservation, online monitoring/control, and 
policy-driven management of a variety of resource types, 
including networks. Sampatakos et al [13] introduced a 
scalable inter-domain resource control architecture for 
Differentiated Services networks. A higher level QoS 
manager tool and a channel library named SALMON were 
proposed in [14]. In the projects HeiTS [15] and SUMO 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 
 
 

 

59

[6], protocols and mechanisms were proposed in the 
domain of operating system support for handling 
continuous-media. The HeiTS project has investigated 
end-system issues in the integration of transport QoS and 
CPU scheduling. An elegant split scheduling scheme and 
IPC mechanisms for continuous media were proposed in 
[16]. Research work at Lancaster University [2, 6] has 
addressed the design of a QoS-controlled ATM-based 
communications system in Chorus and QoS guarantees 
were extended into the operating system.  
In signalling protocols domain, many research trials have 
been made. The EXPANSE signalling protocol was 
introduced in [17] and a call model for the establishment 
of multipoint connections over ATM network was 
proposed in [18]. Design issues related with signalling 
architectures and protocols, aimed to support B-ISDN, 
were discussed in [19]. A novel SVC mechanism for call 
connection and control in ATM networks was presented in 
[20]. A set of generic QoS parameters that capture the 
varied requirements imposed by multimedia applications 
has been defined in the RACE Eurobridge (R 1008) 
project. These generic QoS parameters don’t rely on the 
underlying heterogeneous network infrastructures and 
became relevant in an enhanced ACSE element (XACSE 
[21]).  
 Our project was based on MACSE [22], a connection 
establishment protocol for multimedia communication 
residing at the OSI application layer. The objective of 
MACSE is the efficient establishment and control of 
multimedia associations among spatially dispersed users. 
MACSE introduced the notion of out-of-band signalling at 
the application layer and defined procedures for the 
negotiation and confirmation of QoS per association, in 
contrast with the structure of the well-known ACSE 
protocol. In the MACSE framework, the following 
services have been implemented: a) establishment, normal 
and abnormal release of multimedia associations, b) 
renegotiation of a particular QoS value per individual 
association, c) addition and deletion of users in a 
multimedia call, d) addition and deletion of associations in 
a multimedia call and e) synchronization of two or more 
associations in a multimedia call.  
However, the main limitation of the MACSE protocol is 
that it does not adopt a comprehensive QoS approach, as it 
ignores CPU scheduling, virtual memory and I/O 
management issues. At the OSI application layer, 
connection establishment protocols have not yet adopted a 
comprehensive QoS approach. 

4. The comprehensive QoS architecture 

 The C_MACSE protocol comprises an integral module in 
the proposed ATM-based architecture [23, 24], where 
service commitments are supported both in the network 
and in the end-system. 

This architecture (depicted in Fig. 1) aspires to satisfy 
the requirements of hard real-time multimedia applications 
and presents the following advantages:  
• It has mechanisms capable of negotiating, 

renegotiating and monitoring the provided 
comprehensive QoS. 

• It supports synchronization services and multicast 
communications services.  

• It does not take into consideration a revolutionary 
approach in resource management, and thus it 
operates with existing standards whenever it is 
feasible. 
This integrated QoS architecture is composed of three 

vertical planes: a) the communication plane, b) the 
operating system plane and c) the flow management plane. 
The communication plane contains protocols implemented 
with multithread processes, while the operating system 
plane contains the necessary micro-kernel operating 
system mechanisms. Finally, the flow management plane 
provides services related to dynamic QoS control 
functions, such as flow admission control and QoS 
renegotiation. In particular, the proposed communication 
plane consists of the following modules:  

1) Application service modules, which are application 
service elements (ASEs) that deliver functionalities within 
the OSI application layer.  

2) Session layer mechanisms. The synchronization 
manager synchronizes audio and video streams, and 
provides session setup and tear-down as well as flexibility 
in QoS aspects.  

3) Transport protocol combinations. Different 
transport protocol combinations such as TCP/IP, UDP/IP, 
or even raw sockets for IPC can be used. High-speed 
transport protocols such as TPX, XTP, XTPX [25] and 
VMTP can be used.  

4) Network protocols support both network and end-
system resource allocation (eg. RSVP [8]). 

5) The communication model of ATM includes the 
AAL, the ATM layer and the physical layer. In developing 
ATM APIs, two different approaches can be adopted: a) 
LAN emulation [26] and b) classical IP over ATM [27]. 
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Fig. 1: The comprehensive QoS architecture [23]  

5. The C_MACSE protocol 

The new protocol [23, 24] is entitled: Comprehensive 
approach - Multiple Association Control Service Element 
(C_MACSE). It defines procedures for the support of 
multiple associations among multiple users and 
negotiation and confirmation of the comprehensive QoS 
per association between the peer entities. During the 
lifetime of an association, renegotiation of the 
comprehensive QoS is also supported. The ACSE standard 
and the MACSE can be considered as subdivided 
protocols of the C_MACSE protocol. 

5.1 The service definition 

The C_MACSE services are listed in Table 1. The 
C_MACSE service definition has been based on the 
abstract model for a service layer promoted by OSI RM. 

 

 

 

 

Table 1: The C_MACSE services 

Service Type 
C-MA-ASSOCIATE 
C-MA-RENEGOTIATE 
C-MA-SIGNAL-QOS 
C-MA-ALTER-USER 
C-MA-ALTER -ASSOCIATION 
C-MA-SYNCHRONIZE 
C-MA-RELEASE 
C-MA-ABORT 
C-MA-ABORT-USER 
C-MA-ABORT-ASSOCIATION 
C-MA-P-ABORT 

Confirmed 
Confirmed 
Provider-initiated 
Confirmed 
Confirmed 
Confirmed 
Confirmed 
Non-confirmed 
Non-confirmed 
Non-confirmed 
Provider-initiated 

 
 C_MA-ASSOCIATE: Multiple associations among 

multiple users can be established using this service. 
Negotiation of a particular comprehensive QoS per 
individual association can also be attained. The 
requirement for a particular value of a QoS parameter is 
negotiated within the range [acceptable, 
desired] (acceptable≤desired) specified in 
the request primitive. The C_MACSE protocol machine 
(C_MACPM) issues a C_MA-ASSOCIATE 
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indication primitive to every called user. The 
maximum value desired of the range may be decreased 
by the service provider to a new value, named 
available. The called user, in turn, may further 
decrease it to lower value, named agreed and return it 
with the response primitive. Calling C_MACSE user 
considers a multimedia call successful as soon as the first 
positive confirmation primitive from the C_MACSE 
service provider arrives. Any subsequent positive 
confirmation primitive results in an establishment of a new 
composite association. If the service provider does not 
support the requested comprehensive QoS (e.g. due to 
unavailability of network or system resources), it issues a 
C_MA-SIGNAL-QOS indication primitive back to 
the user indicating the type of result (negative) of the QoS 
negotiation.  

 C_MA-RENEGOTIATE: It is used to renegotiate the 
comprehensive QoS of an association during its lifetime. 
The C_MACSE user issues the C_MA-RENEGOTIATE 
request primitive to alter the values of the 
comprehensive QoS parameters initially achieved. The 
operation is completed by exploiting the updated 
properties of the association. For the coordination of the 
peer entities, the C_MACSE service provider issues a 
C_MA-SIGNAL-QOS indication primitive to the 
target user, simultaneously with a C_MA-RENEGOTIATE 
confirmation primitive to the origin. The called user 
considers the QoS alternation successful as soon as the 
former primitive arrives. 
 C_MA-SIGNAL-QOS. It is issued by the C_MACSE 

service provider to signal the result of a comprehensive 
QoS operation during C_MA-ASSOCIATE and C_MA-
RENEGOTIATE procedures and indicate any QoS 
thresholds violation. When the C_MACSE service-
provider detects either the inability of the underlying 
services (belong to network or to operating system) to 
support the requested QoS or a positive responded 
renegotiation request, it issues a C_MA-SIGNAL-QOS 
indication primitive to the corresponding user. 
 C_MA-ALTER-USER. It is used to provide for 

addition and deletion of users in a multimedia call. 
 C_MA-ALTER-ASSOCIATION. It is used to provide 

addition and deletion of associations in a multimedia call. 
 C_MA-SYNCHRONIZE. It is used for the activities 

initiation of the underlying synchronization entity. The 
C_MA-SYNCHRONIZE service request is issued by a 
C_MACSE user whenever it is desired for two or more 
established associations to be synchronized according to a 
particular relation requirement. 

 C_MA-RELEASE and C_MA-ABORT services are 
used by a calling application entity to cause the normal 
and abnormal release of a multimedia call respectively.  
 C_MA-ABORT-USER and C_MA-ABORT-

ASSOCIATION services are used to provide abnormal 
release of an established composite association and 
association, respectively. 

 C_MA-P-ABORT: It is used by the C_MACSE 
service provider (i.e. network or operating system) to 
signal abnormal release of the multimedia call due to 
problems in services below the application layer. 

5.2 The C_MACSE elements  

The C_MACSE protocol (as depicted in Fig. 1) 
incorporates the following modules:   
 
5.2.1 The QoS translator (QoS-T) 
During the connection establishment or QoS renegotiation 
phases, user-level QoS parameters (e.g. window size, 
color, depth, frame rate, concerning a video stream) can be 
compiled into application-level QoS parameters by the 
QoS compiler. Then, QoS-T translates application-level 
QoS parameters into representations usable by the relevant 
subsystems (network, CPU and memory). To do this task, 
it uses tables that include relations between the two 
different levels of QoS parameters.  

In the C_MACSE protocol, we incorporated proper 
QoS parameters as to provide control at the OSI 
application layer for network and system resource 
management. Concerning a media stream, these 
incorporated application-level QoS parameters are:  

media stream_QoS =  
(commitment, delivery, buffer_rate, 

buffer_size, latency, delay priority level, 
loss priority level, jitter) 

 
5.2.2 The CPU scheduler 
The problem of CPU scheduling demands two steps: a) to 
classify all processing threads, generated by the 
multimedia application, into classes and b) to apply an 
effective scheduling policy to the same class threads. The 
CPU scheduler executes these tasks/steps and permits 
threads processing wherever required according to the 
notion of urgency. Our project is strongly based on the 
work presented in [6], because we use the same admission 
tests and resource classes for QoS-controlled connections. 

Classification of threads: Threads generated from 
various media streams have different QoS requirements 
defined as guaranteed (G) or best-effort (B). The notion of 
commitment expresses a degree of certainty that the 
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requested QoS levels will actually be granted during run-
time. Commitment can take two values: guaranteed or 
best-effort. If commitment is guaranteed, physical memory 
and CPU resources are permanently dedicated to support 
the requested QoS levels of this stream. Every stream 
connection has two main properties: commitment and 
delivery. Using these properties, five resources classes are 
formed:  
(1) GI : Here, there are threads which handle streams of 

real-time continuous media (viz. isochronous). 
(2) GW : In this class belong threads, which are associated 

with guaranteed and workahead stream connections. 
The workahead value relaxes the restriction of a 
continuous media to issue an APDU at a fixed point of 
time. Therefore, an A_DATA.request or an 
A_DATA.indication service primitive may be 
issued at an earlier time than actually allowed. 

(3) BI : In this class threads are associated with best-effort 
and isochronous stream connections. 

(4) BW : In this class threads handle best-effort and 
workahead stream connections. 

(5) BC : These threads are associated with classic, non 
real-time, UNIX application programs. 
Scheduling Policies: Threads belonging to GI class are 

scheduled according to an extended Earliest Deadline 
First (EDF) algorithm [28], while threads belonging to GW 
class are scheduled according to the standard pre-emptive 
EDF policy. In both of these thread classes, we use an 
admission test to ensure predictive behavior. Threads 
belonging to B classes are scheduled according to the pre-
emptible EDF policy, but no admission test is used.  
 
5.2.3 Virtual Memory Manager (VMM) 
The VMM [23, 24] ensures that multimedia QoS-
controlled connections can access memory regions with 
bounded latency. The time constraints are achieved by: 1) 
determining whether or not requests for QoS-controlled 

memory resources should succeed or fail and 2) 
preempting QoS-controlled memory resources from CPU 
scheduler when necessary. For example, “high urgency” 
threads have higher priority than “low urgency” threads. 
During the connection establishment or renegotiation 
phases, two memory-related properties are deduced from 
the user-level QoS parameters: a) the number of buffers 
required per stream connection and b) the required access 
latency associated with those buffers. As a thread has three 
access regions with the kernel, three access latency levels 
are considered. These levels are related to the code, data 
and stack regions. If access latency levels to these regions 
are bounded, QoS guarantees for the QoS-controlled 
threads can be achieved. 
There are swappable and locked pages in memory and thus 
two different access latencies for these pages are observed. 
The latency bound of swappable pages [29] depends on: 1) 
the delay due to the Remote Procedure Call (RPC) 
communication between the VMM and the pages mapper 
(viz. a daemon process that maps the virtual memory 
address space to physical address space, without 
predictions about the pages faults of the real-time threads 
during their execution) and 2) on the delay associated with 
the external swap device. The latency bound of the locked 
pages depends on the system bus and on the clock speed. 
To bound access latency levels to swappable pages, new 
page replacement policies and disk layout strategies must 
be proposed. Page replacements algorithms oriented to the 
“working set model” [30] are the most promising. 
Resultantly, adjusting the above system parameters, access 
latency levels can be bounded. In the C_MACSE 
framework, we designed and developed a QoS pages 
mapper that is based on the reference and distance string 
models [31]. QoS guarantees (relating to page faults of 
real-time threads) are achieved partially. 
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Fig. 2: The memory management architecture [23]

5.2.4 The flow manager (FM) 
FM integrates the resource management in both 
communication end-systems and the network. Precisely, 
FM is supervising the three resource subsystems and 
executes three admission tests (i.e. bandwidth test, delay 
bound test, and buffer availability test), in order the 
C_MACSE protocol to determine whether a new session 
can be created, given its specific resource requirements 
and the availability of the subsystems resources. During 
connection time, FM arranges the memory and allocates 
proper CPU and network resources. It uses a prior 
resource reservation mechanism to obtain guaranteed real-
time performance. In addition, FM is responsible for 
dynamic QoS management and adapts the degradations 
made in one subsystem resource by compensating in terms 
of the others.  

6. A pilot CPU scheduling architecture 

In order to meet multimedia application requirements, we 
developed a pilot split-level CPU scheduling architecture 
[23] in the SunOS R.4.1 operating system. This 
architecture resides in the user-level space, as light-weight 
processes (LWP) library lacks kernel support. It exploits 
the concept of light-weight threads and classifies all 
processing threads generated by the current multimedia 
application. It applies the scheduling policies (described 

above) to the same class threads and permits threads CPU 
processing, where required, according to the notion of 
urgency. In this architecture, there are media, network and 
memory actors (e.g. QoS mapper). The network actor 
contains threads implementing the OSI upper layer 
protocols of the communication architecture [24]. Inside 
the network actor, threads are organized according to the 
pipe-line model. This architecture is split in two main 
levels: a) the level of the application level scheduler 
(ALS) and b) the level of User Level Schedulers (ULSs). 
The ALS communicates with the ULSs using shared 
memory and software interrupts. The common shared 
memory is divided in parts that contain the current value 
of urgency for each ULS. The urgency of a ULS expresses 
the priority of the most urgent thread running above this 
ULS. Therefore, this architecture always executes the most 
urgent thread, while the value of urgency is deduced 
indirectly by the user-level QoS parameters using the 
QoS_T.  
The main factor that provoked potential violations of the 
scheduling invariants in this architecture was the 
execution of blocking system calls by real-time threads. 
We solved this problem by using the non-blocking I/O 
library (libnbio.a) and rewriting parts of the system 
calls library. Particularly, we placed code (jacket) around 
the “suspicious” system calls to do the checking. 
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Figure 3: The pilot scheduling architecture in SunOS R.4.1 [23] 

7. Conclusion 

The field of connection establishment protocols has not 
yet adopted a comprehensive QoS approach in 
development and standardization. An important advantage 
of the proposed C_MACSE protocol is that it robustly and 
effectively reflects not only the network capabilities, but 
also the operating system resource management strategies 
by incorporating specific mechanisms for threads 
scheduling and virtual memory management. An 
integrated communication architecture with 
comprehensive QoS support for ATM-based multimedia 
communications systems, as well a pilot CPU scheduling 
architecture have been proposed. 
 
References 
[1] H. Chu, K. Nahrstedt, CPU service classes for multimedia 
applications, Proc.IEEE Conf. on Multimedia Computing and 
Systems, 1999. 

[2] G. Coulson, G. Blair, Micro-kernel support for 
continuous media in distributed systems, Computer Networks & 
ISDN Systems, 26, 1994, 1323-1341. 
[3] Special Issue: End-System Support for High-Speed 
Networks/Breaking the Network I/O Bottleneck, IEEE Network, 
7(4), 1993. 

[4] M. Zafirovic-Vukotic, I. Niemegeers, Multimedia 
Communication Systems: Upper Layers in the OSI Reference 
Model, IEEE J. Select. Areas Commun., 10(9), 1992, 1397-1402. 

[5]  M. Rozier et al., Overview of the CHORUS 
Distributed Operating Systems, Computing Systems, Journal of 
the UNIX Association, 1(4), 1991.  

[6] G. Coulson et al., The Design of a QoS-Controlled 
ATM-Based Communications System in Chorus, IEEE J. Select. 
Areas in Communications, 13(4), 1995, 686-699. 

[7] CCITT Recommendation X.217: ‘Association Control 
Service Definition for Open Systems Interconnection for CCITT 
applications’ (Vol. VIII, Fascicle VIII.4, 1988). 

[8]  R. Braden et al., Resource ReSerVation Protocol 
(RSVP)-Version 1 Functional specification, Internet RFC2205, 
September 1997. 

[9]  Y. Nernet et al., A framework for differentiated 
services, IETF Internet Draft: draft-diffserv-framework-02.txt, 
February 1999. 

[10]  G. Armitage, MPLS: the magic behind the myths, 
IEEE Commun. Magazine, 38(1), 2000, 124-131. 

[11] G. Lu, Issues and technologies for supporting 
multimedia communications over the Internet, Computer 
Communications, 23, 2000, 1323-1335. 

[12]  I. Foster et al., End-end quality of service for high-end 
applications, Computer Communications, 2004 (to be published). 

[13] P. Sampatakos et al, BGRP: Quite Grafting 
Mechanisms for Providing a Scalable End-to-End QoS solution, 
Computer Communications, 27, 2004, 423-433. 

[14] A. Schill, T. Hutschenreuther, Architectural support for 
QoS management and abstraction: SALMON (Support 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 
 
 

 

65

Architecture for transmission of Live Media streams On 
networks), Computer Communications, 20, 1997, 411-419. 

[15] D.B. Hehmann et al., Implementing HeiTS: 
Architecture and implementation strategy of the Heidelberg 
high-speed transport system, Proc. 2nd Int. Workshop Network, 
Operating Sys. Support Digital Audio, Video, 1991, (Heidelberg 
Germany). 

[16] R. Gonindan, D.P. Anderson, Scheduling and IPC 
mechanisms for continuous media, in Proc. Thirteenth ACM 
Symp. Operating Syst. principles (Pacific Grove, CA), SIGOPS, 
25, 1991, 68-80. 

[17] S. Minzer, A Signaling Protocol for Complex 
Multimedia Services, IEEE J. Select. Areas Commun., 9(9), 1991, 
1383-1394. 

[18] R. Bubenik et al., Multipoint connection management 
in high-speed networks, Proc. IEEE INFOCOM, 1991 59-68. 

[19] T. La Porta et al., B-ISDN: A technological 
discontinuity, IEEE Commun. Mag., 32(10), 1994, 84-97. 

[20] R. Henry, P. Darby, A novel SVC mechanism for call 
connection and control in ATM networks, Computer 
Communications, 20, 1997, 1123-1128. 

[21] D. Mc Glinchey, XACSE: Connection Set-up for 
Broadband Services using Generic QoS Parameters, Proc. of the 
2nd Brodband Islands Conf., 1993, 207-210. 

[22]  G. Orphanos, G. Papadopoulos, S. Koubias, MACSE: 
A Generic Connection Establishment Protocol for Multimedia 
Communication Residing at the OSI Application Layer, 
European Transactions on Telecommunications, 9(3), 1998, 295-
311. 

[23]  D. Kanellopoulos, S. Koubias, G. Papadopoulos, A 
Novel User-to-User Protocol for the Establishment of 
Multimedia Associations adopting a Comprehensive QoS 
Approach”, Proc. IEEE Conf. on Military Communications 
(MILCOM), 1996, 755-759.  

[24]  D. Kanellopoulos, G. Papadopoulos, S. Koubias, A 
Novel ACSE Protocol with Comprehensive QoS Support for 
Multimedia Communications in Chorus”, Proc. 5th IEEE Conf. 
on Universal Personal Communications, 1996, 487-491. 

[25] Specification of the Broadband Transport Protocol 
XTPX, CIO/RACE 2060, 1994. 

[26] J. Heinanen, Multiprotocol Encapsulation over ATM 
Adaptation Layer 5, Networking Working Group, RFC 1483, 
Telecom Finland, July 1993.  

[27]  M. Perez et al., ATM Signalling Support for IP over 
ATM, RFC 1755, February 1995. 

[28] C.L. Liu, J.W. Layland, Scheduling algorithms for 
multiprogramming in a hard real-time environment, J. Assoc. 
Computing Mach., 20(1), 1973, 46-61. 

[29] A. S. Tanenbaum, Modern Operating Systems, Vol. I, 
Prentice-Hall (Ed.), 1992. 

[30] K. Park et al., The working set algorithm has 
competitive ratio less than two, Information Processing Letters, 
63, 1997, 183-188. 

[31]  B. Prieve, R, Fabry, VMIN: an optimal variable space 
page replacement algorithm, Communications of the ACM, 19(5), 
1976, 295-297. 

 

 Dimitris Kanellopoulos received a 
diploma in electrical engineering and a 
Ph.D. degree in electrical and computer 
engineering from the University of Patras, 
Greece. Since 1990, he was a research 
assistant in the Department of Electrical 
and Computer Engineering at the 

University of Patras and involved in several EU R&D projects 
(e.g. RACE I and II, ESPRIT). His research interests are in the 
field of hard real-time multimedia communication protocols, 
ATM networking, new OSI services and web engineering. He 
has more than 30 publications to his credit in international 
journals and conferences in these areas. Dr. Kanellopoulos is a 
member of the Technical Chamber of Greece. 
 

Sotiris Kotsintis received a diploma in 
mathematics, a Master and a Ph.D. degree 
in computer science from the University of 
Patras, Greece. His research interests are in 
the field of data and multimedia mining. He 
has more than 40 publications to his credit 
in international journals and conferences. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 
 

 

66 

 
REMARK: THIS APPENDIX WILL BE USED ONLY FOR THE REVIEWING PROCESS (NOT FOR PUBLISHING) 

 
APPENDIX A: C_MA-ASSOCIATE service primitives and a portion of the C_MACSE protocol specification in ASN.1 
notation  
 

SERVICE PRIMITIVE PARAMETER 
C_MA-ASSOCIATE request 
 
 
 
 
 
 

Multimedia-call-identifier 
Calling-AE 
sequence {Called-AE 
                 Composite-association-identifier 
                 User information 
                 sequence {Association-identifier 
                                  Application-context-name 
                                  commitment  or service type 
                                  delivery  
                         QoSNET 
                                       throughput 
                                                acceptable 
                                                desired 
                                       transit-delay 
                                                acceptable 
                                                desired 
                                       transit-delay-jitter 
                                                acceptable 
                                                desired  
                                       residual-error-rate 
                                                acceptable 
                                                desired 
                                  QoSCPU  
                                       period 
                                       quantum 
                                                acceptable 
                                                desired 
                                  QoSMEM  
                                       buffers 
                                                acceptable 
                                                desired 
                                       buffer_size 
                                                acceptable 
                                                desired 
                 } association-list 
} user-list 
sequence {Synchronization-identifier 
                 Synchronization-type 
                 sequence {Application-context-name 
                 } 
} synchonization-relations (U) 
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C_MA-ASSOCIATE indication Multimedia-call-identifier 
Calling-AE 
Called-AE 
Composite-association-identifier 
User information 
 sequence {Association-identifier 
                  Application-context-name 
                   commitment  or service type 
                   delivery 
              QoSNET  
                       throughput 
                                acceptable 
                                available 
                       transit-delay 
                                 acceptable 
                                 available 
                       transit-delay-jitter 
                                 acceptable 
                                 available  
                         residual-error-rate 
                                  acceptable 
                                  available 
                          QoSCPU  
                             period 
                              quantum 
                                   acceptable 
                                   available 
                           QoSMEM  
                               buffers 
                                   acceptable 
                                   available 
                               buffer_size 
                                   acceptable 
                                   available 
} association-list 
sequence {Synchronization-identifier 
                 Synchronization-type 
                 sequence {Application-context-name 
                 } 
} synchronization-relations (U) 
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SERVICE PRIMITIVE PARAMETER 

C_MA-ASSOCIATE response 
 

Multimedia-call-identifier 
Called-AE 
Composite-association-identifier 
User information 
sequence {Association-identifier 
                  Application-context-name 
              QoSNET  
                       throughput 
                                agreed 
                       transit-delay 
                                 agreed 
                       residual-error-rate 
                                 agreed 
                    QoSCPU  
                         period 
                         quantum 
                                 agreed 
                    QoSMEM  
                         buffers 
                                 agreed 
                          buffer_size 
                                 agreed 
                      Association-result 
                      Association-diagnostic 
} association-list 
Synchronization-result 
Result 
Diagnostic                

 
 

SERVICE PRIMITIVE PARAMETER 
C_MA-ASSOCIATE confirmation 

 
Multimedia-call-identifier 
Called-AE 
Composite-association-identifier 
sequence {Association-identifier 
                 Application-context-name 
              QoSNET  
                       throughput 
                                agreed 
                       transit-delay 
                                 agreed 
                       residual-error-rate 
                                 agreed 
                    QoSCPU  
                         period 
                         quantum 
                                 agreed 
                    QoSMEM  
                         buffers 
                                 agreed 
                          buffer_size 
                                 agreed 
                      Association-result 
                      Association-diagnostic 
} association-list 
Synchronization-result 
Result 
Result-source 
Diagnostic                
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For notational reasons: sequence denotes one or more elements 
   U denotes that the presence of the parameter is user-optional 
 
C_MACSE-1-0 DEFINITIONS ::= 
 
-- C_MACSE-1-0 refers to version 1.0 for the MACSE protocol 
 
BEGIN 
 
-- The following elements define the APDUs used in the C_MACSE protocol 
 
C_MACSE-apdu ::= CHOICE { 
 masrq [APPLICATION 0] C_MASRQ-apdu, 
 masre [APPLICATION 1]  C_MASRE-apdu, 
 mrnrq [APPLICATION 2]  C_MRNRQ-apdu, 
 mrnre [APPLICATION 3]  C_MRNRE-apdu, 
 maurq [APPLICATION 4]  C_MAURQ-apdu, 
 maure [APPLICATION 5]  C_MAURE-apdu, 
 macrq [APPLICATION 6]  C_MACRQ-apdu, 
 macre [APPLICATION 7]  C_MACRE-apdu, 
 msnrq [APPLICATION 8]  C_MSNRQ-apdu, 
 msnre [APPLICATION 9]  C_MSNRE-apdu, 
 mrsrq [APPLICATION 10]  C_MRSRQ-apdu, 
 mrsre [APPLICATION 11]  C_MRSRE-apdu, 
 mabrt [APPLICATION 12]  C_MABRT-apdu 
} 
 
-- C_MA-ASSOCIATE service APDUs 
 
C_MASRQ-apdu ::= SEQUENCE { 
 protocol-version   [0] Version-type, 
 calling-AE   [1] AE-type, 
 user-list    [2] User-type,    
 synchronization-relations  [3] Relations-type 
} 
 
C_MASRE-apdu ::= SEQUENCE { 
 protocol-version   [0] Version-type, 
 called-AE    [1] AE-type, 
 association-list   [2] Association-response-type, 
 synchronization-result  [3] Sync-result-type, 
 result    [4] Result-type, 
 diagnostic   [5] Diagnostic-type 
} 
 
-- C_MA-RENEGOTIATE service APDUs 
 
C_MRNRQ-apdu ::= SEQUENCE { 
 calling-AE   [0] AE-type, 
 called-AE    [1] AE-type, 
 qos    [2] Qos-type 
} 
 
C_MRNRE-apdu ::= SEQUENCE { 
 called-AE    [0] AE-type, 
 qos    [1] Qos-response-type   
} 
 
-- C_MA-ALTER-USER service APDUs 
 
C_MAURQ-apdu ::= SEQUENCE { 
 calling-AE   [0] AE-type, 
 user-addition-list   [1] User-type, 
 user-deletion-list   [2] User-deletion-type, 
 user-deletion-reason  [3] Deletion-reason-type 
} 
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C_MAURE-apdu ::= SEQUENCE { 
 called-AE    [0] AE-type, 
 association-list   [1] Association-response-type, 
 result    [2] Result-type, 
 diagnostic   [3] Diagnostic-type, 
 user-deletion-result   [4] User-deletion-result-type 
} 
  
-- C_MA-ALTER-ASSOCIATION service APDUs 
 
C_MACRQ-apdu ::= SEQUENCE { 
 calling-AE   [0] AE-type, 
 called-AE    [1] AE-type, 
 association-addition-list  [2] Association-type, 
 synchronization-relations  [3] Relations-type, 
 association-deletion-list  [4] Association-deletion-type, 
 association-deletion-reason  [5] Reason-type 
} 
 
C_MACRE-apdu ::= SEQUENCE { 
 called-AE    [0] AE-type, 
 association-addition-result-list  [1] Addition-result-type, 
 synchronization-result  [2] Sync-result-type, 
 result    [3] Result-type, 
 diagnostic   [4] Diagnostic-type, 
 association-deletion-result  [5] Deletion-result-type 
} 
 
-- C_MA-SYNCHRONIZE service APDUs 
 
C_MSNRQ-apdu ::= SEQUENCE { 
 calling-AE   [0] AE-type, 
 called-AE    [1] AE-type, 
 synchronization-relations  [2] Sync-relations-type  
} 
 
C_MSNRE-apdu ::= SEQUENCE { 
 called-AE    [0] AE-type, 
 synchronization-result  [1] Sync-result-type 
} 
 
-- C_MA-RELEASE service APDUs 
 
C_MRSRQ-apdu ::= SEQUENCE { 
 reason    [0] Reason-type, 
 user-information   [1] User-info-type    
} 
 
 
 
C_MRSRE-apdu ::= SEQUENCE { 
 reason    [0] Reason-type, 
 user-information   [1] User-info-type, 
 result    [2] Result-type  
} 
 
-- C_MA-ABORT service APDUs 
 
C_MABRT-apdu ::= SEQUENCE { 
 user-information   [0] User-info-type, 
 abort-source   [1] Source-type 
} 
 
-- 1st level of supplementary definitions 
 
Version-type ::= INTEGER 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 
 
 

 

71

 
AE-type ::=  OCTET STRING 
 
User-type ::= SEQUENCE { 
 called-AE    [0] AE-type, 
 association-list   [1] Association-type 
} 
 
Association-response-type ::= SEQUENCE { 
 application-context-name  [0] Context-type, 
 qos    [1] Qos-response-type 
} 
 
Relations-type ::= SEQUENCE { 
 synchronization-type  [0] Sync-type, 
 application-context-name  [1] Context-names-type 
} 
 
Qos-type ::= SEQUENCE { 
 throughput   [0] Throughput-type, 
 transit-delay   [1] Delay-type, 
 residual-error-rate   [2] Rer-type 
} 
 
Qos-response-type ::= SEQUENCE { 
 throughput   [0] Throughput-response-type, 
 transit-delay   [1] Delay-response-type, 
 transit-delay-jitter    [3]  Jitter-type 
 residual-error-rate   [2] Rer-type 
} 
 
Sync-relations-type ::= SEQUENCE { 
 synchronization-type  [0] Sync-type, 
 association-ids   [1] Ids-type 
} 
 
Association-deletion-type ::= SEQUENCE { 
         assoc-id      [0]  INTEGER 
} 
  
User-info-type ::= ANY 
 
-- 2nd level of supplementary definitions 
 
Association-type ::= SEQUENCE { 
 application-context-name  [0] Context-type, 
 user-information   [1] User-info-type, 
 qos    [2] Qos-type 
} 
 
Context-type ::= OBJECT IDENTIFIER 
 
Sync-type ::= CHOICE { 
         temporal     [0]  INTEGER, 
         spacial       [1]  INTEGER, 
         logical       [2]  INTEGER 
} 
 
Context-names-type ::= SEQUENCE { 
         application-context-name    [0]  Context-type 
} 
  
Ids-type ::= INTEGER 
 
-- 3rd level of supplementary definitions 
 
Throughput-type ::= CHOICE { 
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 acceptable   [0] INTEGER, 
 desired    [1] INTEGER 
} 
 
Delay-type ::= CHOICE { 
 acceptable   [0] INTEGER, 
 desired    [1] INTEGER 
} 
 
Rer-type ::= INTEGER 
 
Jitter-type ::= INTEGER 
 
Throughput-response-type ::= INTEGER { 
 agreed(0) 
} 
 
Delay-response-type ::= INTEGER { 
 agreed(0) 
} 
 
END 
 
 
 

 
 


